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In this paper, a survey of some packet-switched routing methods
for massively parallel computers is presented. Some of the tech-
niques are applicable to both shared-memory and message-passing
architectures. These routing methods are compared in terms of
their efficiency in mapping to parallel machines, network delays
and interconnection topologies, deadlock and livelock freedom,
and adaptivity to network congestion.

I. INTRODUCTION

A parallel computer or multiprocessor is a network of
processors, coprocessors, memory banks, switches, and
links. The topology of the network is described by a
directed graph G. The arcs of G are called (external) links.
Each node of G contains one or more switches that connect
incoming links to outgoing links (see Section II for details).
As it shall be seen later, switches can be either very simple
or quite elaborate. For example, they may have buffers
(input and/or output queues) and an arithmetic and logic
unit. Some nodes of G (possibly all) contain processors,
and some contain memory banks.

The graph G describes the logical structure of the inter-
connection network used for machine-wide interprocessor
communication. Each external link consists of k wires
(typical values for k are 1, 4, or 8) and is used for sending
messages between two switches residing at distinct nodes,
k bits at a time. Processor-to-processor and/or processor-
to-memory communication is accomplished by sending
messages that are routed between the source and destination
nodes across links in the network, often passing through
multiple switches on the way. It is assumed that special
coprocessors at each switch take care of interprocessor
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communications: both programmers and processors are
relieved of the burden of routing messages through the net-
work, including handling the intermediate hops of messages
traveling to their destination. A node is not restricted to
contain a single processor or memory bank. For example,
a node can contain several processors that share a common
coprocessor for their machine-wide communication. As this
work focuses on routing over the network, only the case of
each node having one memory bank and one processor will
be considered here.

A network is said to be fully populated if there is at
least one processor at every node. Otherwise it is partially
populated. A multistage network is one in which the nodes
can be partitioned into stages (or columns), and all links
from a node go to nodes which are either in the next stage
or in the previous one (with possible wrap-around). This
classification has been suggested in [1].

A constant-degree network is a network for which the
degree of each node (i.e., the number of links touching it)
is a constant (i.e., it is not dependent on the size of the
network). It is good for networks to be constant-degree, to
allow them to be extended. In addition, from a technological
point of view, a feasible network can only have a small
number of links per node.

Either each processor fetches its own instructions from
memory (a MIMD machine) or all processors execute the
same instruction, broadcast from a central control processor
(a SIMD machine). Examples of MIMD machines include
the IBM RP3 [2], the Intel iPCS [3],[4], Cedar [5], and the
BBN Butterfly [6],{7] . The Connection Machine [8] is an
example of an SIMD machine.

Parallel computers can be distinguished by whether they
support a shared memory or a message passing model
of processor communication. A shared memory parallel
computer is one in which the processors communicate by
reading and writing data words to a global memory. The
“messages” sent from a processor to a memory location
(and back) are short and simple, and the machine is
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streamlined accordingly.

The Parallel Random Access Machine (PRAM) is one
of the most popular programming models for parallel,
shared-memory machines. In this model, the address
space is global and accessible by all the processors.
There exist many variants of this model, depending
on whether processors are allowed or not to perform
concurrent accesses to a single memory location. The
most common versions are Exclusive-Read Exclusive-Write
(EREW), Concurrent-Read Exclusive-Write (CREW), and
Concurrent-Read Concurrent-Write (CRCW) PRAM’s.

In the synchronous PRAM model, a powerful primitive,
the multiprefix (MP) operation can be defined. An efficient
implementation of MP is a powerful programming tool. See
[9] for the definition of MP and for some programming
examples on its use.

In a message passing parallel computer, the processors
communicate by passing messages that can have rich se-
mantics (such as in an object-oriented programming style).
The messages are viewed as sent between processors, and
they can be long and invoke complicated actions (beyond
simply loading and storing a data word).

When the processors want to communicate, they inject
their messages in the network. If all of them do so at
the same moment, with the network clear of messages,
the injection model is static. It is well suited for SIMD
machines. Otherwise, if every processor can inject messages
at an arbitrary time, the injection model is dynamic.

Given a network, a distance measure D can be defined
on it. A routing algorithm is said to be minimal if for
every sequence of nodes ao, . . ., ax such that they conform
a feasible path from ag to ay, it holds that D(a;,ax) >
D(aj,ax) if ¢ < j, ie., every hop brings the message
closer to its destination.

A routing technique is adaptive if for some pair of nodes
a, b it can use more than a path when routing messages from
a to b. Note that not only must these paths exist physically,
but the routing technique must be able to make use of them.
The choice of the path to be taken by a particular message
may depend on many factors, e.g., faulty links or congestion
of the network.

A routing algorithm such that the route a message takes
depends only on its source and destination nodes is said to
be oblivious.

Usually, two kinds of routing techniques are defined.

* In packet-switching routing, the messages are of con-
stant size, and they are called packets. In this kind of
routing, packets are moved from node to node in every
hop of their path, and they are stored either in the nodes
or in the links.

* The technique just defined does not work if the mes-
sages are of variable size. For this kind of messages
wormhole touting can be used instead. In this technique,
a message m is divided into a sequence of constant-size
flits. The first flit (the head) of the sequence must hold the
destination’s address because it is used to determine the
path the message must take. Once a link is occupied by the
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head, it cannot be used for other messages until the last flit
of m has left it. If the head of m discovers that the next
link it has to traverse is being used, it must wait in the
buffers of the link until its next link is freed. For a more
detailed description, see [10].

In this paper, a survey of packet-switching routing tech-
niques for parallel computers is presented. Although worm-
hole routing has importance on its own, it will not be
analyzed here. Nevertheless, many of the techniques de-
scribed can also be used for wormhole routing.

An extended version of this survey can be found in [11].

Interconnection network topologies are defined briefly
in Section II. The techniques are analyzed following the
criteria stated in Section IIIL

In Sections IV, V, and XI, three nonadaptive techniques
are discussed.

Sections V1, VII, and VIII describe some adaptive routing
techniques. Finally, Sections IX and X show some adaptive,
nonminimal routing algorithms.

II. SoME ToPOLOGIES

In this section, some usual network topologies will be
defined. They will be used in the rest of this work. A
topology is a graph G = (V,E) where V = {0,...,| V|
—1}. The nodes of the graph stand for the nodes of the
network, and the edges stand for its links.! In the following,
if = and p are integers, z || p will denote the integer whose
binary representation is the same of z’s except for the pth
bit.

Definition 1: In an n-hypercube | V |= 2". E is defined
to be the set

{(z,x||3),z€V,ie{0...n—1}}

Every node in the hypercube has n links incident to it. Its
diameter is log | V |= n.

Definition 2: In an n-cube-connected cycles (n-CCC) |
V |= n2™. Every address in V can be thought of as a
pair (¢, p) where c is n bits long and p is [logn] bits long.
E is the set

{< (¢,p),(c,p+1 (mod n))>,(c,p) € Vi
U{< (ep). (el p,p) >, (c,p) €V}

The n-CCC is an n-hypercube in which every node has
been decomposed into a ring of n nodes, p denotes the
place of the node in the cycle and ¢ the cycle it belongs
to. Its diameter is O(n). Every node in the CCC has three
links incident to it.

Definition 3: In an n-butterfly, | V |= n2™. Every node in

V can be thought of as a pair (c,r) where 7 is n bits long
and c is [logn] bits long. r stands for the node’s row and
c for its column. E is the set

{<(¢,7),(c+1 (mod n),r)>,(cr)€V}
U< (&), (c+1 (mod n),r |l c) >, (e;r) €V}

11f the graph is undirected the edges should be considered as bidirec-
tional links. In a directed graph they stand for unidirectional links. Unless
otherwise stated, graphs will be undirected.
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The n-butterfly is related to the n-hypercube in the

following way: if g, stands for the set {< r,c >€ V}, then
the topology defined by the set {g,,7 € {0,...,n —1}} is
an n-hypercube. The diameter of the n-butterfly is [1.5n]
and the degree of each node is 4.
Definition 4: The n-shuffle-exchange network is defined
by taking | V |= 2". There is an edge between z and y
if either z = y || 0 (exchange link) or y is obtained by a
circular, one-bit right shift of the binary representation of
z (shuffle link). The diameter of the network is 2n and the
degree of each node is 3.

