Distributed Systems

Lec 8: Distributed Mutual Exclusion

Slide acks: Dave Andersen
(http://www.cs.cmu.edu/~dga/15-440/F10/lectures/Distributed-Mutual-Exclusion-slides.pdf)

http://www.cs.cmu.edu/~dga/15-440/F10/lectures/Distributed-Mutual-Exclusion-slides.pdf

Congrats on finishing HW 2

* Poll: How hard was it intellectually / coding-wise (ignore time)?

a) Easy
b) Medium
c) Hard Place a dot
where appropriate
* Poll: How was the time budget? for each question

a) Too little time
b) Sufficient time, but | wish | had started earlier
c) Insufficient time

* Poll: How much did you learn?
a) Little
b) Medium
c) Alot

Last Time: Time & Synchronization

* Synchronizing real, distributed clocks
— Why is it hard?
— What are some algorithms? Describe ‘em.

* Logical time
— What is that?
— What are its goals?
— How do Lamport clocks work?
— How to get global ordering for Lamport clocks?

Last Time: Time & Synchronization

* Synchronizing real, distributed clocks
— Why is it hard? Asynchronous, unreliable networks

— What are some algorithms?

* Cristian’s algorithm: request remote time, measure RTT, and
set local time to remote time + RTT/2 for bounded error

* NTP: uses modified Cristian’s algo, but distributes time servers
Into three layers of decreased accuracy

* Logical time
— What Is that?

* Discreet assignment of sequence numbers to events, which
preserve “happens-before” orders

— How do Lamport clocks work?

* Processes increment their clocks upon receiving/sending new
messages and based on other processes' clocks

Today: Distributed Mutual Exclusion

* We'll look at five algorithms (more like seven)
— Centralized algorithm
— Token algorithms
— Distributed algorithms

Today: Distributed Mutual Exclusion

* We'll look at five algorithms (more like seven)
— Centralized algorithm
— Token algorithms
— Distributed algorithms

* A word of warning:
— None of the algorithms is perfect, all have tradeoffs

— S0, don’t expect a natural progression to some “great”
algorithm

— The goal is to understand several algorithms, so you get
used to the idea of distributed algorithms, logical clocks,
voting, etc.

Distributed Mutual Exclusion

* Maintain mutual exclusion among n distributed processes

— Terminology: use process/processor/machine/server/node
to denote the processing unit in a distributed system

Distributed Mutual Exclusion

* Maintain mutual exclusion among n distributed processes

— Terminology: use process/processor/machine/server/node
to denote the processing unit in a distributed system

* Model: Each process executes loop of form:

while true:
Perform local operations
Acquire()
Execute critical section
Release()

Distributed Mutual Exclusion

* Maintain mutual exclusion among n distributed processes

— Terminology: use process/processor/machine/server/node
to denote the processing unit in a distributed system

* Model: Each process executes loop of form:

while true:
Perform local operations
Acquire()
Execute critical section
Release()

* During critical section, process interacts with remote
processes or directly with shared resource

— Example: send a message to a shared file server asking it
to write something to a file

Goals of Distributed Mutual Exclusion

* Much like regular mutual exclusion
— Safety: at most one process holds the lock at any time

— Liveness: progress (if no one holds the lock, a processor
requesting it will get it)
— Fairness: bounded wait and in-order

Goals of Distributed Mutual Exclusion

* Much like regular mutual exclusion
— Safety: at most one process holds the lock at any time

— Liveness: progress (if no one holds the lock, a processor
requesting it will get it)
— Fairness: bounded wait and in-order

ﬁ In logical time

Goals of Distributed Mutual Exclusion

* Much like regular mutual exclusion
— Safety: at most one process holds the lock at any time

— Liveness: progress (if no one holds the lock, a processor
requesting it will get it)
— Fairness: bounded wait and in-order

§ In logical time

* Other goals:
— Minimize message traffic

— Minimize synchronization delay
* Switch quickly between processes waiting for lock

* i.e., if no one has the lock and you ask for it, you should quickly
get it

Distributed Mutual Exclusion Is Different

* Regular mutual exclusion solved using shared state
— E.g., atomic test-and-set of shared variable

 We solve distributed mutual exclusion with
message passing

Distributed Mutual Exclusion Is Different

* Regular mutual exclusion solved using shared state
— E.g., atomic test-and-set of shared variable

 We solve distributed mutual exclusion with
message passing

* Assumptions for this lecture:

— The network is reliable (all messages sent get to their
destinations at some point in time)

— Network is asynchronous (messages may take long time)
— Processes may fail at any time

Distributed Mutual Exclusion Protocols

* Key ideas:
— Before entering critical section, processor must get
permission from other processors

— When exiting critical section, processor must let the
others know that he’s finished

— For fairness, processors allow other processors who
have asked for permission earlier than them to proceed

