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I believe interactive data interfaces (e.g., visualizations, dashboards, spreadsheets), not traditional pro-
gramming, will be the primary means to empower the next billion data users, and have the potential to be as
ubiquitous as web pages and mobile applications are today. In fact, data interfaces are already indispensible
in nearly every domain and every part of the data life-cycle, from data collection to cleaning, analysis, and
decision making. However, the number and e�ectiveness of today’s data interfaces are a mere fraction of
what’s possible. �e major reason is that current tools do not address the unique challenges of designing
data interfaces and ensuring that they are scalable and highly responsive. As a result, even interfaces with
basic functionality require huge amounts of resources and expertise to build. To this end, the Data Visualiza-
tion Management Systems (DVMS) project [43, 45] pursues three primary research directions to drastically
simplify how interfaces are designed and created, and expand what interfaces are capable of.

�e �rst direction develops systems to simplify interface development. I have developed novel abstrac-
tions to declaratively express and optimize data interfaces [43, 45]. For instance, I was the �rst to show that
interactions are logically expressible as data lineage operations [30], which simpli�es programming and bene-
�ts from lineage-based optimizations. I then built Smoke [30, 29, 31], the �rst lineage-supporting query engine
to run interactive visualizations as fast as, or faster than, hand-optimized implementations. I have also devel-
oped the �rst tools to help designers make informed design decisions based on systems considerations and
implications. �ese interface design tools [32] surface the interactivity achievable from the available system
resources, and recommends optimizations needed to achieve the designer’s desired level of responsiveness.

�e second direction obviates the need for interface design and development. Even data scientists and
programmers �nd it challenging to turn their analyses into usable interfaces, thus the Precision Interfaces sys-
tem [57, 56, 55, 9] automatically generates interactive visualization interfaces from example analysis queries.
�is o�ers the potential to create analysis interfaces that are highly adapted to user needs, and create them
at scale by monitoring data scientists’ analyses or mining query logs generated by data systems.

�e third direction expands interface capabilities from data presentation to explanation. When users
encounter anomalous data in a visualization, they will want to understand why. In response, I �rst proposed
the query explanation problem [47, 48] to generate predicates that describe input data errors that would
“explain away” the anomalous outputs in the context of aggregation queries. I further extended the idea to
training data debugging in machine learning (ML) analytic pipelines [53, 10, 21]. �is user-centered approach
towards data debugging [26] has led to signi�cant followup work in the database community, and several
companies, such as Honeycomb.io, have integrated these ideas into their analysis systems.

�e emerging �eld of Human Data Interaction (HDI) studies how interfaces can best empower people to
work with data. My approach is to identify fundamental HDI problems, and the above directions have just
begun to tackle some of the core questions: what interfaces to build? how to build them? and what can
they do? To do so, I combine data management and visualization techniques to develop new algorithmic and
systems solutions, and demonstrate their e�ectiveness through careful evaluation and user studies. �is work,
with students, postdocs, and collaborators, has led to 16 full papers at top conferences (5xVLDB, 5xSIGMOD,
1xCIDR, 1xVis, 1xTVCG, 2xICWSM, 1xSOCC), and 53 total papers since starting at Columbia. My students
and postdocs have gone to Microso� Research and Google Research, and won the Google PhD Fellowship
and the 2020 SIGMOD Student Research Competition. I have been supported and recognized by 4 NSF grants
and 2 Google and 2 Amazon awards, adoption by multiple companies, 2 best-of-conference citations, a 2015
SIGMOD best demo award, the 2018 VLDB Test-of-Time award, and the NSF CAREER. I have made early
contributions to crowdsourced databases [22, 23, 12], complex event processing [44, 11], mining web tables [6,
7], and application-sensitive data cleaning [20, 18, 17, 38, 39], and neural network debugging [8, 37, 36].
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1 Systems to Simplify Interface Development

Designing and building interactive data interfaces is a highly iterative process to identify the best visual
data representations and interactions for a given analysis task under challenging user- and systems-level
constraints. Users expect immediate responses irrespective of the analysis complexity and data size, while
large data volumes necessitate complex systems that span browser, server, database, and cloud platforms.
Implementing these layered systems requires piecing together, and optimizing across, di�erent technologies.
�is is di�cult for even professional developers, and completely out of reach for data scientists and users.
Further, every interface design change requires manual re-implementation and re-optimization, which grinds
the iterative design process to a halt. New abstractions and development tools are needed to support rapid
interface and system co-design.