The hypercube, CCC, shuffle-exchange and butterfly form
the so-called hypercube family in [12, p. 4]. As it has been
shown in their definitions, they are closely related.

Definition 5: In a two-dimensional n-mesh, | V |= n?.
Every node is considered as a pair (r,¢), 7,c € {0,...,n—
1}. There is a link between (r1,¢1) and (r2,c2) if 711 =72
and | ¢ —cp |= lorey = cpand | rp —7mp |= L.

If r,c are thought of as row and column of the node
respectively, this network represents a square grid where
every node is connected only to its direct neighbors. An
n-torus can be defined by changing the connections in the
following way. Node (r,c) is connected to nodes (r,c+ 1
(mod n)),(r,c—1 (mod n)),(r+1 (mod n),c), and
(r =1 (mod n),c).

These definitions may also be generalized in an obvious
way to k-dimensional meshes and toruses.

The diameter of a k-dimensional n-mesh is k(n — 1) and
in a k-dimensional n-torus it is [kn/2]. In the meshes, the
degree of every node is 2k, the borders being a special case,
whereas in the torus it is the same for all nodes.

A generalization may be made in order to consider

hypercubes and bidimensional toruses as instances of the
same class of topologies [10, p. 549].
Definition 6: A k-ary n-cube can be defined as follows:
| V |= k™. Every node of the network is identified with an
n-digit base-k number. If node p is identified with number
kn_1, -+, ko then p is connected to the nodes numbered
kn-1, -, ki+1 (mod k), --,ko,0<i<n~11kis
fixed to be 2, then the family of n-hypercubes is obtained,
and if n is fixed to be 2, the family of two-dimensional k-
toruses is obtained. The diameter of the network is [kn/2].
Definition 7: Valiant and Brebner defined the d-way n-
shuffle in the following way for any integer d: | V |=d".
There is a link between x and y if the first n — 1 digits of
the base d representation of z are equal to the last n — 1
of the representation of y in the same base. Every node has
degree d and the diameter is log, | V |= n [13, p. 269].

A. How to Route

Many of the routing techniques that will be described in
this work are built on top of an oblivious routing algorithm
that sends a message to its destination following a shortest
path. Here, an example on how to compute such paths is
given.

A message going from a to b on an n-hypercube may
follow its shortest path computing a ticket  XOR b. A 1
in the kth bit of the ticket means that this dimension has
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to be corrected. When a node receives the message, with a
nonzero ticket ¢, it looks deterministically for a & such that
the kth bit of ¢ is set to 1. It sets that bit to 0 and sends the
packet along the link corresponding to the kth dimension.
Obviously, when a node receives a message with a zero
ticket, it is the destination of the message.

III. Some IMPORTANT FEATURES OF ROUTING ALGORITHMS

The main criteria for evaluating routing techniques strate-
gies are efficiency in supporting programming models,
efficiency in mapping to parallel machines, and practicality.
The criteria suggested in [1, pp. 23-26] will be partially
followed in this paper, with three important additions
concerning deadlock, starvation, and livelock. In this sec-
tion, some items of these criteria will be commented on.
Other criteria used in this paper involve synchronization
overheads, fault tolerance and generality of the routing
techniques, and use of randomization.

1. Network delay (latency): In order to be practical, each
routing algorithm should have low latency to deliver the
messages to their destinations. Not only should theoretical
bounds be proved regarding this low latency, but also the
practicality of the routing algorithm should be shown.

Theoretical bounds can be either deterministic (a bound
on the number of routing cycles the packets remain in the
network) or probabilistic (a bound on the probability that
any message stays in the network after some number of
routing cycles).

Also, the routing algorithm should behave well for a
number of different communication patterns. There are two
main communication patterns for static injection. The first
one is routing a permutation, where each node sends one
message and receives one message.? The second pattern is
one in which one processor is requested by many others.
Therefore, the so-called bank conflicts arise. This pattern
is very useful in the shared memory programming models
(see Section V).

In the case of dynamic injection, routing algorithms
should perform well for random routing (when the des-
tination of messages are chosen randomly) and for some
fixed permutations arising in practice [14].

Borodin and Hopcroft proved [15] that every determin-
istic oblivious routing scheme has a worst case latency of
Q(\/N /d3) where d is the degree of the nodes and N
is the number of nodes in the network. Note that the best
latency bound potentially achievable on a given network is
precisely the diameter of that network, i.e., the maximum
distance between any pair of nodes.

2. Deadlock freedom: The possibility of deadlock has
already been addressed in a variety of different areas. As
it will be seen, guaranteeing deadlock freedom is also
a problem when designing a routing technique. Every
algorithm must have either some mechanism in order to

2 A generalization of this pattern are the so-called h-permutations, where
each memory bank is requested by exactly h processors, and by the partial
h-permutations, where each memory bank is requested for at most h
processors [13].
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avoid deadlock or a way to recover from this type of
situation. Recovery is an important topic but it is beyond
the scope of this paper.

This paper will only focus on packet switching deadlock.
In packet switching routing, the critical resources are the
buffers at the nodes that are used to store the messages
during their way toward their destination. Deadlock of this
type will arise if and only if there exists a set of buffers
occupied by messages that have not yet arrived at their
destinations such that all of these messages need a buffer
that belongs to the set in order to continue their way.

A description of the different deadlock situations that may
arise within the context of packet switching routing, as well
as a collection of techniques to avoid them, can be found
in [16].

If preemption of messages from the buffers is allowed,
then deadlock configurations may be avoided. There are
two possible policies regarding what to do with a preempted
message. Such a message can either be discarded [17] with
the consequent overhead of recovering the message, or it
can be derouted. The latter policy gives raise to adaptive
nonminimal routing techniques. These techniques will be
studied later. (See Sections IX and X.)

Other techniques can be developed if preemption of
the critical resources is not allowed. In general, these
techniques arise as an application of a well-known concept
within the framework of Operating Systems: the definition
of an ordering of the critical resources in order to avoid
cyclic wait. The users ask for the resources in a strictly
monotonic order. The technique developed by Giinther in
[16], the one in [18], and the virtual channels technique of
Dally and Seitz presented in [10] should be mentioned as
instances of this method.

3. Livelock freedom: The livelock problem arises when-
ever a message can be denied getting delivered to its
destination forever. It should be clear that livelock cannot
take place in a static injection model if the queue policy is
fair and the routes are minimal. The first condition means
that no message can be forever prevented from routing if
it can be routed. All the sensible queue policies are fair, so
livelock is not a problem when injection is static in minimal
routing techniques, as those of Sections IV and V.

The real problem appears with dynamic injection. Imag-
ine a routing algorithm that routes first those messages that
are closest to their destination. Furthermore, suppose that
node n has a message m that is at distance 2 from its
destination. If n injects an infinite sequence of messages
with distance 1 to their destination, m will wait forever in
the queue. In nonminimal routing, livelock can also take
place if a message can be derouted forever.

Different policies have been proposed in order to avoid
livelock. In general, they are based upon the following.

Let P be a set of priorities which is totally ordered.
Whenever a packet is injected into the network, some
priority is assigned to it. It must hold that:

a) packets are routed respecting their priority;
b) once a packet has been injected, only a finite number
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of packets will be injected with a higher or equal priority.

A related policy is one that assigns every packet some
minimum priority when injected and increases it as the
packet remains undelivered. Both of these policies are
actually the same.

These policies have been criticized because they have at
least two drawbacks. The first one is the fact that priority
queues must be implemented to maintain the packets or-
dered, and such queues are more expensive and slower than
the simple FIFO queues. The second drawback is the need
for more bits in the packets in order to store the priorities.
It is also costly to update them.

No policy against livelock without these drawbacks is
known by the authors. Reference [19] proposes a routing
technique that has no priority queues but is livelock free
only probabilistically (see Section IX for details).

