
Uncovering the Relational Web

Michael J. Cafarella
∗

University of Washington
mjc@cs.washington.edu

Alon Halevy
Google, Inc.

halevy@google.com

Daisy Zhe Wang
U.C. Berkeley

daisy@cs.berkeley.edu

Eugene Wu
MIT

eugene@csail.mit.edu

Yang Zhang
MIT

zhang@csail.mit.edu

ABSTRACT
The World-Wide Web consists of a huge number of unstruc-
tured hypertext documents, but it also contains structured
data in the form of HTML tables. Many of these tables
contain both relational-style data and a small “schema” of
labeled and typed columns, making each such table a small
structured database. The WebTables project is an effort to
extract and make use of the huge number of these structured
tables on the Web. A clean collection of relational-style ta-
bles could be useful for improving web search, schema de-
sign, and many other applications.

This paper describes the first stage of the WebTables project.
First, we give an in-depth study of the Web’s HTML table
corpus. For example, we extracted 14.1 billion HTML ta-
bles from a several-billion-page portion of Google’s general-
purpose web crawl, and estimate that 154 million of these
tables contain high-quality relational-style data. We also de-
scribe the crawl’s distribution of table sizes and data types.

Second, we describe a system for performing relation recov-

ery. The Web mixes relational and non-relational tables
indiscriminately (often on the same page), so there is no
simple way to distinguish the 1.1% of good relations from
the remainder, nor to recover column label and type infor-
mation. Our mix of hand-written detectors and statistical
classifiers takes a raw Web crawl as input, and generates a
collection of databases that is five orders of magnitude larger
than any other collection we are aware of. Relation recovery
achieves precision and recall that are comparable to other
domain-independent information extraction systems.

1. INTRODUCTION
Search engines, Web browsers, and most users consider the
Web as a corpus of unstructured documents. While hier-
archical URL names and the hyperlink graph pose some

∗Work done while all authors were at Google, Inc.

Copyright is held by the author/owner.
Proceedings of the 11th International Workshop on Web and
Databases (WebDB 2008), June 13, 2008, Vancouver, Canada

structure, the basic unit for reading or processing is the un-
structured document itself. However, Web documents often
contain large amounts of relational data. For example, the
Web page shown in Figure 1 contains a table that lists Amer-
ican presidents1. The table has four columns, each with a
domain-specific label and type (e.g., President is a person
name, Term as President is a date range, etc) and there
is a tuple of data for each row. Relational operators like
selection and projection would make obvious sense on this
data. This Web page essentially contains a small relational
database, even if it lacks the explicit metadata traditionally
associated with a database.

Figure 1: A typical use of the table tag to describe
relational data. The relation here has a schema
that is never explicitly declared but is obvious to
a human observer, consisting of several typed and
labeled columns. The navigation bars at the top
of the page are also implemented using the table

tag, but clearly do not contain relational-style data.
WebTables attempts to extract only true relations,
including appropriate column labels and types.

This paper describes the first stage of the WebTables sys-
tem, whose goal is to study and leverage the collection of
useful HTML tables on the Web. Our first contribution is a
large-scale study of the HTML table corpus from which we
extract the relational web. We began from a portion of the
google.com Web crawl (consisting of several billion pages)
and extracted approximately 14.1 billion raw HTML tables.
We show that the number of high-quality relations is a tiny

1
http://www.enchantedlearning.com/history/us/pres/list.shtml

fraction of the number of HTML tables, but its absolute
size, which we estimate to be 154 million, is still very large.
Hence, we can consider the Web to be not only the world’s
largest corpus of documents, but a vast corpus of databases
as well.

Our second contribution is a set of techniques for relation
recovery, which distills the original raw HTML tables into
the much smaller set of high-quality relations. Most HTML
tables are used for page layout, form layout, or other non-
relational data presentation (such as “property sheet” lists
that focus on a single data item); these non-relational tables
must be filtered out. Further, even the correctly-detected
relations lack explicit metadata such as column labels and
types. WebTables detects this metadata when it is embed-
ded in the HTML.

There are a number of WebTables applications enabled
by these extracted tables, which we describe elsewhere [2].
One application is a search engine that takes keywords as
input, but returns relevant extracted databases instead of
URLs. Because each result is structured, the search system
can automatically provide structured services (e.g., data vi-
sualizations) as part of the search results. For example, a
search for us states can elicit not just relevant tables, but
an automatic map visualization.