1.1 Declarative Abstractions

�e enduring success of database systems is thanks to its declarative abstraction: given a query, the database
automatically optimizes and executes the query. Although data interfaces also generate queries in response
to user interactions, optimizing individual queries is insu�cient to ensure user-facing responsiveness [14].
Similarly, declarative visualization libraries focus on presentation and layout, do not address data processing
bo�lenecks. My goal is to create a declarative language that is compatible with existing visualization and
design libraries, and can express the data �ows that underlie interface interactions in a form that is amenable
to optimization. While we have developed several candidate languages [43, 45, 32, 56], I have created two
systems that provide key abstractions: Smoke, which uses lineage to declaratively express interactions, and
Khameleon, which abstracts away communication bo�lenecks that are endemic in networked applications.

Lineage-based Interactions: I discovered a connection between interaction and data lineage [30] that led
to simpler development abstractions, novel optimization opportunities, and functionality that can bene�t a
wide variety of interactive applications: interfaces render data as pixels on the screen, and when the user
points to or manipulates pixels, they are implicitly manipulating the underlying data (the data lineage) of
those pixels. If e�cient lineage tracking were possible, then it could serve as the basis to express many useful
interactions. In addition, that fast interactive visualizations exist is proof that it is possible. For this reason,
we developed Smoke, the �rst practical lineage tracking techniques that reduced the overhead from ≥1000×
in prior work [49, 42, 15, 5] to ≈0.8× [31]. �e key insight is that lineage tracking can “piggyback” on top
of query execution and eliminate redundant work. Smoke is fast enough to declaratively express interactive
visualizations and data pro�lers using lineage constructs, and run as fast as, or faster than, state-of-the-art
and hand-tuned implementations [31, 29]. Lineage-supporting systems have the potential to support novel
interaction functionalities such as data explanation, cross-application linking and interactions, interaction his-
tories, and interaction-by-example [29], and we are integrating ideas from Smoke in an in-memory columnar
engine to show these functionalities in practice.

Communication: Communication is fundamental in any networked interactive application, however mask-
ing communication delays is a complex art that depends on the application needs and demands rare net-
working and interaction design expertise. �e classic approach to mask communication latencies trades extra
bandwidth for lower perceived latency by predicting future requests and prefetching them. However, band-
width is o�en a bo�leneck for interactive interfaces: a single gesture can easily generate dozens or hundreds of
requests that return large, data-dense responses. �e requests already overwhelm the network, and prefetch-
ing exacerbates the issue. Although it is possible for some developers to create one-o� solutions to prioritize
user-level responsiveness, each application has di�erent priorities, types of requests, and network se�ings.

Khameleon [24] is a general prefetching framework for interactive applications that lets developers focus
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on policy decisions rather than low level implementation and optimization details. Rather than solely focus
on improving the predictor, we use a combination of server-push and progressively encoded responses to
pose prefetch as a novel scheduling problem. �e server continuously pushes fragments of response data to
the client, where a fragment is su�cient to render an approximate, lower quality response. �e scheduling
formulation lets the developer focus on application-speci�c policy decisions to balance response quality (by
dedicating all bandwidth to a few likely requests) and user-latency (by sending a tiny amount of many poten-
tial requests). By carefully managing network utilization, Khameleon reduces response latency by 2 orders
of magnitude from >50 sec to ≤30 millisec on real AT&T LTE network traces, while it improving render-
ing quality, as compared to client-based prefetching that has access to an oracle prediction model. We show
that porting state-of-the-art visualization-speci�c prefetch techniques [25] is simple (≈50 lines of code), and
makes it easy to tune policies that further reduce latency by up to 8×.

Additional Opportunities: �is declarative perspective helped me de�ne and pursue additional novel op-
portunities. For example, instead of semantic query equivalence, I proposed “perceptual equivalence” [50]
to describe approximate visualization results that are perceptually indistinguishable from the full results. I
also developed perceptual models [27, 35, 46] to quantify this e�ect, and the �rst query optimizations [4, 28]
to leverage perceptual models. As another example, client interfaces make asynchronous requests to avoid
blocking the user interface (UI), but this easily leads to UI inconsistencies; I helped de�ne the �rst approaches
that borrow database concurrency control and provenance techniques tomanage asynchrony in visualizations
at the design and programming levels [54, 52, 51, 45].

1.2 Physical Visualization Design

Interface design is an iterative process that requires close coordination between the designer and developer
in order to meet latency expectations: small interface changes may require major system changes, while
implementation and optimization decisions introduce “performance cli�s” that the designer must avoid. Un-
fortunately, design and systems implementation are very di�erent skills, and o�en necessitate multiple teams
that are di�cult to coordinate. Yet, no tools exist to aid this design process.