4. Starvation freedom: A node suffers starvation when
it has a packet to inject in the network and it is never
allowed to do so. Obviously, starvation cannot arise if the
model of injection is static. The way starvation is avoided
is related to the injection control policy. The goal is to
assure that every node can eventually inject its packets into
the network. The main policies proposed in order to avoid
starvation are the following.

a. Injection competition: Every node has an injection
queue, where it stores the messages it wants to inject into
the network. This queue is considered in the same way
as the queues of the incoming links to that node, and it
competes with them. As the queue management is fair, this
method avoids starvation. See [20] and Section VI for an
instance of this technique. Its main advantage is also its
main drawback: its simplicity. This is so because a node
with a high injection rate can slow down all the others in
the network.

b. Private-buffer recirculation: This policy allows
every node to reserve some fraction of its own internal
message queue for injection. Each packet must have a mark
saying if it was injected in the private fraction or in the
public one. When a packet injected in the internal fraction
of its sender is delivered to its final destination, the receiver
uses the buffer used by the delivered packet to inject a
null message destined to the sender. When a node needs to
inject a message in the network, it looks for a free buffer
in its queue. If it finds one, the packet is injected there.
Otherwise, the node must wait for the return of some null
packet sent to it, and then, it uses that buffer to inject its
packet [21], [22]. This policy has been censored in [19]
because it makes the number of circulating messages with
packets that have no information too large.

c. Injection-token recirculation: This policy has been
proposed in [19] as an alternative to the policy described
above. A function Nezt : V — V must be built defining
a cycle involving all the nodes of the network. There
exists a number of token packets in the network, with null
content and a destination. When a token packet arrives at its
destination node n, this node determines whether it has been
prevented from injecting for longer than a fixed quantum
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g». If it has and it wants to inject, then it uses the buffer
occupied by the token to inject its packet. Otherwise, it
sends the token packet to Next(n). Whenever a packet
arrives at its final destination, the receiver must check if the
message has been injected over a token packet. If it has,
then the receiver must regenerate the token packet, with
destination equal to the Next node of the packet’s sender.

This policy can be generalized letting Next define many
disjoint cycles covering all the nodes of the network instead
of just one with at least one token packet in every cycle.?

Finally, it should be noted that Private-Buffer Recircula-
tion can be thought of as a particular instance of this policy,
when Next is the identity permutation and ¢, = 0 for all
n in the network.

d. Packet-injection control [21], [22]: It is based on
putting a bound to the difference between a node’s injection
rate and that of its neighbors. This is done via some kind of
information exchanged between a node and its neighbors.
A node is allowed to inject if the difference between the
number of packets it has injected itself and the number of
packets injected by its neighbors is greater than —k for
all its neighbors, for some fixed k. This policy is more
adaptive to changing injection rates than the previous ones
and does not have the drawback of augmenting the number
of circulating packets in the network. As a disadvantage, it
is complex and its implementation may be expensive.

IV. RaNDOM ROUTING

A great part of the delay in communications networks is
due to the fact that there are conflicts among the packets for
the use of the network’s resources. The number of conflicts
increases if the communication pattern is highly structured,
e.g. transposing messages (i.e. sending a message from
every node p;; to pj;;) will involve a high number of
conflicts over the diagonal of a two-dimensional mesh. To
avoid this kind of structural clashes, Valiant and Brebner
developed and studied random routing [13], [12]. Shortly,
this is their scheme. Let A be a network with N nodes
and an oblivious routing scheme. Every link between nodes
has a queue where it stores its messages. As the routing
is oblivious, for every pair of nodes a and b a ticket 745
is computed with the route that should be traversed when
going from a to b, e.g., 7,5 may be a list containing the path
that should be traversed. The initialization consists of the
choice of an intermediate random destination g for every
packet p and the computation of 7,,(p) and 7g(p). It is
followed by two phases: in the first phase (Phase A) the
message is sent from a to ¢. In the second phase (Phase
B), from q to b. The random choice of g allows to study the
overall behavior of the network probabilistically, assuming
no structure in the communication pattern.

It should be defined how to pass from Phase A to Phase
B and two policies have been suggested. The first one
separates completely the phases: at the end of its Phase
A, every packet is delivered to its intermediate destination
g, where it waits for the beginning of Phase B. Phase

3This means that Next needs to be only a permutation of the nodes’ set.
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B starts when all packets have finished Phase A. The
second policy allows every packet to begin its Phase B
immediately after it has finished its Phase A route. This can
be achieved by using just one ticket 7(p) = Toq(p).74s(p),
where the dot means concatenation. If the choice of ¢ is
made with uniform probability, then the order of the delay
does not depend on the way in which the phase is changed.
Reference [23] simulated a variety of different techniques
for computing 7 on various structured communications
patterns over a hypercube using the latter policy and
compared their results with those of random traffic patterns
with good results.*

A. Analysis of the Method

1. Network delay: Let D be the random variable that
measures the number of routing cycles it takes the last
message to end either phase. Then, in [12] it has been
proved that there exist ag, 8, 6 > 0 such that for all v > 0
and o > g

P(D > aryn) < N™o8v+6 )

either for routing ~y-permutations on n-butterflies and n-
CCC or for routing yn-permutations on n-hypercubes.’
This result is stronger than the one presented in [13]
because the routing model is weaker and in [12] good time
bounds are proved even for some constant-degree networks.
The fact that routing y-permutations in the constant-degree
topologies cited above and routing -yn-permutations on
hypercubes have related time bounds should be obvious
because of the relationship stated among these topologies
in Section II. When routing on a two-dimensional n-mesh,
direct analysis has been used in [13] to prove that there
exists some C' < 1 such that for all K > 1

1
P(D > 3n +2Kn1) < CKn*

This is a good result since it is O(n) which is the diameter

of the network. Also, the experimental results given in
[13] support the claim that delays are proportional to the
diameter of the network for some constant-degree networks
such as shuffle-exchange, CCC and [-way-shuffles, for
small values of [.

Upfal [24] developed a similar random routing that was
the first technique to achieve the optimal asymptotical
latency for some constant-degree networks.

Random routing has been criticized because it doubles the
expected path length [19]. This criticism is right, but the
reader should note that it has been proved in [25] that for the
d-way shuffle graphs, all oblivious algorithms that realize
permutations with optimal latency must send packets along
routes doubling the network diameter. The simulations of
[23] on an n-hypercube showed that even if fewer random
bits are chosen, network congestion is reduced.

2. Synchronization overheads: No mechanism is pro-
vided by the routing scheme for processor synchronization.

4The simulations considered that every processor sends out only one
message for transposing and complementing patterns.

51n the first case, N = n2" and in the second one N = 2".
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In an SIMD environment, the controller would detect the
termination of the routing.

3. Fault tolerance: This routing scheme does not include
any analysis of fault tolerance. Since the underlying routing
algorithm must be oblivious (called greedy in [12]) the
routing strategy is useless in a dynamic fault model. A point
that requires further development is the way of dealing with
a static fault model.

4. Generality: This method has been shown useful over
a great variety of topologies. The programming model of
this scheme supposes that all the communications begin in
the same moment with the network clear of messages. This
is best suited for SIMD computers.

5. Use of randomization: The method uses random-
ization in an obvious way when ¢ is selected. In [23],
randomization is also used in the order in which dimensions
are corrected when routing on an n-hypercube, with good
results.

6. Deadlock freedom: Deadlock freedom is not proved
in general for any network with bounded-size queues. Ref-
erence [13] experimentally showed that on an n-hypercube
a queue size of O(n) avoided deadlock. No proof has been
presented of constant-size queues for avoiding determinis-
tically deadlock. Pippenger [26] devised a random routing
scheme with constant-size queue that avoids deadlock with
high probability.

7. Livelock freedom: The routing in every phase is
minimal, so there is no livelock if the queue policy is fair.
In [12], this method is shown invariant under many queuving
policies such as priority queues, FIFO, and LIFO.

8. Starvation freedom: Since this method has static
injection, no starvation is possible.

V. RouTING Baseb oN CoMBINING MESSAGES

A. The Fluent Machine

In this section, the Fluent Machine, presented in [9]
and [27], will be described. It is a machine model that
can be classified as a “combining with holding” model,
designed with the goal of supporting efficiently the CRCW
PRAM’s. In the model, all processors synchronize at each
communication step. The injection of messages is static.
Each processor issues at most one message at each com-
munication step. References [9] and [27] will be followed
in the rest of this description.

This routing technique implements efficiently the multi-
prefix primitive on a fully-populated n-butterfly (see Sec-
tion II). It is oblivious, deadlock free, and uses constant-size
queues. The combination of messages is deterministic and
mandatory.