Another set of WebTables applications are based on the
schema statistics that we can derive from the extracted ta-
bles. For example, attribute label statistics allow us to per-
form schema autocomplete, a service inspired by word pro-
cessors’ word autocompletion features. A novice database
designer can input one or two domain-relevant attributes
(say, instructor), and the system returns a set of other use-
ful attributes for the database (e.g., course-title, time, and
credits). We cover the extracted schema statistics in more
depth in Section 3.3.

It is important to distinguish the WebTables data from the
deep web. WebTables considers only HTML tables that
are already surfaced and crawlable. The deep web refers to
content that is made available through filling HTML forms.
The two sets of data overlap, but neither contains the other.
There are many HTML tables that are not behind forms
(only about 40% of the URLs in our corpus are parameter-
ized), and while some deep-web data is crawlable, the vast
majority of it is not (or at least requires special techniques,
such as those described in [7]). In contrast to the work we
describe in this paper, deep web research questions focus
on identifying high quality forms and automatically figuring
out how to query them in a semantically meaningful fashion.

In addition to HTML tables and the deep web, there are
many kinds of structure on the Web, including lists, tagged
items, ontologies, XML documents, spreadsheets, and even
extracted language parses [9]. In this paper we will only
consider the table tag.

In the next section we characterize the web’s raw HTML Ta-
ble corpus, a novel dataset that has not been studied previ-
ously. Section 3 shows how we recover high-quality relations
from the huge number of low-quality tables. We evaluate re-
lation recovery in Section 4, and conclude with discussions

of related and future work (Sections 5 and 6).

2. THE HTML TABLE CORPUS
Our goal is to extract from the raw Web a corpus of high-
quality relations. An HTML table that is also a good rela-
tion should contain data arranged in tuple-centric rows, and
have a coherent set of domain-appropriate attributes in each
column. These relations make up a small percentage of the
overall tables in our crawl. This section describes the table

crawl, and the first steps that WebTables takes to find the
good relations.

We applied an HTML parser to a multi-billion-page crawl of
the English-speaking web to obtain about 14.1B instances
of the table tag. Presenting relational-style data is perhaps
the most “obvious” use of the tag, but non-relational uses
are far more common.

Table type % total count

Extremely small 88.06 12.34B
HTML forms 1.34 187.37M

Calendar 0.04 5.50M

Obviously non-relational, total 89.44 12.53B

Other non-relational (est.) 9.46 1.33B

Relational (est.) 1.10 154.15M

Table 1: Various types of HTML tables found in the
crawl. Types are non-overlapping; we only examine
tables that were not eliminated by tests higher on
the list. The rate of other non-relational tables is
estimated from a human-judged sample.

A few use cases make up the bulk of all HTML tables and
are easy to detect:

• Extremely small tables are those with fewer than two
rows or two columns. We assume that these tables
carry no interesting relational information.

• Many tables are embedded inside HTML forms and are
generally used for visual layout of user input fields.

• Some tables are used to draw a calendar onscreen, and
consist of nothing but a column for each day of the
week and a number in each cell.

We wrote parsers that reliably detect each of these use cases.
As seen in Table 1, these three table types make up more
than 89% of the HTML tables in our raw corpus2. Any web-
embedded relations must be found in the remaining portion.

However, even this remainder consists primarily of non-relational
tables. These non-relations include tables used for page lay-
out, tables with an enormous number of blank cells, tables
that are really simple lists presented in two dimensions, and
“property sheets” that consist of attribute value pairs for a
single data entity (e.g., MySpace personal preference lists).

2Remarkably, 0.88% of all HTML tables in our raw crawl
(more than 122M) are “no-ops,” containing zero rows and
zero columns.

Figure 2: Frequency of HTML tables/relations of various row and column sizes. The figure on the left shows
tables from the raw crawl; the figure on the right shows only the high-quality recovered relations. The most
frequently-seen table in the raw crawl (seen 3.8B times, accounting for 27.32% of all tables) contains a single
cell, and is represented in the left-hand plot by the point at rows=1, cols=1. The right-hand plot shows no
tables with fewer than 2 rows or 2 columns, and many fewer tables in general.