* We’'ll give examples of five such protocols (+ two
variations)

— We’'ll compare them from a liveness, message
overhead, synchronization delay perspective

Solution 1: Centralized Lock Server

* To enter critical section:
— send REQUEST to central server
— wait for permission from server

e To leave critical section:
— send RELEASE to central server

e Server:

— Has an internal queue of all REQUESTSs it’s received
but to which it hasn’t yet sent OK

— Delays sending OK back to process until process is at
head of queue

— Removes process from the queue after it gets RELEASE

Solution 1: Centralized Lock Server

* Advantages:
— Simple (we like simple!)
— Only 3 messages required per sync session (enter&exit)

* Disadvantages:
— Single point of failure
— Single performance bottleneck

— With an asynchronous network, doesn’t achieve in-order
fairness (even for logical time order)

— Must select (or elect) a central server

Solution 2: A ring-based algorithm

* Pass a token around a ring
— Can enter critical section only if you hold the

token e
* Problems: o .
— Not in-order K /
— Long synchronization delay -~ ®
* Need to wait for up to N-7 messages, for N
processors

— Very unreliable
* Any process failure breaks the ring

2. A fair ring-based algorithm

Token contains the time t of the earliest known
outstanding request

To enter critical section:
— Stamp your request with the current time T, wait for token

When you get token with time t while waiting with
request from time T, compare T, to t:

— If T.=t hold token, run critical section

— If T. > t. pass token

— If tnot setor T, <t: set token-time to T, pass token, wait for

token
To leave critical section:
— Set token-time to null (i.e., unset it), pass token

Solution 3: A shared priority queue

By Lamport, using Lamport clocks

« Each process i locally maintains Q, part
of a shared priority queue

* To run critical section, must have replies
from all other processes AND be at the

front of Q,

— When you have all replies:
#1:. All other processes are aware of your request

#2: You are aware of any earlier requests for the
mutex

Solution 3: A shared priority queue

To enter critical section at process i/ :
— Stamp your request with the current time T
— Add request to Q,
— Broadcast REQUEST(T) to all processes
— Wait for all replies and for T to reach front of Q,

To leave:
— Pop head of Q, Broadcast RELEASE to all processes
On receipt of REQUEST(T’) from process J:

— Add T’to Q,
— If waiting for REPLY from j for an earlier request T, wait until j
replies to you
— Otherwise REPLY This delay
« On receipt of RELEASE enforces

rty #2
— Pop head of Q, Propery

Solution 3: A shared priority queue

Initial state:
t action
11 (start)
2

t

o

42

action Q1-'
(start)

Qy

t action
14 (start)

Solution 3: A shared priority queue

t action Q1.'
Process 3 initiates request: * (start)

Q,: <15,3>
3
t action
t action f i 14 (start)
" (start) 15 request <15,3>

2

o

Solution 3: A shared priority queue

1 & 2 receive and reply

t

42
43
44

action

11
16
17

(start)

recv <15,3>

action Q1.' <15,3>
(start)
recv <15,3>

reply 1 to <15,3>

Q. <15,3>

3

action

t
fi 14

15

reply 2 to <15,3> zi Q,: <15,3>

(start)

request <15,3>

Solution 3: A shared priority queue

t action Q1,' <15,3>
3 gets replies, is on front of ~ * (start)
43 recv <15,3>

queue, can run crit. section:
reply 1 to <15,3>

Q, <15,3>
3
t action
t action 14 (start)
11 (start) 15 request <15,3>
16 recv <15,3> 18 recv reply 2
17 reply 2 to <15,3> QQ-' <15,3> 45 recv reply 1

46 run crit. sec...

Solution 3: A shared priority queue

t action Q1.' <15,3> <45,1>
Processes 1and 2 (start)
N 43 recv <15,3>
concurrently initiate
ts: 44 reply 1 to <15,3>
requeslts.
q 45 request <45,1> Q3.' <15’ 3>
3
t action
t action 14 (start)
11 (start) 15 request <15,3>
16 recv <15,3> 18 recv reply 2
17 | reply 2 to <15,3> Q,: <15,3>, <18,2> 45 recv reply 1
18 request <18,2> 46 run crit. sec...