The routing algorithm guarantees that all messages des-
tined to a same memory location are combined into a single
message while these requests are being routed. In one of
the phases of the routing algorithm, requests directed to the
same physical location will eventually meet at one node
and they will be combined in that node. Only one request
will continue its way to the target address.
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Each node of the n-butterfly network has six routing
switches. These routing switches are necessary because
each physical node plays the role of six “virtual” nodes,
one for each of the six phases of the routing algorithm.
These phases will be described below. Each switch has 1
or 2 inputs and 1 or 2 outputs, depending on the phase it
belongs to. Every input into a switch has associated with it
a FIFO queue of constant size.

B. Routing Algorithm

Suppose a given processor < c¢,r > wants t0 access
physical location m that is in node < ¢/, r’ >. This request
will traverse a path from its source to its destination node,
and backward. This path is divided into six phases.

Phase 1: The message issued at node < ¢, r > is directed
forward to node < 0,r >. This phase is used to begin the
routing algorithm and provides a way to start the messages
flowing while keeping them sorted as will be explain below.
Messages waiting for being injected in the network at a
given node can be combined with messages already flowing
in the network, if they are both directed to the same physical
memory location.

Phase 2: The message follows the unique (forward) path
in the network from node < 0,7 > to node < 0,7/ >.
The message has to traverse the metwork even though
it is already in the correct row. During this phase, the
combination of the different messages directed to the same
address is finished. These messages will necessarily meet
one another during their path to node < 0,7’ > because all
messages with physical destination m must pass through
node < 0,7’ > during this phase.

Phase 3: The message eventually reaches node < c/,7’ >
from node < 0,7 >. Then, it continues its way to <
0,7’ >, so as to be able to start Phase 4. No combination
is performed during this phase. The aim of this phase is to
provide the network with full connection, allowing every
node to communicate with every other node.

Phases 4 to 6: The message traverses the path of phases
1 to 3 but in the reverse direction, carrying the replies to the
request back to the issuing processor (< ¢, > in this case).

All memory requests are assigned priorities according to
their physical destination, i.e., the target memory address.
Messages are kept sorted according to this priority. This is
achieved by allowing a message to go out of a given node
once the node knows that all the messages that may want to
go through it have greater target memory addresses. This
is done by keeping an input queue associated with each
input channel of the node. The queues are served using a
FIFO policy. The head of a given queue will be allowed to
go out of the node and continue its route to its destination
once the head of the other queue has been occupied by a
message with greater destination address. If the head of the
other queue holds a message with equal destination address,
the messages at both heads are combined and the resulting
message goes out of the node.

The process just outlined takes place during phases 1
and 2. Switches belonging to phase 3 and 4 have only one

493




input queue. Phases 6 and 5 are analogous to phases 1 and
2, respectively, except that no combination takes place.

Replies to requests take exactly the same path as the
corresponding requests. Messages pass back through a node
in exactly the same order as they have passed during their
first traversal. Therefore, each node belonging to phases 1
and 2 only needs to store two bits of information about
each message it routes. These two bits indicate if the
corresponding reply will have to be routed only through
the top link, only through the bottom link or through both.
The latter case corresponds to the reply to two messages
that have been combined into a single one in that node.
These pairs of bits are stored in a FIFO queue. Information
regarding the values that must be sent to each processor in
order to implement the multiprefix primitive can be stored
and used in a similar way.

An important point is that in order for this algorithm
to work correctly, each processor must issue a message at
each communication step. Moreover, every processor must
issue its request followed by a special message, named
End of Stream (EOS), that has the least priority (physical
destination 0o). These EOQS messages are necessary in order
to allow all the messages to arrive at their targets.

There is yet another type of messages: GHOST mes-
sages.

Suppose node A is connected to node B through its upper
link, and to node C through its lower link. Suppose A
selects a certain message m to route through the upper link.
As every node routes messages sorted with respect to their
physical destination, no message with physical destination
smaller than that of m will go out of A after A sends m
out. So, when forwarding m to B, A can issue a GHOST
message with the same label as m to C. In this way, C
will know that no message with smaller tag will arrive
through that link during the current communication phase.
Therefore, C will presumably be able to forward messages
waiting at its other input queue that would otherwise have
to be held for more routing steps.

An important point is that node A sends a GHOST
message with the label of m to node C even if it is not
able to route message m through the upper channel during
that routing step as a result of congestion. In this way, it is
guaranteed that queues do not become empty from a certain
instant and afterwards till an EOS message leaves them.
GHOST messages are essential when proving properties
regarding deadlock freedom.

C. Analysis of the Method

1. Network delay: There are not “good” cases: every
request takes at least 4n communication steps to complete.
Nevertheless, “bad” cases are extremely rare. Memory
bank collisions are a problem. Random hashing is used
to solve it, as will be analyzed below. It is proven in
[27], assuming a perfect random address map, that the
probability that any memory reference takes more than
15log N steps is less than N~20, where N = n2".
Therefore, the provable latency, which is achievable with
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overwhelming probability, is only slightly higher than the
best case.

Simulation results show [9] that it is more efficient to
perform concurrent reads and writes. Concurrent accesses
are faster than exclusive ones.

2. Synchronization overheads: As EOS messages are
used, every processor is able to stop the rest of the pro-
cessors simply by not sending the EOS message corre-
sponding to a given communication step. Furthermore, EOS
messages enforce instruction separation, thus supporting
synchronous programming models efficiently. This fact
has good consequences regarding the ability to implement
virtual barriers, for example.

As a drawback, every message must pay for this char-
acteristic of the algorithm, as messages are held in the
switches when being routed.

In [28], an extension of this technique is presented in
order to implement synchronization barriers in general
multistage networks.

3. Fault tolerance: The routing strategy depends heavily
on the processors issuing the EOS messages during each
communication step. If one of these messages were lost, all
the algorithm would break down if no further improvements
are added to it. Static node or link failures can be avoided
by adding an extra column to the network and connecting
it to the nth column following the pattern of connection
between columns 0 and 1. By doing so, alternative paths
are created. Message combination will still be guaranteed
and deterministic. The return bits will ensure that messages
return using the same path as in their forward phases. Some
problems seem to arise regarding the multiprefix primitive.
This primitive depends on the ordering of the processors
and on the topology of the butterfly network.

4. Generality: Every processor must issue an EOS
message at each communication phase even though it has
no message to inject in the network. This need restricts
the sort of programming models that can be “directly”
implemented on top of the Fluent machine to synchronous
communication models.

Regarding hardware needs, each node must have support
for the combining of messages. Comparisons and arithmetic
operations are involved in this task. The Fluent Machine
seems to have been designed with the butterfly network in
mind. Nothing has been said about it being transferred to
other topologies in [9] and [27].

The authors of this paper are currently working on
extending Ranade’s technique to other topologies over
which acyclic routing can be performed [29].

5. Use of randomization: The implementation outlined
above makes use of a hash function in order to distribute
the shared variables throughout the local memories of
the different nodes of the network. By doing so, the
algorithm is able to destroy many conflicts arising when
many nodes try to access logically neighboring memory
locations. By using a hash function, there will probably be
considerably fewer network conflicts. The Fluent Machine
router can properly handle many accesses involving a single
variable by combining these requests into a single one in
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a deterministic fashion. This is exactly the case that is not
solved by using hash functions, and it is handled efficiently.
A possible drawback of using hash functions to map the
logical address space to physical locations is that it makes
it impossible to exploit locality of reference. This is not a
problem because of the way the routing algorithm manages
requests. There are not any “good” cases: every memory
access requires §3(n) steps to reach its target. If memory
addresses are allowed to be computed at run time then the
hash function must be computed extremely quickly as not to
delay all the routing algorithm. Otherwise, all the algorithm
will become useless.

6. Deadlock freedom:The routing algorithm is deadlock
free because the logical routing graph (i.e., the graph that
results from splitting each physical node into the six logical
nodes it represents) is acyclic and because of the way
GHOST messages are handled.

7. Livelock freedom: The injection policy is static, i.e.,
the number of messages of each routing phase is finite.
Although GHOST messages are injected dynamically, only
a finite number of them are generated at each routing phase
because of the characteristics of the network and the routing
algorithm. Moreover, even though nodes are allowed to
pipeline their consecutive instructions, thus allowing each
node to inject messages in a “pseudo continuous” way,
no message from a later routing phase will ever delay or
compete with a message from an earlier phase. Therefore,
this algorithm is livelock free.