Unlike the HTML forms and calendars listed above, it is
difficult to automatically detect these non-relational types.
Two tables may have identical HTML structure, but only
one may contain good relational data. Nor can traditional
tests for relational well-formedness (e.g., testing whether a
table obeys schema constraints, or testing a schema to see
whether it is in a certain normal form) be applied here. Not
only is there no explicit metadata associated with the ta-
bles, many traditional relational constraints (e.g., foreign
key constraints) make no sense in the web-publishing sce-
nario.

Answering whether a table contains relational data usually
means understanding the table’s data, and thus is unavoid-
ably one of human judgment. So we asked two human judges
to examine a sample of the remaining tables and mark each
as relational or non-relational. As we describe in Section 3.1,
we trained a classifier based on this training set and applied
it to the entire corpus.

The results (in Table 1) show that 1.1% of the original raw
crawl are classified as relational. Thus, our 14B-table crawl
contains roughly 154M high-quality relations. While the
percentage is relatively small, the vast number of tables in
our crawl means that the resulting set of relations is still
enormous.

Figure 2 shows the relative number and sizes of tables in the
crawl. The left-hand image shows the frequency of the raw
HTML tables, and the right-hand image shows the frequency
of the relations filtered from the raw corpus by the trained
classifier.

Table 2 compares a few selected pieces of data from Figure 2.
Note that tables with between 2 and 9 columns make up
55% of the raw corpus, but more than 93% of the recovered
relations; as intuition would suggest, there are relatively few
high-quality relations with a very large number of attributes.

Cols Raw % Recovered %
0 1.06 0
1 42.50 0

2-9 55.00 93.18
10-19 1.24 6.17
20-29 0.19 0.46
30+ 0.02 0.05

Rows Raw % Recovered %
0 0.88 0
1 62.90 0

2-9 33.06 64.07
10-19 1.98 15.83
20-29 0.57 7.61
30+ 0.61 12.49

Table 2: Frequency of tables/relations at selected
sizes, as a percentage of each dataset. Non-relational
tables are filtered out using a combination of hand-
written parsers and a trained classifier.

In contrast, there is a much greater diversity of row counts
among the recovered relations.

3. RELATION RECOVERY
Recovering relations from the raw HTML tables consists
of two steps. First, as described in the previous section,
WebTables attempts to filter out all non-relational tables.
Second, WebTables attempts to recover metadata (in the
form of attribute labels) for the now-filtered relations. Re-
covering the metadata involves a novel technique that uses
an imperfectly-extracted set of schema statistics to improve
accuracy and recall for metadata recovery.

3.1 Relation Filtering

rows
cols

% rows w/mostly NULLS
cols w/non-string data

cell strlen avg. µ
cell strlen stddev. σ

cell strlen µ
σ

(a) Relational Filtering

rows
cols

% cols w/lower-case in row 1
% cols w/punctuation in row 1

% cols w/non-string data in row 1
% cols w/non-string data in body
% cols w/|len(row 1) − µ| > 2σ

% cols w/σ ≤ |len(row 1) − µ| ≤ 2σ
% cols w/σ > |len(row 1) − µ|

(b) Header Detection

Figure 3: Selected features used in relational ranking and header detection. Relational Filtering requires
statistics that help it distinguish relational tables, which tend to contain either non-string data, or string
data with lengths that do not differ greatly. Header detection relies on both syntactic cues in the first row
and differences in data type and string length between the first row and the remainder of each column.

After applying the hand-written filters described above in
Section 2, we can treat relational filtering as a machine learn-
ing classification problem, similar to the work of Wang and
Hu [12]. We asked two human judges to classify a large num-
ber of HTML tables as relational or not. We paired these
classifications with a set of automatically-extracted features
for each table (listed in Figure 3(a)) to form a supervised
training set for a statistical learner. Like Wang and Hu,
our features consider both table layout (e.g., # rows, #
columns, average cell length) and content consistency (e.g.,
columns containing non-string basic datatypes, such as
integer and date).

Because the true set of relations is so large, we will need some
kind of downstream search system even after the WebTa-

bles relational filter has done its work. But only tables that
our classifier declares to be relational will make it to down-
stream systems; good relations that are incorrectly labeled
as non-relational will be lost. So, we tuned the relational
classifier to give very high recall at the cost of lower preci-
sion, trusting that any downstream processor will need to
perform some kind of search in any case.