Solution 3: A shared priority queue

t action Q1.' <15,3>, <45,1>
Process 3 gets requests ~ *° (stary
. 43 recv <15,3>
and replies:
44 reply 1 to <15,3>
45 request <45,1> .
49 recv reply 3 Q3.) 1<54’§>1’>< ! 8’ 2>’
3 J
t action
t action 14 (start)
11 (start) 15 request <15,3>
16 recv <15,3> 18 recv reply 2
17 | reply 2 to <15,3> Q,: <15,3>, <18,2> 45 recv reply 1
18 request <18,2> 46 run crit. sec...
51 recv reply 3 47 recv <45,1>
48 reply 3 to <45,1>
49 recv <18,2>
50 reply 3 to <18,2>

Solution 3: A shared priority queue

t action Q1-' <15,3>, <45,1>
Process 2 gets request ~ * (stert)
43 recv <15,3>
<45,1>, delays reply
) 44 reply 1 to <15,3>
because <18,2>isan <4515
. : request <4, Q. <15,3>, <18,2>
earlier request to which 49 recy reply 3 3 <45 1’> e
Process 1 has not replied 3 ’
t action
t action 14 (start)
11 (start) 15 request <15,3>
16 recv <15,3> 18 recv reply 2
17 reply 2 to <15,3> QQ' <15, 3>, <18, 2>, <45, 1> 45 recv reply 1
18 request <18,2> 46 run crit. sec...
51 recv reply 3 47 recv <45,1>
52 recv <45,1> 48 reply 3 to <45,1>
49 recv <18,2>
50 reply 3 to <18,2>

Solution 3: A shared priority queue

t action Q1.' <15,3> <18,2>,
Process 1 gets request ~ * (stary 451>
. 43 recv <15,3>
<18,2>, replies
44 reply 1 to <15,3>
:z request ‘:531 Q, <15,3>, <18,2>,
recv reply
50 recv <18,2> 3 <45’ >
51 reply 1 to <18,2>
t action
t action 14 (start)
11 (start) 15 request <15,3>
16 recv <15,3> 18 recv reply 2
17 | reply 2 to <15,3> Q,: <15,3>, <18,2>, <45,1> 45 recv reply 1
18 request <18,2> 46 run crit. sec...
51 recv reply 3 47 recv <45,1>
52 recv <45,1> 48 reply 3 to <45,1>
49 recv <18,2>
50 reply 3 to <18,2>

Solution 3: A shared priority queue

t action Q1-' <15,3>, <18,2>,
42 start <45,1>
Process 2 gets reply from (start) ’
. . 43 recv <15,3>
process 1, finally replies to
44 reply 1 to <15,3>
<45’1 > 45 request <45,1>
49 g Q,: <15,3>, <18,2>,
recv reply
3 <45,1>
50 recv <18,2>
51 reply 1 to <18,2>
t action

t action 14 (start)
11 (start) 15 request <15,3>
16 recv <15,3> 18 recv reply 2
17 reply 2 to <15,3> QQ-' <15,3>, <18,2>, <45,1> 45 recv reply 1
18 request <18,2> 46 run crit. sec...
51 recv reply 3 47 recv <45,1>
52 recv <45,1> 48 | reply 3 to <45,1>
53 recv reply 1 49 recv <18,2>
54 reply 2 to <45,1> 50 reply 3 to <18,2>

Solution 3: A shared priority queue

Advantages:

— Fair

— Short synchronization delay
Disadvantages:

— Very unreliable
* Any process failure halts progress

— 3(N-1) messages per entry/exit

Solution 4: Ricart and Agrawala

* An improved version of Lamport's shared
priority queue
— Combines function of REPLY and RELEASE
MesSages
* Delay REPLY to any requests later than
your own

— Send all delayed replies after you exit your
critical section

Solution 4: Ricart and Agrawala

* To enter critical section at process i :

— Same as Lamport’s algorithm

 Except you don’t need to reach the front of Q, to run your
critical section: you just need all replies

* To leave:
— Broadcast REPLY to all processes in Q,
— Empty Q.

* On receipt of REQUEST(T):

— If waiting for (or in) critical section for an earlier
request T, add T'to Q,

— Otherwise REPLY immediately

Ricart and Agrawala safety

* Suppose request T, is earlier than T..
Consider how the process for T, collects
its reply from process for T

— I', must have already been time-stamped
when request T, was received, otherwise the
Lamport clock would have been advanced
past time T,

— But then the process must have delayed reply
to T, until after request T, exited the critical
section. Therefore T, will not conflict with T..

Solution 4: Ricart and Agrawala

* Advantages:
— Fair
— Short synchronization delay
— Better than Lamport’s algorithm

* Disadvantages
— Very unreliable
— 2(N-1) messages for each entry/exit

Solution 5: Majority rules

* Instead of collecting REPLYs, collect
VOTEs

— Each process VOTEs for which process can
hold the mutex

— Each process can only VOTE once at any
given time

— You hold the mutex if you have a majority of
the VOTEs

* Only possible for one process to have a majority at
any given time!

Solution 5: Majority rules

To enter critical section at process /:
— Broadcast REQUEST(T), collect VOTEs
— Can enter crit. sec. if collect a majority of VOTEs

To leave:

— Broadcast RELEASE-VOTE to all processes who
VOTEd for you

On receipt of REQUEST(T’) from process J:

— If you have not VOTEd, VOTE for T’
 Otherwise, add T’ to Q,

On receipt of RELEASE-VOTE:
— If Q; not empty, VOTE for pop(Q))

Solution 5: Majority rules

* Advantages:
— Can progress with as many as N/2 — 1 failed
processes
* Disadvantages:
— Not fair

— Deadlock!

