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Abstract
We present a new model called LATTICERNN, which gener-
alizes recurrent neural networks (RNNs) to process weighted
lattices as input, instead of sequences. A LATTICERNN can en-
code the complete structure of a lattice into a dense representa-
tion, which makes it suitable to a variety of problems, including
rescoring, classifying, parsing, or translating lattices using deep
neural networks (DNNs). In this paper, we use LATTICERNNs
for a classification task: each lattice represents the output from
an automatic speech recognition (ASR) component of a spo-
ken language understanding (SLU) system, and we classify the
intent of the spoken utterance based on the lattice embedding
computed by a LATTICERNN. We show that making decisions
based on the full ASR output lattice, as opposed to 1-best or
n-best hypotheses, makes SLU systems more robust to ASR er-
rors. Our experiments yield improvements of 13% over a base-
line RNN system trained on transcriptions and 10% over an n-
best list rescoring system for intent classification.

1. Introduction
The output of many spoken language understanding compo-
nents such as automatic speech recognition (ASR) can be en-
coded as a lattice: a directed acyclic graph (DAG). Lattices can
represent multiple prediction hypotheses efficiently, see Fig-
ure 1 for an example speech lattice. The hypotheses in a lat-
tice share substructure, as opposed to the hypotheses in an n-
best list. In this way, lattices can represent exponentially many
weighted hypotheses efficiently.

It has been shown that processing full lattices, as opposed
to 1-best or n-best hypotheses, can improve robustness and task
performance since they preserve ambiguity and avoid making
hard decisions too early. In machine translation, researchers
have translated lattices representing multiple segmentations [1]
or paraphrases [2] of the foreign input; in speech recogni-
tion, lattices representing the recognition hyoptheses have been
rescored [3], parsed [4], translated [5], or classified [6].

However, recurrent neural networks (RNNs) have not been
applied to lattices since they originally process sequences only.
On sequences, RNNs perform well for tasks like classifying,
parsing or translating ([7], [8], [9]), so it is natural to extend
RNNs to benefit from increased robustness and task perfor-
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Figure 1: Example ASR lattice: Relying on the 1-best path may
lead to intent classification errors.

mance that lattice inputs provide.
The LATTICERNN model we present recurrently computes

an RNN embedding of each lattice state; the embedding of the
final state represents the content and structure of the complete
lattice.

In this paper, we focus on the task of intent classification
[10], where each utterance in a spoken language understanding
(SLU) system is classified as one of several predefined intents.
An intent is the action that the speaker wishes to evoke from
the system, e.g., PlayMusic, GetWeatherForecast,
SetTimer, etc. Each spoken utterance is represented as a
weighted lattice that encodes the output hypotheses of an au-
tomatic speech recognizer (ASR). To perform classification, we
compute a dense representation of the weighted lattice using
LATTICERNN and use it as input features into a softmax layer;
all model weights are trained jointly. We show significant im-
provements over classifying based on n-best lists.

We describe the formal LATTICERNN model in the next
section, then describe experiments on the intent classification
task (Section 3) and compare our approach to related work (Sec-
tion 4).

2. Framework for DNN Training
Using Lattices

2.1. RNNs

While feed-forward neural networks treat each input in a se-
quence independently, recurrent neural networks have feedback
connections in the hidden layer, which allow activations to flow
through time. This enables RNNs to learn temporal associa-
tions and perform predictions over sequences. This means that
recurrent networks are well suited for tasks that require a ”mem-
ory” to be retained over time in order to do predictions over a
sequence, making them a great choice for modeling natural lan-
guage.

The formulation of the forward pass of an RNN is as fol-
lows:

ht = g(W T
xxt + W T

r ht−1 + b) (1)

where xt is the input at time t, W x is the weight matrix
for the input, W r is the recurrent weight matrix, ht is the RNN
state at time t, and g is an activation function. The affine trans-
form can be abstracted out from the recurrence, since it does not
have temporal dependencies:

zt = W T
xxt + b (2)

ht = g(zt + W T
r ht−1) (3)

The corresponding gradient computations for Equation 3
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are as follows:

δtz = (δth + W T
r δ

t+1
z ) ∗ g′(zt + W T

r ht−1) (4)

δWr =
∑
t

δtzht−1 (5)

where δtz and δth are the gradients at time t of the input transfor-
mation and recurrent activation respectively.