8. Starvation freedom: The injection of messages is
performed in phases. Each of these phases is separated
from the others by a wave of EOS messages. So, as each
processor is only allowed to inject a finite number of
messages in each phase, starvation is not a problem at all.

VI. Apartive, MiNIMAL RouTING

In this section, a minimal adaptive packet-switched rout-
ing algorithm for the n-hypercube is described (see Section
II). This algorithm is deadlock, livelock, and starvation free.
In addition, it requires only a constant number of bounded
length queues at every node and it allows nodes to inject
messages continuously. This algorithm is presented in [20].
A related routing technique resulting from “hanging” the
hypercube by its node 0 was independently presented in
[28].

A. Routing Algorithm

1) Definitions: Let M be a message with source node S
and destination node D. Then, Zenith(M) = (S OR D).
If P is a node of the network, then Nadir(M,P) =
(P AND D).

2) Informal description of the routing algorithm: Messages
are divided into two different classes: Class 1 and Class 2
messages.

Both Class 1 and Class 2 messages follow a minimal
path from their source to their destination. Class 1 messages
first turn the “incorrect” zero bits into one bits (ascending
phase) and then turn the “incorrect” one bits into zero
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bits (descending phase). Class 2 messages do exactly the
CONVerse process.

To guarantee deadlock freedom, this algorithm requires
that each node have three queues: Queue 0, Queue 1 and
Queue 2. Queue 0 holds only Class 1 messages during
their ascending phase. Queue 1 holds Class 1 and Class
2 messages during their descending phase and Queue 2
holds Class 2 messages during their ascending phase. In
principle, every queue may have only constant size. The
size of the queues does not affect the deadlock freedom of
the algorithm. As will be seen, it does affect the latency
of the messages.

Every message M is injected into the network as a Class
1 member in Queue O of the source node. It then starts
moving from node to node through Queue 0 of the visited
nodes. When message M arrives at Zenith(M), it is moved
from Queue 0 to Queue 1 of Zenith(M) and starts its
descending phase moving through Queue 1 of the visited
nodes. If at a certain node P, message M is at its ascending
phase (i.e., climbing up to Zenith(M)) and it cannot make
progress through any of the possible dimensions due to
congestion problems, and if Queue 1 of that node has free
space, then M is moved from Queue 0 to Queue 1 of node
P. Therefore, M turns into a Class 2 message and starts
its descending phase to Nadir(M, P). Once it has arrived
at Nadir(M, P), it is moved from Queue 1 to Queue 2
of Nadir(M, P) and it starts its ascending phase until it
reaches the destination node D. Notice that a message can
only change from Class 1 to Class 2, and only if it is
performing the ascending phase of Class 1, ie. if it has
not reached its Zenith yet. Once it has reached its Zenith,
it must remain a Class 1 message until it arrives at its
destination node.

There are two ways in which congestion can influence
a message’s route toward its destination. First, during any
of the phases of the algorithm, each message M has, at a
given node P, a set of dimensions S that can be corrected
by means of the next hop. P can route M along any of
the links corresponding to the dimensions in S. Second, if
a message M is a Class 1 message during its ascending
phase, it can switch from Class 1 to Class 2, as explained
above.

Therefore, one message can change class only at a certain
phase, and only once. At any other moment, it will have to
adapt to congestion only by means of the first way described
above.

B. Implementation Issues

In order to avoid communication delays, especially when
implementing an asynchronous communication model, each
node should have buffers associated with each of its n
channels.

The implementation suggested in [20] requires 3n + 2
buffers plus 3 O(1) queues in each node. In addition, each
node requires an injection buffer (where new messages
waiting for place in Queue 0 are injected) and a delivery
buffer (where messages that have arrived at their destination
are kept stored until they are consumed).
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C. Analysis of the Method

1. Network delay: Notice that hot-spots are likely to
arise around node 0 and node 2™ — 1. The reason for this
congestion is that all messages start routing as Class 1
messages, thus traveling toward node 2" — 1 when seeking
to reach their Zenith. If a message is stopped by congestion
before it has reached its Zenith, it starts heading to its
Nadir, thus moving toward node 0. By making some
messages turn into Class 2 messages, contention around
node 2™ — 1 is partially alleviated, while congesting node
0 and its surroundings.

Although congestion can be partly relieved by the possi-
bility of randomly choosing which dimension to correct, as
pointed out above, no message can avoid moving to either
of these two potential hot-spots. Some of the messages will
have their “particular” hot-spot changed: they will head
toward O instead of 2™ — 1. :

There are no latency results proven in [20]. Instead,
some simulation results are presented. These results assume
a synchronous communication model. One of the most
interesting points mentioned is that the average latency of
the messages is not a monotonically decreasing function of
the queue size. The explanation given to this phenomenon is
that by increasing the queue size farther from the optimal
size, (as determined by the experiments) more messages
will be allowed to arrive at the neighborhood of node 2™ —1
before being switched from Class 1 to Class 2. Therefore,
smaller queues will switch messages from Class 1 to Class
2 before, thus making the congestion around node 2™ — 1
remain relatively smalier.

2. Synchronization overheads: Nothing is said in [20]
about the implementation of virtual barriers, for instance.
Concurrent accesses to locks, for example, are not facili-
tated by the algorithm either.

Nevertheless, machine-wide barrier synchronization may
be implemented following the technique described in [28].
The routing algorithm on top of which this synchronization
technique is implemented is very similar to the one in [20],
except that there is no changing of messages from Class 1 to
Class 2. All messages are Class 1 members “forever”. The
important point of this sort of algorithms is that routing is
monotonic with respect to the node numbers. Consequently,
barriers can be efficiently implemented as a set of waves
that sweep the network [28].

3. Fault tolerance: It is claimed that adaptive routing
techniques are more fault tolerant than oblivious ones. In
this case, a damaged link can be viewed as a link that
remains busy forever. So, in such a case, a Class 1 message
in its ascending phase may be turned into a Class 2 message
and start its descending phase. A message in Class 2 or in
the descending phase of Class 1 cannot change class. So,
it will be allowed to go through a nonfaulty link as long
as there are other links among the set from which it may
choose. Otherwise, the message will not be able to reach its
destination. A similar reasoning follows for faulty nodes.
The scheme outlined above will work for both dynamic
and static faults.
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In summary, this algorithm is more fault tolerant than an
oblivious routing but not completely fault tolerant.

4. Generality: This routing algorithm has been presented
as designed specifically with the hypercube network in
mind. One of the main features hypercube networks have
is that minimal paths from any node to any other node
can be determined directly from the nodes’ indexes. This is
an important property when allowing a message to change
its route adaptively because it is cheap to recalculate the
path it must follow. As virtual barriers might be efficiently
implemented on top of this technique, as mentioned above,
this scheme may support semisynchronous programming
models as well as asynchronous ones.

Recently, the authors have extended this hypercube
method to other networks and have also generalized the
routing, thus widening the range of applicability of the
techniques. In addition, the algorithms developed do not
have serious hot-spots as in this technique [27].

5. Use of randomization: As mentioned above, at any
step, a given message can choose arbitrarily what dimension
to correct among a given set. This free choice may be
regarded as allowing some sort of randomization within
the algorithm.

6. Deadlock freedom: This algorithm is deadlock free.
The proof given in [20] numbers all the queues in the
network in such a way that all messages occupy queues
in a strictly ascending order with respect to the queues’
indexes.

The minimal adaptive routing routing shown in [20]
may be regarded as what results from routing as if the
hypercube were “hanged” from node 0 and messages must
pass two or three times through the network. Each of these
passes corresponds to a phase within a Class of the routing
algorithm described above. Each phase will use, according
to the terminology used in [10] , different “sets” of virtual
channels. In this way, the channel dependency graph [10]
results acyclic, thus avoiding deadlocks. So, each physical
link is considered by the algorithm as three different virtual
channels, and the use of the link by these channels is
multiplexed in time.

7. Livelock freedom: This is a minimal routing algo-
rithm. So, as long as all shared resources are assigned in
a fair way to their users, no livelock may arise. Channels
and queues are the shared resources. For example, Queue
0 is accessed by messages waiting for being injected in the
network and by Class 1 messages in their ascending phase.