* No guarantee that anyone receives a majority of
votes

Solution 5’: Dealing with deadlock

* Allow processes to ask for their vote back

— If already VOTEd for T"and get a request for
an earlier request T, RESCIND-VOTE for T’

— If receive RESCIND-VOTE request and not in
critical section, RELEASE-VOTE and re-
REQUEST

« Guarantees that some process will
eventually get a majority of VOTEs

o Still not fair...

Algorithm Comparison

Algorithm Messages per Synchronization Liveness
entrylexit delay (in RTTSs)
Central 3 1 RTT Bad: coordinator crash
server prevents progress
Token N <=sum(RTTs)/2 Horrible: any process’
ring failure prevents progress
Lamport 3*(N-1) max(RTT) across Horrible: any process’
processes failure prevents progress
Ricart & 2*(N-1) max(RTT) across Horrible: any process’
Agrawal processes failure prevents progress
Voting >= 2*(N-1) max(RTT) between Great: can tolerate up to
(might have the fastest N/2+1 N/2-1 failures

vote recalls, too) processes

/

You want the lock; no one else
has it; how long till you get it?

So, Who WIns?

* Well, none of the algorithms we’ve looked at thus far

e But the closest one to industrial standards is...

So, Who WIns?

* Well, none of the algorithms we’ve looked at thus far

e But the closest one to industrial standards is...

— The centralized model (e.g., Google’s Chubby, Yahoo's
ZooKeeper)

So, Who WIns?

* Well, none of the algorithms we’ve looked at thus far

e But the closest one to industrial standards is...

— The centralized model (e.g., Google’s Chubby, Yahoo's
ZooKeeper)

— But replicate it for fault-tolerance across a few machines

— Replicas coordinate closely via mechanisms similar to
the ones we’ve shown for the distributed algorithms (e.g.,
voting) — we’ll talk later about generalized voting alg.

— For manageable load, app writers must avoid using the
centralized lock service as much as humanly possible!

Take-Aways

Lamport algorithm demonstrates how distributed
processes can maintain consistent replicas of a data
structure (the priority queue)!

Lamport and Ricart & Agrawala’s algorithms
demonstrate utility of logical clocks

If you build your distributed system wrong, then you
get worse properties from distribution than if you didn’t
distribute at all

None of these algorithms can tolerate dropped
messages

Clarification for Last Lecture:
The NTP Protocol

* Uses a hierarchy of time servers

* Synchronization similar to Cristian’s alg.

— Modified to use multiple one-way messages instead of
Immediate round-trip

T
.
request tiry \
N
1 t2
\ }

sender

receiver t set time to T+d/2

|
d

Clarification for Last Lecture:
The NTP Protocol

* Uses a hierarchy of time servers

* Synchronization similar to Cristian’s alg.

— Modified to use multiple one-way messages instead of
Immediate round-trip

-
sender
request tiry T
receiver = set time to T+d/2
tl t2

\ }

Clarification for Last Lecture:
The NTP Protocol

* Uses a hierarchy of time servers

* Synchronization similar to Cristian’s alg.

— Modified to use multiple one-way messages instead of
Immediate round-trip 1

sender

request tlry \1 To
receiver

set time to T2+(d—d1)/2

	Distributed Systems [Fall 2012] [W4995-2]
	Any Questions for Lab 1?
	Last Time: Time & Synchronization
	Slide 4
	Today: Distributed Mutual Exclusion
	Slide 6
	Distributed Mutual Exclusion
	Slide 8
	Slide 9
	Goals of Distributed Mutual Exclusion
	Slide 11
	Slide 12
	Distributed Mutual Exclusion Is Different
	Slide 14
	Distributed Mutual Exclusion Protocols
	Solution 1: Centralized Lock Server
	Slide 17
	Distributed Mutual Exclusion
	Last time…
	Goals of distributed mutual exclusion
	Distributed mutex is different
	Solution 1: A central mutex server
	Solution 1: A central mutex server
	Solution 2: A ring-based algorithm
	2’: A fair ring-based algorithm
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 4: Ricart and Agrawala
	Solution 4: Ricart and Agrawala
	Ricart and Agrawala safety
	Solution 4: Ricart and Agrawala
	Solution 5: Majority rules
	Solution 5: Majority rules
	Solution 5: Majority rules
	Solution 5’: Dealing with deadlock
	Solution 6: Maekawa voting
	Solution 6: Maekawa voting
	Algorithm Comparison
	So, Who Wins?
	Slide 21
	Slide 22
	Take-Aways
	Clarification for Last Lecture: The NTP Protocol
	Slide 25
	Slide 26