2.2. Extending RNNs to Lattices

A lattice L = (Σ, S, E, si, sf ) is defined by a label set Σ, a fi-
nite set of states S, a finite set of arcs E, an initial state si ∈ S,
and a final state sf ⊆ S.1 An arc e = (p[e], l[e], w[e], n[e]) ∈
E is a transition from a source state p[e] to a destination state
n[e] (both in S), with label l[e] and weight w[e]. We also use
x[e] to denote the input vector associated with arc e. For ex-
ample, x[e] can be the one-hot representation corresponding to
l[e]. The challenge to extend the RNN framework to encode
a lattice as a dense vector is that a lattice is not a single se-
quence – it is a compact representation of multiple overlapping
sequences. Ideally, information about the structure of the lattice
and the distribution over the hypotheses space (represented by
the lattice) must be retained by the encoding framework.2

We propose to traverse an input lattice in topological or-
der, compute RNN hidden states for each visited arc and lattice
state and use the RNN hidden state of the lattice final state as the
dense vector representing the entire lattice. We describe the de-
tails of the proposed LATTICERNN framework in the following
section.

2.3. Computation Over Lattices

Neural network components can be broken down into two gen-
eral types: temporal and non-temporal. A temporal compo-
nents have temporal dependencies in their computation, such as
RNNs, LSTMs, windows, etc. Non-temporal components have
no temporal dependencies, such as affine transforms and activa-
tion functions. In order to perform computations over lattices,
we modify the temporal components, while the non-temporal
components remain unchanged. Below is the reformulation of
RNNs for lattices, but this general idea could be extended to any
temporal component.

The RNN formulation presented in Section 2.1 works for
simple linear-chain lattices, but it does not generalize to lat-
tices that have states with multiple incoming and outgoing arcs.
We propose the formulation for LATTICERNNs shown in Algo-
rithm 1, as a generalization of RNNs to work with any arbitrary
DAG. The basic idea involves recurrence across the topology
of the lattice, by pooling over the arc representations of the in-
coming arcs into a state, and propagating the same hidden rep-
resentation to the outgoing arcs from a state (see Fig. 2 for a
visualization). Here, h[e] and h[s] denote RNN hidden repre-
sentations for arc e (∈ E) and state s (∈ S), respectively. The
representation (RNN hidden state) of a lattice state is computed
by applying a pooling function, fpool, over the set of represen-
tations for all incoming arcs into that state (line 13). The RNN
hidden state for the start state si is set to the null vector (line 1).
Recurrence comes into play when computing the arc represen-
tation (RNN hidden state) in line 9. Note that this is similar to

1In case of multiple final states, a super-final state is created by
connecting each final state to it with an ε-arc.

2Competing hypothesized words in a specific region of an input
speech lattice carry significant information which can be leveraged in a
downstream application, e.g., intent classification.

Input : L = (Σ, S, E, si, sf ), fpool()
Output: h[sf ] // lattice representation

1 h[si] = 0
2 for s ∈ TopSort(S \ {si}) do

// incoming arc representations
3 I(s)← {} // empty set
4 for e ∈IncomingArcs(s) do
5 if l[e] == ε then
6 h[e] = h[p[e]]
7 else
8 z[e] = WT

x x[e] + b

9 h[e] = g(z[e] + WT
r h[p[e]])

10 end
11 Insert(I(s),h[e])
12 end
13 h[s] = fpool(I(s))
14 end

Algorithm 1: LATTICERNN forward pass

Equation 3 above, except instead of multiplying the recurrent
weights with ht−1 we multiply them with the representation of
the source state of the arc, h[p[e]]. Another thing to note is that
for epsilon arcs, we simply propagate the representation of the
source state, as shown in line 6.

The gradient update (δs) for a state s can be computed as
shown below:

δs =
∑

e∈O(s)

f∗pool(δz[e]) (6)

where f∗pool is backprop through the pooling function, andO(s)
is the set of all outgoing arcs from state s. The gradients propa-
gated out (δz[e]) of the LATTICERNN for each arc are as follows:

δz[e] = (δe + W T
r δn[e]) ∗ g′(z[e] + W T

r h[p[e]]) (7)

where δn[e] is the gradient of the destination state for arc e. Note
that δe is simply the gradient for arc e that is propagated down
from the next layer. The gradients for the recurrent weights are
calculated as shown below:

δWr =
∑
e∈E

δz[e]h[p[e]] (8)

3. Experiments
Our experiments evaluate the LATTICERNN model for the task
of intent classification of ASR utterances.

x[e3]

x[e2]

x[e1 ]

h[e3]

h[e2]

h[e1 ]

h[s3]

h[s2]

h[s1]

{\color[rgb]{0.600000,0.600000,0.600000}h'[s_3]}

s1

s2

s3 . . .

. . .

. . .