Our experimental results in Section 4 show that we can
recover the estimated set of 154M relations with accept-
able precision, and with recall that is comparable to other
domain-independent web-data extraction systems. The re-
sulting corpus is roughly five orders of magnitude larger than
the second-largest that we found (emitted by Wang and Hu,
consisting of 1,740 relational tables, generated from a semi-
curated input set).

3.2 Metadata Recovery
Even the correctly-filtered relations still lack formal meta-
data. However, attribute names and types in a good rela-
tion will often be obvious to a human observer (often be-
cause labels are directly embedded in the HTML). WebTa-

bles is only concerned with metadata as far as it consists
of these per-attribute labels. Attribute labels are a fraction
of the metadata that is standard in a traditional relational
database, but much of that either applies only to multiple-
relation databases (e.g., foreign-key constraints) or is too
restrictive for the somewhat-dirty data we expect to recover

(e.g., uniqueness constraints)3. Recovering the metadata is
still quite difficult, even when limited to these labels.

High-quality labels for each column can have a number of
good downstream effects for applications that process WebTa-

bles data. In the context of a relation-search tool, good la-
bels allow relations to appear correctly-rendered on-screen,
labels may improve rank quality, and labels could be help-
ful when applying structured data services (such as XML
export or data visualization). Further, good labels allow
for the very existence of the Attribute Coocurrence Statis-

tics Database, or ACSDb, a collection of statistics about
schema attributes that we can employ in a number of inter-
esting ways (as described in Section 3.3).

There are two cases to consider for meta-data recovery. In
the first case, there is already a “header” row in the table
with column labels. However, this header is difficult to dis-
tinguish, as relations often contain alphabetic string data.
A relational column contains strings either because its in-
tended type really is string, or because the column was in-
tended to have a different type (say, numeric), but includes a
few stray strings as a side-effect of HTML extraction (e.g., a
column might contain a misplaced copyright notice). Based
on a hand-marked sample, we believe that 71% of the true
relations have a header row.

To obtain the metadata contained in header rows, we devel-
oped the Detect classifier that declares whether a relational
header is present or not. Detect uses the features listed in
Table 3(b), trained on more than a thousand hand-marked
samples by two separate judges. The two most heavily-
weighted features for header-detection are the number of
columns and the percentage of columns with non-string data
in the first row.

As we will see in the experimental results in Section 4,
Detect is quite successful at recovering header-embedded
metadata, especially when combined with schema statistics
information that we describe in Section 3.3.

3It is interesting to consider whether we can compute a syn-
thetic title for an extracted relation, but for now we settle
for the title of the HTML page where the relation was found.

The second case covers the remaining 29% of true relations,
where the data is good but there is no header row. In these
cases, we can only hope to synthesize column labels that
make sense. We tested an algorithm called Reference-
Match, which attempted to create synthetic column labels
by matching the contents of an unlabeled column to a sep-
arate dataset where we already know a correct label. For
example, an anonymous column that contains Casablanca,
Vertigo, and other movies may match find a large number of
entries to a preexisting movie database, allowing us to apply
the movie label. Unfortunately, we found extremely few ta-
bles with clean enough string data to match our controlled
database of 6.8M tuples in 849 separate domains. For now,
synthetic schema generation is still an area for future work.

3.3 Schema Statistics
The sheer size of our corpus also enables us to compute the
first large-scale statistical analysis of how attribute names
are used in schemas. We can leverage these statistics in
various ways, including refining the Detect algorithm.

We created an Attribute Cooccurrence Statistics Database,
or ACSDb, using metadata recovered with the Detect al-
gorithm. The ACSDb simply contains counts of how many
times each attribute occurs with other attributes. It allows
us to compute the probability of seeing various attributes
in a schema. For example, p(address) is simply the num-
ber of times that “address” appears in the schema corpus,
divided by the total number of schemas. Each attribute is
a raw string - we do not perform any synonym resolution or
similar preprocessing. We can detect relationships between
attribute names by conditioning an attribute’s probability
on the presence of a second attribute. For example, we can
compute p(address|name) by simply counting the number of
times “address” appears in the same schema as “name” (and
normalizing appropriately). We created an ACSDb with
5.4M unique attribute names and 2.6M unique schemas.

The ACSDb has many applications, as mentioned briefly
above and described in Section 6. One simple application is
to compute a schema coherency score, which we can use to
improve metadata recovery.