I envisioned the �rst interface design tool, akin to Photoshop, that facilitates rapid interface and system co-
design [32]. �e tool is initialized with existing system constraints and database information. As the designer
creates the interface and adds interactions, the tool alerts the designer when latency expectations for certain
interactions cannot be met, suggests system optimizations, and simulates their latency implications within
the interface. In addition, it helps forecast additional resource costs as the database grows. To support this,
I proposed Physical Visualization Design (PVD). Similar to physical database design tools that recommend
indexes and views to accelerate query workloads, PVD takes as input an interface speci�cation, an existing
database, and a library of optimization techniques, and recommends system architectures—data structures
to create, client-server data placement policies—to meet the designer’s latency expectations within resource
limits. Our 2020 demonstration showed a drag-and-drop interface design tool that recommends indexes and
data placement policies; our full submission later this year supports real-world interfaces and optimizations.

2 Automatic Interface Generation

Data analysis interfaces restrict their expressive power in exchange for usability and simplicity. Similarly,
interface design tools and dashboard builders also restrict their expressive power in exchange for speeding
up data interface development and deployment. For instance, existing tools restrict the analyses to those ex-
pressible by e.g., parameterized queries, data cube operations, group-by aggregations, or single table queries.
Unfortunately, data analyses do not �t into pre-canned templates and require the full expressive power of SQL,
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which makes designing and building interfaces for the analyses considerably more challenging. �e Preci-
sion Interfaces (PI) project [57, 56, 55, 9] is the �rst to study whether it is possible to automatically generate
interfaces from these analysis queries. If possible, custom interfaces could be created by simply performing
the intended analysis, by monitoring live analysis sessions, or by mining existing query logs (e.g., collected
by existing data systems) to synthesize shared interfaces. Further, these interfaces would be highly adapted
to individual users’ analysis work�ows, reduce cognitive load and user errors, and improve data accessibility.

My key insight is that interactive interfaces are not arbitrary programs. Instead, interactions change an
underlying program in systematic ways: e.g., a slider controls a numeric parameter, a bu�on replaces a query.
�us, an interface expresses the set of queries needed for the desired analysis task, and the input queries are
a sample sequence generated from this “latent” interface. �is project has developed a formal model of the
mapping problem from queries to an interactive interface [57], and used it to generate interactive widgets [57]
for di�erent interaction modalities [55] (e.g., natural language, touch), and determine layouts based on screen
size [9]. �e work so far has solely focused on generating interactions to express the input queries, and
the current work is to generate full interactive interfaces that support data visualizations and account for
interface layout. �is is di�cult because the semantics of a visualization’s interactions changes depending
on the visualization type and speci�cation, and because quantifying interface “goodness” remains an open
problem. Our early �ndings show that many existing interfaces can be automatically generated solely by
providing a handful of queries that the interfaces produce.

3 From Presentation to Explanation

Today’s data interfaces focus on data presentation, and primarily provide interactions for low-level tasks such
as �ltering, grouping, panning, and zooming. However, users don’t simply want to see a visualization—they
want to understand what they are seeing and ask questions about it. �is motivated me to de�ne the query
explanation problem [47, 48]. Given a user “complaint” that query results rendered in a visualization are
surprising (e.g., why is the average temperature so high?), the system proposes hypotheses to “explain-away”
these complaints (e.g., ignoring sensor 18 would have kept temperatures stable). �ese explanations describe
predicate-based interventions that, if applied to the database, would help address the user complaints. �is
work has led to a number of followups in academia [3, 33, 34] and industry [2, 1].

A key insight is that explanation has strong ties to data cleaning. For instance, when explaining an
anomaly—“if we ignored this data and �xed these values, then the output would look normal”—each step (e.g.,
ignore, �x) is also a cleaning intervention. However, cleaning typically focuses on a given dataset, whereas
explanations take the downstream analysis into account. �is novel complaint-driven data debugging is more
user-friendly and helps identify data errors that ma�er to the use case. I have applied this concept in the �rst
works that clean data to improve ML model [20, 16, 18, 17, 19], identify past erroneous transactions [41, 40],
and interactively identify data errors [13]. �e la�er is in collaboration with �e Earth Institute’s Financial
Instruments Sector Team to aid national farmer drought protection programs in Ethiopia and Zambia.

I recently proposed complaint-driven data debugging for ML analysis work�ows [26]. Training data is
currently debugged by writing rules, detecting syntactic errors, or relying on labeled prediction errors. In
contrast, evidence of data errors is o�en only detected in the output of downstream analytics or by con-
sumers of the models and predictions. �ere is a need to translate anomalies found downstream into errors
in the data sources. To this end, I developed the �rst whitebox approach [53, 10] that combines in�uence
analysis with query explanation to identify training record interventions for queries that use ML, as well as
blackbox approaches that support general data science pipelines by leveraging Bayesian hyper-parameter op-
timization [21]. ML work�ows o�en span multiple teams, and this approach helps combine expertise local to
each team to be�er pinpoint data errors and improve debugging productivity.
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