Figure 2: This example shows part of a lattice, with the RNN
hidden representations shown in gray. h[e1] is computed based
both on local arc features x[e1] and the representation h[s1] of
the arc’s source state (see Alg. 1, line 9); likewise for h[e2].
State representation h[s3] is computed by pooling the incoming
arc representations h[e1] and h[e2] (see Alg. 1, line 13).
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Figure 3: ICER for different training and evaluation conditions.

We compare the following different systems configura-
tions:3

1. Baseline: Train on manual transcriptions

2. 1-best: Train on 1-best path in the ASR lattice

3. n-best lattice: Use LATTICERNN to train and test on n-
best paths in the form of n parallel paths in an ASR lat-
tice, merging only at the final state

4. Full lattice: Use LATTICERNN to train and test on the
entire ASR lattice

5. Oracle: Train and evaluate on manual transcription. This
is an upper bound on performance, assuming that the
ASR system was as good as human annotators.

For evaluation, we use intent classification error rate
(ICER), i.e., the percentage of classification errors made by the
model.

3.1. Training Setup

We use 300-dimensional GloVe vectors [11] as the feature rep-
resentation of words on the lattice arcs, with 100 hidden units,
i.e., W x ∈ R300×100, W r ∈ R100×100, and b ∈ R100. We use
the logistic sigmoid function as activation function g. We con-
nect the embedding of the lattice final state to a softmax layer
over all intents. We use cross entropy as the training objective.

In all our experiments, we set the initial learning rate to 0.05
and reduce it by 0.5 after each epoch if the loss on a held-out
development set does not improve. For the experiments we used
26 intents, a training set of 806K utterances, and a development
and test set each of 80K. All the experiments are performed
using our in-house DNN toolkit [12] and lattices were extracted
from our in-house ASR system based on [13, 14].

3.2. Results with LATTICERNN

Figure 3 shows the ICER results on all the models described
in Section 3. Using the same baseline model, we find that
noise due to ASR errors results in a ICER on ASR 1-best that
is 19% relative worse than the same system tested on manual
transcriptions. Training and testing on the ASR n-best, allows

3All configurations are evaluated on ASR 1-best output, unless
stated otherwise.

the model to recover from ASR errors as seen in the improve-
ments in ICER at n = 1, 5, 15. The best Full lattice model im-
proves over the baseline system ICER by 13% relative. Train-
ing the LATTICERNN on a larger input hypothesis space allows
the model to recover from ASR errors, with significant gains
over the 1-best or the n-best lattice systems. Furthermore, even
though the 15-best model has more hypothesis paths in the in-
put than the 5-best model, many paths are incorrect; combining
their representation only at the final state in LATTICERNN leads
to a slightly worse performance. Possibly, encoding the lattice
topology is important in order to efficiently recover from ASR
errors.

3.3. Effect of Pooling

In LATTICERNN, the pooling function is responsible for deter-
mining how incoming arcs into a state are combined. We inves-
tigate two different pooling functions:

1. MeanPool: The representations of incoming arcs are av-
eraged into a single vector.

2. WeightedPool: The representations of incoming arcs are
weighted by arc scores and summed into a single vector.

In case of lattices from the ASR system, each arc has an acoustic
score and a language model score associated with it, which is
combined using an acoustic scale factor. Using raw combined
scores does not improve performance over MeanPool, because
the raw scores vary a lot from one lattice to another. Instead, we
calculate the posterior score of each arc by running the forward
backward algorithm [15] and then normalizing the scores over
incoming arcs for each state.

Pooling ICER Rel. impr.
Baseline 4.82
5-best lattice MeanPool 4.34 10%

WeightedPool 4.3 11%
15-best lattice MeanPool 4.61 4%

WeightedPool 4.33 10%
Full lattice MeanPool 4.37 9%

WeightedPool 4.21 13%

Table 1: Effect of pooling on different lattice inputs

As the depth of the lattice increases, performance with
MeanPool gets worse, indicating that the noisy (high error rate)
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paths in the lattice are dominating the encoding. Instead, incor-
porating the lattice posteriors to weight each incoming arc in
WeightedMeanPool, each state encoding is biased towards the
more likely arcs and hence the final encoding towards the more
likely paths in the lattice.

3.4. Comparison to RNN rescoring

Another way of incorporating a larger hypothesis space in the
input is to predict the intent by rescoring the n-best paths ex-
tracted from the ASR lattice. The baseline model is used to
get the probability distribution over intents for each path and
the final intent is obtained using maximum a posteriori (MAP)
estimation:

p(Intent|nbest) =
∑

w∈nbest

p(w|nbest) ∗ p(Intent|w) (9)

where p(w|nbest) is the posterior probablity of the hypothesis
w.

