
Distributed Systems

Lec 8: Distributed Mutual Exclusion

Slide acks: Dave Andersen

(http://www.cs.cmu.edu/~dga/15-440/F10/lectures/Distributed-Mutual-Exclusion-slides.pdf)

http://www.cs.cmu.edu/~dga/15-440/F10/lectures/Distributed-Mutual-Exclusion-slides.pdf

Congrats on finishing HW 2

• Poll: How hard was it intellectually / coding-wise (ignore time)?

a) Easy

b) Medium

c) Hard

• Poll: How was the time budget?

a) Too little time

b) Sufficient time, but I wish I had started earlier

c) Insufficient time

● Poll: How much did you learn?

a) Little

b) Medium

c) A lot

Place a dot

where appropriate

for each question

Last Time: Time & Synchronization

• Synchronizing real, distributed clocks

– Why is it hard?

– What are some algorithms? Describe ‘em.

• Logical time

– What is that?

– What are its goals?

– How do Lamport clocks work?

– How to get global ordering for Lamport clocks?

Last Time: Time & Synchronization

• Synchronizing real, distributed clocks

– Why is it hard? Asynchronous, unreliable networks

– What are some algorithms?

• Cristian’s algorithm: request remote time, measure RTT, and

set local time to remote time + RTT/2 for bounded error

• NTP: uses modified Cristian’s algo, but distributes time servers

into three layers of decreased accuracy

• Logical time

– What is that?

• Discreet assignment of sequence numbers to events, which

preserve “happens-before” orders

– How do Lamport clocks work?

• Processes increment their clocks upon receiving/sending new

messages and based on other processes' clocks

Today: Distributed Mutual Exclusion

• We’ll look at five algorithms (more like seven)

– Centralized algorithm

– Token algorithms

– Distributed algorithms

Today: Distributed Mutual Exclusion

• We’ll look at five algorithms (more like seven)

– Centralized algorithm

– Token algorithms

– Distributed algorithms

• A word of warning:

– None of the algorithms is perfect, all have tradeoffs

– So, don’t expect a natural progression to some “great”

algorithm

– The goal is to understand several algorithms, so you get

used to the idea of distributed algorithms, logical clocks,

voting, etc.

Distributed Mutual Exclusion

• Maintain mutual exclusion among n distributed processes

– Terminology: use process/processor/machine/server/node

to denote the processing unit in a distributed system

Distributed Mutual Exclusion

• Maintain mutual exclusion among n distributed processes

– Terminology: use process/processor/machine/server/node

to denote the processing unit in a distributed system

• Model: Each process executes loop of form:

while true:

 Perform local operations

 Acquire()

 Execute critical section

 Release()

Distributed Mutual Exclusion

• Maintain mutual exclusion among n distributed processes

– Terminology: use process/processor/machine/server/node

to denote the processing unit in a distributed system

• Model: Each process executes loop of form:

• During critical section, process interacts with remote

processes or directly with shared resource

– Example: send a message to a shared file server asking it

to write something to a file

while true:

 Perform local operations

 Acquire()

 Execute critical section

 Release()

Goals of Distributed Mutual Exclusion

• Much like regular mutual exclusion

– Safety: at most one process holds the lock at any time

– Liveness: progress (if no one holds the lock, a processor

requesting it will get it)

– Fairness: bounded wait and in-order

Goals of Distributed Mutual Exclusion

• Much like regular mutual exclusion

– Safety: at most one process holds the lock at any time

– Liveness: progress (if no one holds the lock, a processor

requesting it will get it)

– Fairness: bounded wait and in-order

in logical time

Goals of Distributed Mutual Exclusion

• Much like regular mutual exclusion

– Safety: at most one process holds the lock at any time

– Liveness: progress (if no one holds the lock, a processor

requesting it will get it)

– Fairness: bounded wait and in-order

• Other goals:

– Minimize message traffic

– Minimize synchronization delay

• Switch quickly between processes waiting for lock

• i.e., if no one has the lock and you ask for it, you should quickly

get it

in logical time

Distributed Mutual Exclusion Is Different

• Regular mutual exclusion solved using shared state

– E.g., atomic test-and-set of shared variable

• We solve distributed mutual exclusion with

message passing

Distributed Mutual Exclusion Is Different

• Regular mutual exclusion solved using shared state

– E.g., atomic test-and-set of shared variable

• We solve distributed mutual exclusion with

message passing

• Assumptions for this lecture:

– The network is reliable (all messages sent get to their

destinations at some point in time)

– Network is asynchronous (messages may take long time)

– Processes may fail at any time

Distributed Mutual Exclusion Protocols

• Key ideas:

– Before entering critical section, processor must get

permission from other processors

– When exiting critical section, processor must let the

others know that he’s finished

– For fairness, processors allow other processors who

have asked for permission earlier than them to proceed

• We’ll give examples of five such protocols (+ two

variations)

– We’ll compare them from a liveness, message

overhead, synchronization delay perspective

Solution 1: Centralized Lock Server

• To enter critical section:

– send REQUEST to central server

– wait for permission from server

• To leave critical section:

– send RELEASE to central server

• Server:

– Has an internal queue of all REQUESTs it’s received

but to which it hasn’t yet sent OK

– Delays sending OK back to process until process is at

head of queue

– Removes process from the queue after it gets RELEASE

Solution 1: Centralized Lock Server

• Advantages:

– Simple (we like simple!)