We compute the schema coherency score S(R) for relation
R by averaging all the Pointwise Mutual Information (or
PMI) scores for every pair of distinct attributes A and B in
a relation R:

S(R) =
ΣA,B∈R,A6=Blog(p(A,B)

p(A)p(B)
)

|R|(|R| − 1)

PMI is a measure often used in computational linguistics
and web text research, and is designed to give a sense of
how strongly two items are related [5, 4, 11]. PMI will be
large and positive when two variables strongly indicate each
other, zero when two variables are completely independent,
and negative when variables are negatively-correlated. Put
another way, when the joint probability of two attributes is
“surprisingly large” when compared to the product of their
marginal probabilities, the PMI will be high.

For example, our corpus of relations shows that schema at-
tributes“make”and“model”have a high positive PMI, while

true class Precision Recall

relational 0.41 0.81
non-relational 0.98 0.87

Table 3: Test results for filtering true relations from
the raw HTML table corpus.

Detector header? Precision Recall

Detect
has-header 0.79 0.84
no-header 0.65 0.57

Detect-ACSDb
has-header 0.89 0.85
no-header 0.75 0.80

Table 4: Test results for detecting a header row
in true relations. We correctly detect most of the
true headers, but also mistakenly detect headers in
a large number of non-header relations. Incorpo-
rating ACSDb information improves both precision
and recall.

“make” and “zipcode” have a slightly negative one. By tak-
ing an average across all such PMI scores in R, we hope to
reward schemas that have highly-correlated attributes, while
not overly-penalizing relations with just one“bad”attribute.

4. EXPERIMENTAL RESULTS
We now present experimental results for the two main tasks
associated with relation recovery: filtering and metadata
detection.

4.1 Filtering
We asked human judges to classify several thousand HTML
tables as relational or not. We then trained a rule-based clas-
sifier using the extracted features listed in Table 3(a), using
the WEKA package [13]. We cross-validated the trained
classifier by splitting the human-judged data into five parts,
using four parts for training and the fifth for testing. We
trained five different classifiers, rotating the testing set each
time, and averaged performance numbers from the resulting
five tests.

Table 3 shows the results. As mentioned previously, we
tuned the training procedure to favor recall over precision,
trusting that most downstream applications will need to per-
form the relevance-ranking in any case. The rule-based clas-
sifier retains 81% of the truly relational tables, though only
41% of the output is relational. These results mean we retain
about 125M of the 154M relations we believe exist in the raw
crawl, at a cost of sending 271M tables to the WebTables

search indexer. Our filter thus raises the “relational con-
centration” from 1.1% in the raw HTML table corpus up to
41%. Except for the true-relation precision number (which
we tuned to be relatively low), these results are consistent
with other domain-independent extraction systems, such as
KnowItAll and Snowball [5, 1].

4.2 Metadata Recovery
Recovering metadata entails first detecting when there is
a header for the relation, and then generating a synthetic

header when the raw HTML does not give one.

We created two different header-detectors. The first, De-
tect, uses the features from Figure 3(b), as described in
Section 3.2. The second, Detect-ACSDb, also incorpo-
rates data from the ACSDb. We took the filtered output
from the previous stage, and marked a large sample of 1000
relations as either has-header, no-header, or non-relational

(in case of a mistake made by the relational filter). We then
used all of the has-header or no-header relations to train
and test our rule-based classifier, again using five-fold cross-
validation (as above).

Table 4 shows the results. Unlike the relational-filtering
case, there is no obvious recall/precision bias we should im-
pose. Both precision and recall are good for metadata re-
covery, and are consistent with other published extraction
results [5, 1].

5. RELATED WORK
We are not aware of any other effort to extract relational
tables from the Web at a scale similar to WebTables. We
have seen no comparable study of structured data elements
on the Web. A number of authors have studied the problem
of information extraction from a single table, some of which
serve a role similar to that of the WebTables relation fil-
ter [3, 6, 10, 14, 15]. As discussed in Section 3.1, Wang and
Hu detected “true” tables with a classifier and features that
involved both content and layout [12]. This last paper pro-
cessed the most tables, taking as input about 11,000 HTML
tables, and emitting a corpus of 1,740.