Model ICER Rel. impr.
Baseline 4.82
5-best rescore 4.78 1%
5-best lattice 4.3 11%
15-best rescore 4.67 3%
15-best lattice 4.33 10%

Table 2: Results of rescoring on ICER

Table 3.4 shows the result of the rescoring experiments.
n-best rescoring improves the ICER by 3% over baseline. How-
ever, it is expensive to compute the intent probabilities since the
model needs to be run n times over the paths in the list, whereas
the LATTICERNN can process the n-best lattice in a single step.
Another advantage of the n-best lattice model is that the final
prediction is computed from the combined representation of all
the paths. This is perhaps the most important feature of the
LATTICERNN as the performance is 7-10% better than the MAP
rescoring.

3.5. Effect of Domain

The accuracy of the intent classifier is predicated on getting cer-
tain indicative keywords right for that particular intent. Com-
plex domains are characterized by the number of keywords in-
dicative of the particular intent, as well as the number of in-
tents that have to predicted for that domain. For example, the
word ”weather” is an important keyword for the WeatherFore-
cast intent, whereas, the words ”play”, ”album”, ”music” etc.
are indicative keywords for the Music domain intents. The ASR
system is much more likely to make errors on the more com-
plex domains, as it needs to get many more of the indicative
keywords right in order to classify correctly into one of several
possible intents. Table 3 below, shows the ICER for various
domains with increasing complexity - Music, Shopping, Notifi-
cations and Weather.

Music Shopping Notification Weather
# intents 9 6 10 1
Baseline 5.66 6.95 4.68 1.58
Full lattice 4.67 5.42 4.2 1.29
Rel. impr. 17% 22% 10% 18%

Table 3: ICER and relative improvement on different domains

We get larger improvements on more complex domains, us-
ing the LATTICERNN. This indicates that the lattice encoding
is more robust to ASR errors for the intent classification task.

4. Related Work
There has been previous work in using word lattices and n-best
hypotheses output by speech recognition systems for the spo-
ken language understanding task [16, 17, 18, 10]. In [10], the
authors show improvements by rescoring n-best hypotheses for
joint intent classification and speech recognition. Beyond n-
best lists, [18, 17] use confidence scores from a confusion net-
work to improve intent classification. However, these works do
not exploit the structure of the richer hypothesis space provided
by the confusion network. [19, 20] use confusion networks to
assign semantic tags to each bin in the network. They extract
n-gram features over the bins and use them in a conditional
random field. However, this requires aligning the words into
bins, and requires feature engineering to extract various n-gram
combinations over the confusion networks.

More recently, there has been work on moving to neural
network architectures for slot-filling and intent classification
tasks [21, 22, 23, 24]. Using recurrent architectures have been
shown to improve upon traditional conditional random fields
and maximum entropy classifiers for slot-filling and intent clas-
sification tasks. However, these works are focused on training
recurrent architectures on reference text and applied to 1-best
ASR hypotheses. [25] presents approaches for fast rescoring
of lattices using a recurrent architecture. However, the recur-
rent network is trained on reference transcription and does not
leverage the richer hypothesis space during training. Our work
differs in that we train our neural network on the entire lattice
so as to better capture the context and the structure.

The closest approach to our work is [26], which presents a
method to recursively model tree structure for a sentiment clas-
sification task. In order to score a given tree under their model,
the tree is traversed from the leaves to the root, successively
combining children representations into parent representation,
much like we traverse from the start state to the final state, but
we account for a variable number of incoming arcs as well as
arc labels. Another key difference is that the lattices we encode
may contain multiple different strings.

5. Conclusion and Future Work
We have presented LATTICERNN, a novel approach for com-
puting dense fixed length representations of weighted lattices.
We have used these lattice representations for intent classifica-
tion of spoken utterances, where we preserved the ambiguities
of the ASR recognition and allowed the classification to be in-
fluenced by multiple paths in the lattice representing multiple
ASR hypotheses of the utterance.

There are several avenues for future work. Adapting
LSTMs to lattice input may perform better than the presented
basic LATTICERNN; adding an attention mechanism may fur-
ther help to focus decisions on certain states or arcs in the lat-
tice; different applications of LATTICERNN may require differ-
ent pooling strategies for incoming arcs. Finally we are work-
ing on extending this formulation to solve structured prediction
tasks such as part-of-speech tagging, and entity recognition.

Lattices are ubiquitous in language understanding and pro-
cessing tasks. We hope that the presented formalism will spark
the community’s interest in further applications and extensions
of this work.
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