8. Starvation freedom: Starvation freedom of the al-
gorithm is guaranteed by the fairness with which shared
resources are assigned to their users. Messages waiting
for being injected compete with Class 1 messages in their
ascending phase in order to get access to Queue 0. So, as
long as Queue O is administered fairly, no starvation can
possibly arise.

VIL

In this section, a new topology and a routing algorithm,
presented in [37], will be described. This topology, dubbed
multibutterfly, which is based upon the n-butterfly (see

MULTIBUTTERFLIES
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Section II), has constant degree. Furthermore, the routing
algorithm presented in [37] can route any permutation on
an N = (n + 1)2" processor multibutterfly-based network
jusing constant-sized buffers in time O(log N). It should
be emphasized that this result is deterministic, ie., any
permutation is guaranteed to finish being routed in time
proportional to log N.

Next, the multibutterfly topology as described in [37] and
[38] will be depicted. A (d, n)-multibutterfly is formed by
merging together d n-butterflies in a special way. In the
resulting network, there will be O(d™) paths between any
node in the first column and any node in the last column
of the network, instead of just one as with the n-butterfly
topology. Nevertheless, the logical path [38] taken by a
message from the first stage to the last one is unique, and
the same one as in the n-butterfly. This logical path will be a
sequence of n steps. Each of these steps will be associated
to fixing one bit of the address of the destination’s row,
and will be either an up-step, if the corresponding bit in
the address of the destination’s row is a 0, or a down-step,
otherwise.

The d butterflies that form the multibutterfly will be
superimposed in such a way that each of these logical
steps will have d different physical links to be realized,
regardiess of the step’s being an up or down step. Each
message will decide which of these links it will take at
each step adaptively depending on local congestion. So, in
the resulting network, each node will have both indegree
and outdegree 2d. There will be d outgoing up-links and d
outgoing down-links incident to each node of the network.
In addition, the way the d butterflies are merged should
be such that the connections between the different stages
observe a so-called expansion property [37)], [38] that is
essential to obtain deterministic logarithmic performance.

Up until now in this section, the multibutterfly network
has been regarded as a partially populated multistage net-
work in which processors in the first stage send messages
to the last stage. In [37], a topology based upon the
multibutterfly has been presented. This is a constant-degree
fully populated network of N processors that can still route
any permutation in O(log N) time in a deterministic sense.

A. Analysis of the Method

1. Network delay: As pointed out previously, the routing
algorithm presented in [37] can route any N permutation in
O(log N) steps in a deterministic sense. Nevertheless, the
constants hidden by the O notation are big. These constants
have been lowered in [38] for the partially populated
multibutterfly, but are still high for small values of d.
Experimental results showing good performance of this
partially populated network even in the presence of faulty
switches have been presented in [39].

2. Synchronization overheads: Nothing has been said in
either [37] or [38] regarding the implementation of virtual
barriers. Even so, the methodology presented in [28] may be
combined with this routing algorithm to implement virtual
barriers efficiently.
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3. Fault tolerance: In [38), the partially populated multi-
butterfly network and the greedy routing algorithm over
it have been shown to tolerate a reasonable amount of
switch faults without significant performance degradation.
Specifically, for d = 5, it has been proved that if any &
switches are faulty in a (d, n)-multibutterfly, then there are
always at least 2" —O(k) (input) nodes in the first stage and
2" —O(k) (output) nodes in the last stage through which
any permutation on these inputs and outputs can be routed
in O(n) steps. The fault model is static [38]. Furthermore,
if the faulty switches are randomly located, then the (d,
n)-multibuterfly will tolerate 27 random “interior” switch
faults (y = 1/2 constant) without losing any inputs or
outputs, with high probability [38]. Experimental results on
performance of this partially populated multistage network
in the presence of faulty nodes can be found in [39].

4. Generality: These routing algorithms have been de-
signed, focused on one topology with very special proper-
ties.

5. Use of randomization: Randomization can be used to
generate the d n-butterflies to form a (d, n)-multibutterfly
with the desired properties with high probability.

6. Deadlock, livelock, and starvation freedom: Be-
cause of the characteristics of the algorithm, these are not
problems at all.

VIIL

As it has been said in Section III, a usual technique to
define deadlock-free routing functions consists of ordering
the critical resources and defining the function in such
a way that messages use these critical resources strictly
monotonically according to this ordering. In this way,
cyclic wait is avoided, and so, deadlock can not arise
involving these critical resources. This technique has been
widely studied and used [16], [18], [10], and can be
relaxed for packet-switching routing to adopt a dynamic
strategy to avoid deadlock [18]. This idea has been applied
[40] to develop adaptive routing algorithms for packet-
switching routing on a variety of networks, and with very
moderate resources. This technique requires the definition
of an acyclic Queue Dependency Graph representing the
use of the critical resources (queues in this case), as in
the static technique presented in [10]. After this, new
dependencies are allowed to be established between the
different queues. These dependencies cause static cycles to
appear in this Queue Dependency Graph. A message will
be allowed to take one of these new dependencies provided
that from the queue to which it arrives there is still a path
towards the destination of the message in the acyclic Queue
Dependency Graph. In this way, every message can always
follow a path to its destination following the acyclic Queue
Dependency Graph built first, and so, deadlock situations
are avoided.

While the new techniques apply to a wide variety of
networks, routing algorithms have been shown for the
hypercube, the two-dimensional mesh, and the shuffle-
exchange in [40). The techniques presented for hypercubes
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and meshes are fully adaptive and minimal. A fully adaptive
and minimal routing is one in which all possible minimal
paths between a source and a destination are of potential
use at the time a message is injected into the network.
Minimal paths followed by messages ultimately depend
on the local congestion encountered in each node of the
network. The shuffle-exchange algorithm is the first adap-
tive and deadlock-free method that requires a small (and
independent of N) number of buffers and queues in the
routing nodes for that network.

In contrast to other approaches in which adaptivity,
deadlock and livelock freedom can be guaranteed at the
expense of complex architectures, the algorithms presented
in [40] require a very moderate amount of routing hardware.
Only two central queues per routing node of the network are
necessary for the cases of the two-dimensional mesh and
the hypercube, and four queues for the shuffle-exchange.

A. Analysis of the Method

1. Network delay: Neither deterministic nor probabilistic
bounds have been proven regarding latency for these algo-
rithms. Some situations have been reported in [40] and [14].
These simulations show good results for the hypercube and
the mesh networks. For the mesh, the routing algorithm
outperforms oblivious and partially adaptive algorithms
when dynamic injection is considered. The fully adaptive
routing algorithm allows the injection rate to extend without
saturating the network.

2. Synchronization overheads: There is no simple way
to implement virtual barriers applying the technique pre-
sented in [28].

3. Fault tolerance: Nothing has been analyzed in [40]
regarding fault-tolerance.

4. Generality: This technique can be applied to any
topology, but only for packet switching routing.

5. Use of randomization: The choice of which path
message cventually takes among all the possible ones
depends on congestion. Randomization could be introduced
to choose between all the possible paths available at a given
instant.

6. Deadlock freedom: The algorithms are deadlock-free,
as explained above.

7. Livelock and starvation freedom: The algorithms are
minimal, and so, if the critical resources are handled with
fairness, livelock and starvation are not a problem.

IX. Tue CHaos ROUTER

In this section, the Chaos Router introduced in [19], is
described. It is an asynchronous, nonminimal, adaptive,
packet-switched routing technique for the n-hypercube (see
Section II). This routing algorithm is related to one of the
variants presented in [22]. As it is a nonminimal adaptive
routing, messages can be sent farther from their destination
as a result of local congestion problems. Therefore, livelock
arises as a problem. Another thing is that the Chaos Router
allows nodes to inject messages continuously. It requires
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O(n) buffers of size 1 and only one queue at each node.
In this section, [19] will be followed.

A. Main Features of the Algorithm

One of the main aims of the designers of this algorithm
was to simplify the management of the queues of mes-
sages at each node. So, the resulting algorithm is only
probabilistically livelock free. No complex mechanism to
guarantee eventual delivery of the messages (e.g., aging of
the messages) is provided. When derouting is necessary,
the message to be derouted is selected randomly among the
messages in a given set. Another important point is that the
router is fully asynchronous. All routers are independent of
one another.