The idea of leveraging a corpus of schemas to solve database
schema problems was first considered in [8], which consid-
ered only collections of 40-60 schemas.

6. FUTURE WORK AND CONCLUSIONS
The extracted WebTables table corpus suggests a large
number of interesting applications. In Section 1, we dis-
cussed a structured database search engine and a tool for
performing schema autocomplete. Another possible use of
the schema statistics is automatic attribute synonym com-
putation, for use in schema matching. Users could build
novel datasets by joining and unioning WebTables data.
Another interesting system might automatically compose
multi-table structures with just a single keyword query as
user input. For all of these projects, the vastness of the Web
allows the user to avoid much of the burden associated with
constructing a new relational database. Some of these ideas
describe research that we have already started, while others
are still in the future.

Another important area of future work is increasing the
number of structured datatypes that WebTables processes.
We mentioned several unhandled types in Section 1, includ-
ing the HTML list. HTML lists are often used to display
structured data; each bulleted or numbered entry is a row,
and columns are communicated with punctuation marks or
sometimes simply whitespace. Because column boundaries
must be recovered, lists pose an additional challenge beyond
tables. However, they are so common that list-derived data
would probably be a very useful addition to a WebTables

corpus.

Web-embedded structured data is a huge and largely un-
tapped resource. This paper described a large crawl of
HTML tables, and offered an extraction system that recov-
ered the largest corpus of databases that we know of. It is
the first stage of the WebTables project, which we believe
will yield many interesting and novel applications enabled
by the relational Web.

7. REFERENCES
[1] E. Agichtein, L. Gravano, V. Sokolovna, and

A. Voskoboynik. Snowball: A prototype system for
extracting relations from large text collections. In SIGMOD
Conference, 2001.

[2] M. Cafarella, A. Halevy, D. Wang, E. Wu, and Y. Zhang.
Webtables: Exploring the power of tables on the web. In
VLDB, 2008.

[3] H. Chen, S. Tsai, and J. Tsai. Mining tables from large
scale html texts. In 18th International Conference on
Computational Linguistics (COLING), pages 166–172,
2000.

[4] K. W. Church and P. Hanks. Word association norms,
mutual information, and lexicography. In Proceedings of the
27th Annual Association for Computational Linguistics,
1989.

[5] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu,
T. Shaked, S. Soderland, D. Weld, and A. Yates. Web-scale
information extraction in knowitall (preliminary results). In
Thirteenth International World Wide Web Conference,
2004.

[6] W. Gatterbauer, P. Bohunsky, M. Herzog, B. Krüpl, and
B. Pollak. Towards domain-independent information
extraction from web tables. In Proceedings of the 16th
International World Wide Web Conference (WWW 2007),
pages 71–80, 2007.

[7] B. He, Z. Zhang, and K. C.-C. Chang. Knocking the door
to the deep web: Integration of web query interfaces. In
SIGMOD Conference, pages 913–914, 2004.

[8] J. Madhavan, P. A. Bernstein, A. Doan, and A. Y. Halevy.
Corpus-based schema matching. In ICDE, 2005.

[9] J. Madhavan, A. Y. Halevy, S. Cohen, X. L. Dong, S. R.
Jeffery, D. Ko, and C. Yu. Structured data meets the web:
A few observations. IEEE Data Eng. Bull., 29(4):19–26,
2006.

[10] G. Penn, J. Hu, H. Luo, and R. McDonald. Flexible web
document analysis for delivery to narrow-bandwidth
devices. In International Conference on Document Analysis
and Recognition (ICDAR01), pages 1074–1078, 2001.

[11] P. D. Turney. Mining the web for synonyms: Pmi-ir versus
lsa on toefl. In Proceedings of the Twelfth European
Conference on Machine Learning, 2001.

[12] Y. Wang and J. Hu. A machine learning based approach for
table detection on the web. In Eleventh International
World Wide Web Conference, 2002.

[13] I. Witten and E. Frank. Data Mining: Practical machine
learning tools and techniques. Morgan Kaufman, San
Francisco, 2nd edition edition, 2005.

[14] Y. Yang and W. Luk. A framework for web table mining.
In Proceedings of the 4th International Workshop on Web
Information and Data Management, pages 36–42, 2002.

[15] R. Zanibbi, D. Blostein, and J. Cordy. A survey of table
recognition: Models, observations, transformations, and
inferences, 2003.