– Only 3 messages required per sync session (enter&exit)

• Disadvantages:

– Single point of failure

– Single performance bottleneck

– With an asynchronous network, doesn’t achieve in-order

fairness (even for logical time order)

– Must select (or elect) a central server

Solution 2: A ring-based algorithm

�

Pass a token around a ring

–

Can enter critical section only if you hold the
token

�

Problems:

–

Not in-order

–

Long synchronization delay
�

Need to wait for up to N-1

messages, for N

 processors

–

Very unreliable
�

Any process failure breaks the ring

2’: A fair ring-based algorithm

�

Token contains the time t

of the earliest known
outstanding request

�

To enter critical section:
–

Stamp your request with the current time Tr

, wait for token

�

When you get token with time t

while waiting with
request from time Tr

, compare Tr

to t:
–

If Tr

= t: hold token, run critical section

–

If Tr

> t: pass token

–

If t

not set or Tr

< t: set token-time to Tr

, pass token, wait for
token

�

To leave critical section:
–

Set token-time to null (i.e., unset it), pass token

Solution 3: A shared priority queue

�

By Lamport, using Lamport

clocks

�

Each process i

locally maintains Q

i

, part
of a shared priority queue

�

To run critical section, must have replies
from all other processes AND be at the
front of Q

i

–

When you have all replies:
#1: All other processes are aware of your request

#2: You are aware of any earlier requests for the
mutex

Solution 3: A shared priority queue

�

To enter critical section at process i

:
–

Stamp your request with the current time T

–

Add request to Qi

–

Broadcast REQUEST(T) to all processes

–

Wait for all replies and for T

to reach front of Qi

�

To leave:
–

Pop head of Qi

, Broadcast RELEASE to all processes

�

On receipt of REQUEST(T’) from process j:
–

Add T’

to Qi

–

If waiting for REPLY from j

for an earlier request T, wait until j

replies to you

–

Otherwise REPLY

�

On receipt of RELEASE
–

Pop head of Qi

This delay
enforces
property #2

Solution 3: A shared priority queue

Initial state:

t action

42 (start)

t action

11 (start)

t action

14 (start)

1
Q1

:

2

3

Q2

:

Q3

:

Solution 3: A shared priority queue

Process 3 initiates request:

t action

42 (start)

t action

11 (start)

t action

14 (start)

15 request <15,3>

1
Q1

:

2

3

Q2

:

Q3

: <15,3>

Solution 3: A shared priority queue

1 & 2 receive and reply

t action

42 (start)

43 recv

<15,3>

44 reply 1 to <15,3>

t action

11 (start)

16 recv

<15,3>

17 reply 2 to <15,3>

t action

14 (start)

15 request <15,3>

1
Q1

: <15,3>

2

3

Q2

: <15,3>

Q3

: <15,3>

Solution 3: A shared priority queue

3 gets replies, is on front of

queue, can run crit. section:

t action

42 (start)

43 recv

<15,3>

44 reply 1 to <15,3>

t action

11 (start)

16 recv

<15,3>

17 reply 2 to <15,3>

t action

14 (start)

15 request <15,3>

18 recv

reply 2

45 recv

reply 1

46 run crit. sec…

1
Q1

: <15,3>

2

3

Q2

: <15,3>

Q3

: <15,3>

Solution 3: A shared priority queue

Processes 1 and 2

concurrently initiate

requests:

t action

42 (start)

43 recv

<15,3>

44 reply 1 to <15,3>

45 request <45,1>

t action

11 (start)

16 recv

<15,3>

17 reply 2 to <15,3>

18 request <18,2>

t action

14 (start)

15 request <15,3>

18 recv

reply 2

45 recv

reply 1

46 run crit. sec…

1
Q1

: <15,3>, <45,1>

2

3

Q2

: <15,3>, <18,2>

Q3

: <15,3>

Solution 3: A shared priority queue

Process 3 gets requests

and replies:

t action

42 (start)

43 recv

<15,3>

44 reply 1 to <15,3>

45 request <45,1>

49 recv

reply 3

t action

11 (start)

16 recv

<15,3>

17 reply 2 to <15,3>

18 request <18,2>

51 recv

reply 3

t action

14 (start)

15 request <15,3>

18 recv

reply 2

45 recv

reply 1

46 run crit. sec…

47 recv

<45,1>

48 reply 3 to <45,1>

49 recv

<18,2>

50 reply 3 to <18,2>

1
Q1

: <15,3>, <45,1>

2

3

Q2

: <15,3>, <18,2>

Q3

: <15,3>, <18,2>,

<45,1>

Solution 3: A shared priority queue

Process 2 gets request

<45,1>, delays reply

because <18,2> is an

earlier request to which

Process 1 has not replied

t action

42 (start)

43 recv

<15,3>

44 reply 1 to <15,3>

45 request <45,1>

49 recv

reply 3

t action

11 (start)