B. Hardware Requirements

Every node must have an input and an output buffer per
channel, called the Input Frame and Output Frame,
respectively. Each of these buffers can hold only one
message. In addition, every node must have an injection
and a delivery buffer, as well as a queue. In order to be
able to select what message to deroute in a random fashion,
every node needs also a source of randomness.

C. Routing Algorithm
The routing algorithm presented in [19] is as follows.

current_dim=0;
while (True) do
begin

current_dim=(current_dim+1) (mod n);

while (Full(Output Frame(current_dim)))

begin
current_dim=(current_dim+l,
end
Match(current_dim);
if (Full(Queue) AND no match AND
Full (InputFrame(current_dim)))
begin
Deroute;
end
Send(current_dim);
Read(current_dim);
end.

(mod n);

Match, Deroute, Send, and Read perform the follow-
ing tasks.

*Match selects the first—in FIFO order—message of the
queue that can be routed along the current dimension, if
such a message exists.

*Deroute randomly selects a message from the queue.
This is the message that will be derouted by the algorithm.

*Send removes from the queue the message that has been
selected by the previous Match or Deroute operation,
and puts it in the Output Frame of the current dimension.

*Read processes the message at the Input Frame of
the current dimension, if there is one. If the message has
already arrived at its destination, it is delivered. Otherwise,
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it is added at the end of the queue, in FIFO order. This
operation will take a message from the injection buffer (if
any) and move it to the queue, if it finds an empty slot in
the queue.

Dimensions are processed cyclically. Adaptivity is ex-
pressed basically in two ways. A message waiting at a
queue can either be routed correctly along any of the
possible dimensions it needs to correct, or be derouted as
a result of local congestion problems.

D. Analysis of the Method

1. Network delay: No theoretical bounds are given in
[19]. Some simulation results are shown, but for an 8-
hypercube network (with only 256 nodes). These results
are used to compare the Chaos Router with two other
algorithms that differ from it only in the way in which
the selection of the message to deroute is performed. These
techniques are the “Priority Router”, that deroutes messages
according to priorities related to the age of the messages and
therefore is livelock free and is the “Natural Router” that al-
ways deroutes the last message of the queue in FIFO order.
Several traffic patterns have been tested. The results indi-
cate that in almost all cases the “Natural Router” got slightly
less average and worst case delay than the “Chaos Router”;
these two performed much better than the “Priority Router”.
The maximum number of times any message was derouted
was relatively small in all cases (between 1 and 4 times).

2. Synchronization overheads: Nothing has been said
in [19] about the implementation of virtual barriers, for
instance. Concurrent accesses to locks, for example, are
not facilitated by the algorithm either.

3. Fault tolerance: Messages can move around faulty
links or nodes by traversing alternative paths. If a link
breaks down, the output buffers associated with it must
appear as busy forever. Similar considerations follow for
faulty nodes. So, if a message is waiting at a node’s queue
for traversing a faulty link, then it will either be routed
through another link (if possible) or it will wait for being
derouted. In principle, a message that has only to traverse a
faulty link could remain in the queue forever. If the traffic
remains relatively heavy, so as to keep the queue full, and
derouting is performed infinitely often, the probability of
its never being chosen for derouting goes to zero as time
approaches infinity. So, it will probabilistically be derouted
and so, another route will be found (if possible). But if
the queue of the node at which the message is waiting
does not become completely full any longer, for example,
no derouting will ever again be performed, making this
message stay in the node forever.

4, Generality: This routing algorithm has been presented
as designed specifically with the hypercube network in
mind. It is claimed that it can be adapted to work with
any k-ary n-cube (see Section II). One of the main features
hypercubes network have is that minimal paths from any
node to any other node can be determined directly from the
nodes’ indexes.
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As no synchronization mechanism is provided by this
technique, it is best suited to supporting asynchronous
programming models.

5. Use of randomization: Randomization is used when
selecting a message to be derouted.

6. Deadlock freedom: The routing algorithm is deadlock
free. The basis of the proof given in [19] is that any message
that wants to enter a given node will eventually succeed in
doing so in a finite amount of time, even if that implies that
another message has to be derouted.

7. Livelock freedom: The Chaos Router is probabilis-
tically livelock free, as pointed out above, i.c. message
delivery is guaranteed with high probability. This result
emerges from the fact that every message has a nonzero
probability of avoiding derouting at each “derouting step”.

8. Starvation freedom: The Chaos Router is probabilis-
tically starvation free. In the Read operation, a given node
is allowed to inject a message in the network if it finds
at least one empty slot in the queue. Starvation may arise
because the model of injection is continuous and so, infinite
message streams are possible.

In [19] the use of Injection-Token Recirculation is pro-
posed to solve this problem. Although they are criticized,
Private-Buffer Recirculation and Packet-Injection Control
are suggested there to avoid starvation.

By using Injection-Token Recirculation, starvation free-
dom is guaranteed only probabilistically, as message de-
livery is guaranteed only probabilistically and the injection
mechanism relies on the delivery of token messages.

X. THE EXCHANGE MODEL

Exchange is the model presented by Ngai and Seitz
for adaptive routing [21], [22]. They use a multicomputer
network with bidirectional links, every node with at least
as many buffers as incident links®. Every node n; has
a predefined routing relation R; that tells which of its
neighbors is the next on the route of the packets currently
in n; with destination nj, for every n; in the network. The
transfer of packets between adjacent nodes is accomplished
via an exchange operation: if n; has a packet p in a buffer
b and n; is selected to be the next node in the route of p
then any of the following cases may arise.

1. n; has a packet p’ in a buffer b’ such that it also wants
to exchange it with n;. Then they use the common link, p
is allocated in b’ and p’ in b.

2. n; does not want to exchange any packet with n;. Then

a. n; has an empty buffer b’ that is not being used for
another exchange operation. Then n; receives p in & and
b receives the null packet, i.e., it is freed.

b. n; either has no empty buffer or all its empty buffers
are being used to exchange through other links. Then, a
buffer b’ not currently being used for another exchange is
chosen. The packet p’ contained in " is moved (along the
link) to b and p is moved to .

6Here every buffer has place for only one packet.
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It is assumed that the exchange operation is performed
in a finite amount of time in all cases.

The exchange is a nonminimal adaptive routing. It allows
to use a variety of injection policies, and works for both
static and dynamic injection.

A. Analysis of the Method

1. Network delay: No theoretical bounds have been
proved for this method. This is partially justified by the fact
that this technique is very general (e.g., it is independent
of the topology). As no combination is performed, the
exchange routing technique cannot deal with many-to-one
communications efficiently.

2. Synchronization overheads:
mechanism is provided.

3. Fault tolerance: This-model is fault tolerant if
the network has enough redundant paths among nodes. It
can support both a dynamic and a static fault model, if
faulty links are considered as links that cannot be used for
exchanging. If a packet that finds no next link to go on its
route is used for exchanging, many kinds of failures may be
avoided. This point is more deeply discussed in [21, p. 90].

4. Generality: The exchange routing algorithm can be
used over all kind of topologies, if every node has at
least as many buffers as links incident to it. The routing
relation should be able to be easily recalculated to deal
with derouting.

5. Use of randomization: This technique uses random-
ization in the choice of the buffer to be preempted in the
exchange operation, if there is more than one candidate.

6. Deadlock freedom: Deadlock freedom can be easily
proved given that the number of buffers is greater than
or equal to the number of links in all nodes and assuring
that all buffers have some chance of exchanging. Every
exchange is satisfied: if a node » wants to exchange with
some other node p then the only way in which this could
not happen would be if p had all of its buffers exchanging
with other nodes. But this is not possible because of the
above condition. It should be noted that this method allows
deadlock free routing with a constant number of buffers if
the degree of the nodes is constant.

7. Livelock freedom: Livelock freedom is assured by
using the technique explained in the Livelock Freedom
point in Section III. If the injection model is static, the
packets’ distance to destination can be used as their priority.
On the other hand, if the injection model is dynamic, [22,
pp- 10-15] suggests a priority based on the pair (age-
of-packet, distance-to-destination) with the pairs ordered
lexicographically.

8. Starvation freedom: If the injection model is static,
no starvation can arise. So, only the injection policy needed
in the exchange model to avoid starvation in a dynamic
injection environment will be analyzed. Private-Buffer Re-
circulation and Packet-Injection Control are both proposed
in [22] to solve this problem.” To implement the first
of these policies, every node m; must have b; buffers

No synchronization

7In [21], it is called Buffer Token Recirculation.
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and ¢; links and it must hold that b; > ¢;. Every node
owns a number of private tokens that is between 1 and
b; — c;. To implement Packet-Injection Control, every node
informs its neighbors about the number of injections it has
performed by smuggling this information in the packets
while performing exchange operations (see the Starvation
Freedom point in Section III for details).

XI. ROUTING BY SORTING

Some methods have been developed that route messages,
avoiding any conflict in the network. In order to achieve
this, conflict-free paths have to be constructed for every
pair of messages involved in a communication phase.

Unfortunately, it is not easy to build such paths. Even
50, if the destinations of the messages involved in a com-
munication phase define a (possibly partial) permutation of
the indexes of the processors in the network, and if this
permutation is known in advance, then it is possible to
precompute the sequence of steps that each processor must
execute in order to obtain conflict-free communication [30],
[31].

Whenever the communication pattern does not define
a permutation or this pattern is not known in advance,
messages should be processed in such a way that those
with the same node as destination are combined and then
routed so as to avoid conflicts.

An example of such a technique is presented in [32],
where the classification of the messages mentioned above
is performed by sorting the messages according to their
destination node. In [32], two common problems in commu-
nication are solved: Random Access Read and Random
Access Write.

A. Description of the Algorithm

It is assumed that each processor has a unique index
that is called processor number. The ith processor will be
referred to as PE;.

1) Definition of the problem: Random Access Read (RAR):
Each processor wants to read the contents of a register of
other processor. If it does not want any data, it must issue
a request with infinite destination.

Random Access Write (RAW): Each processor wants to
write data into other processor. Again, if it does not want
to send any data to other processor, it must issue a request
with infinite destination.

2) Auxiliary primitives: The following communication
primitives are necessary to implement routing-by-sorting
methods.

1. RANK: Initially, some processors are marked in some
way. The RANK operation assigns each marked processor
the number of marked processors that have lower indexes.

2. CONCENTRATE: Suppose RANK has been executed.
The result corresponding to processor PE; has been as-
signed to the field C; of the record R; (in PE;). The
CONCENTRATE operation sends each record R; to the
processor whose number is held in C;.
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3. DISTRIBUTE: Consider now an “initial” (with re-
spect to the indexes) subset of the processors, i.e., those
processors PE; such that 0 < 4 < k for some 1 < k < N.
Each of these processors has a record R; with a field H;
such that H; < H; if ¢ < j. The DISTRIBUTE operation
sends each record R; to processor H,;.

4. GENERALIZE: Consider an initial subset of the pro-
cessors, each with a field H;, as described just above.
The GENERALIZE operation copies record R; onto those
processors with indexes between H;_;+1 and H; for every
¢ in the initial subset. (For convenience, H_; = 0).

5. SORT: Suppose that every processor PE; has a record
with a field C; that will be used as a key by the sorting
algorithm. After the sorting algorithm has been performed,
records have been moved in such a way that, if ¢ < j then
C; < Cj.

3) Brief overview of the RAR and RAW algorithms: These
techniques can be viewed as a combination of the subalgo-
rithms described above. To start the routing algorithm, it is
required that all processors meet at the communication step.
Every processor has a request for some other processor. A
succinct description of the algorithms is stated as follows
[32].

Random Access Read. First, all the requests are sorted
according to the processor to which they are directed. The
number of the issuing processor is used to break ties.
Therefore, all requests corresponding to a same processor
will be at consecutive processors at the end of this phase.
Among all the messages destined to a same processor,
the previously stated, that has been issued by a processor
with the least index is selected. The selected requests are
ranked and then concentrated using this rank. Then, the
requests are distributed using their destination. Therefore,
all the requests arrive at their destination node where the
required value is fetched. The replies are concentrated
again using the previous ranks, and then genmeralized so
that each request gets the reply from its “leader”. After this,
the replies are sorted with respect to their issuing processor.
As a result of this, each processor receives the value it has
asked for.

Random Access Write. As in the RAR, all the requests
are sorted according to the processor to which they are
directed. The number of the issuing processor is used to
break ties. There are two possible policies, among others,
regarding what to do to solve write conflicts (i.e., when
two processors want to write data on a same processor).
The first one chooses only the request with the least source
index, as stated above. The rest of the requests destined
to that processor are simply ignored. The selected requests
are ranked and concentrated using the rank. After this,
these requests are distributed according to their destination
index. So, the write requests arrive at the destination node.
No conflict arises, as at most one request arrives at a single
processor.

The second policy allows all the requests to arrive at
their destination processor. The algorithm is similar to
the one of the first policy. The difference is that each
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nonselected request is given the rank of the selected request
that represents it, i.e., the request with the same destination
that has been selected as in the first policy. After this, all
the requests are concentrated using this rank. Conflicts will
arise as more than one request will try to enter the same
node, if there are write conflicts. These conflicts are solved
by combining the conflicting requests when they meet each
other. Then, the requests are distributed as before. As will
be mentioned below, the performance of the algorithm will
depend on the number of write conflicts.

B. Analysis of the Method

1. Network delay: In the above algorithms, the distribu-
tion of the messages throughout the network is controlled
all the time. Therefore, conflicts are avoided. So, the delay
messages will suffer until delivery will not depend on
the congestion of the network. In [32], algorithms for the
subproblems of Section XI-A-2) are presented. They are
O(gn) for an n-ary g-cube, and O(n) for the n-hypercube
and for the n-shuffle-exchange networks. Nevertheless,
no algorithm to sort N items in O(logN) is known.
Therefore, the latency of the whole routing algorithm will
be determined by the order of the sorting algorithm selected.
In [31], Batcher presents an algorithm for sorting 2"
numbers in O(n?) in an n-hypercube and in an n-shuffle-
exchange network. This algorithm performs bitonic sort.
More recently, an algorithm with worst-case O(n(logn)?)
performance was presented for the n-hypercube and related
networks in [34]). However, for all practical values of n,
bitonic sort will behave better. )

If only a small subset of the processors participate in
a given communication step, then other more efficient
algorithms can be used for sorting the requests. In [35],
Nassimi and Sahni present an algorithm that sorts P keys,
2" = P*% in O(klogP) time in an n-hypercube or
n-shuffie-exchange, where k is a constant between 1 and
log P.

When managing one request per processor, Nassimi and
Sahni [32] implement the RAR algorithm in O(n?) time on
an n-hypercube or an n-shuffle-exchange, and in O(g%n)
time on an n-ary g-cube. They also implement the RAW
algorithm in O(n? + dn) time on an n-hypercube or an
n-shuffle-exchange and in O(g*n + dgn) time on an n-ary
g-cube. d is the maximum number of data items written
into any one PE.

An important point is that these routing algorithms finish
a given communication phase in a certain number of steps
that is known in advance. So, although the latency of this
technique is worse than that of other techniques outlined
in this paper, the algorithm is guaranteed to terminate in a
given amount of time, whereas in the rest of the techniques
this is only guaranteed with high probability. This is well-
suited for synchronous programming models.

2. Synchronization overheads: The algorithm needs to
have the requests issued in synchronous phases. All the
messages participating in a given communication step must
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be in the network when the sorting step of the algorithm
starts.

3. Fault tolerance: In general, the algorithms cited
above do not take into account the possibility of faults
in the network. Neither do they consider it the algorithms
presented in [32] for solving the subproblems described in
Section XI-A-2).

4. Generality: This machine model has been designed to
support synchronous programming models. All processors
must synchronize at communication phases. In this way,
there is no need of secondary buffers. The switches must
have hardware to perform the different complex tasks (e.g.,
comparisons) required during the different phases of the
algorithms.

5. Use of randomization: The algorithms described here
do not use randomization at all. Nevertheless, the Valiant-
Reif randomized sorting algorithm can be used to sort
requests [36]. It is a probabilistical algorithm.

6. Deadlock, livelock and starvation freedom: Because
of the characteristics of the algorithm, these are not prob-
lems at all.
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