16 recv

<15,3>

17 reply 2 to <15,3>

18 request <18,2>

51 recv

reply 3

52 recv

<45,1>

t action

14 (start)

15 request <15,3>

18 recv

reply 2

45 recv

reply 1

46 run crit. sec…

47 recv

<45,1>

48 reply 3 to <45,1>

49 recv

<18,2>

50 reply 3 to <18,2>

1
Q1

: <15,3>, <45,1>

2

3

Q2

: <15,3>, <18,2>, <45,1>

Q3

: <15,3>, <18,2>,

<45,1>

Solution 3: A shared priority queue

Process 1 gets request

<18,2>, replies

t action

42 (start)

43 recv

<15,3>

44 reply 1 to <15,3>

45 request <45,1>

49 recv

reply 3

50 recv

<18,2>

51 reply 1 to <18,2>

t action

11 (start)

16 recv

<15,3>

17 reply 2 to <15,3>

18 request <18,2>

51 recv

reply 3

52 recv

<45,1>

t action

14 (start)

15 request <15,3>

18 recv

reply 2

45 recv

reply 1

46 run crit. sec…

47 recv

<45,1>

48 reply 3 to <45,1>

49 recv

<18,2>

50 reply 3 to <18,2>

1
Q1

: <15,3>, <18,2>,

<45,1>

2

3

Q2

: <15,3>, <18,2>, <45,1>

Q3

: <15,3>, <18,2>,

<45,1>

Solution 3: A shared priority queue

Process 2 gets reply from

process 1, finally replies to

<45,1>

t action

42 (start)

43 recv

<15,3>

44 reply 1 to <15,3>

45 request <45,1>

49 recv

reply 3

50 recv

<18,2>

51 reply 1 to <18,2>

t action

11 (start)

16 recv

<15,3>

17 reply 2 to <15,3>

18 request <18,2>

51 recv

reply 3

52 recv

<45,1>

53 recv

reply 1

54 reply 2 to <45,1>

t action

14 (start)

15 request <15,3>

18 recv

reply 2

45 recv

reply 1

46 run crit. sec…

47 recv

<45,1>

48 reply 3 to <45,1>

49 recv

<18,2>

50 reply 3 to <18,2>

1
Q1

: <15,3>, <18,2>,

<45,1>

2

3

Q2

: <15,3>, <18,2>, <45,1>

Q3

: <15,3>, <18,2>,

<45,1>

Solution 3: A shared priority queue

�

Advantages:

–

Fair

–

Short synchronization delay

�

Disadvantages:

–

Very unreliable

�

Any process failure halts progress

–

3(N-1)

messages per entry/exit

Solution 4: Ricart

and Agrawala

�

An improved version of Lamport’s

shared

priority queue

–

Combines function of REPLY and RELEASE

messages

�

Delay REPLY to any requests later than

your own

–

Send all delayed replies after you exit your

critical section

Solution 4: Ricart

and Agrawala

�

To enter critical section at process i

:
–

Same as Lamport’s

algorithm
�

Except you don’t need to reach the front of Qi

to run your
critical section: you just need all replies

�

To leave:
–

Broadcast REPLY to all processes in Qi

–

Empty Qi

�

On receipt of REQUEST(T’):
–

If waiting for (or in) critical section for an earlier
request T, add T’

to Qi

–

Otherwise REPLY immediately

Ricart

and Agrawala

safety

�

Suppose request T
1

is earlier than T
2

.
Consider how the process for T

2

collects
its reply from process for T

1

:

–

T1

must have already been time-stamped
when request T2

was received, otherwise the
Lamport

clock would have been advanced
past time T2

–

But then the process must have delayed reply
to T2

until after request T1

exited the critical
section. Therefore T2

will not conflict with T1

.

Solution 4: Ricart

and Agrawala

�

Advantages:

–

Fair

–

Short synchronization delay

–

Better than Lamport’s

algorithm

�

Disadvantages

–

Very unreliable

–

2(N-1)

messages for each entry/exit

Solution 5: Majority rules

�

Instead of collecting REPLYs, collect
VOTEs

–

Each process VOTEs

for which process can
hold the mutex

–

Each process can only VOTE once at any
given time

–

You hold the mutex

if you have a majority of
the VOTEs

�

Only possible for one process to have a majority at
any given time!

Solution 5: Majority rules

�

To enter critical section at process i

:
–

Broadcast REQUEST(T), collect VOTEs

–

Can enter crit. sec. if collect a majority of VOTEs

�

To leave:
–

Broadcast RELEASE-VOTE to all processes who
VOTEd

for you

�

On receipt of REQUEST(T’) from process j:
–

If you have not VOTEd, VOTE for T’
�

Otherwise, add T’

to Qi

�

On receipt of RELEASE-VOTE:
–

If Qi

not empty, VOTE for pop(Qi

)

Solution 5: Majority rules

�

Advantages:

–

Can progress with as many as N/2 –

1

failed

processes

�

Disadvantages:

–

Not fair

–

Deadlock!

�

No guarantee that anyone receives a majority of

votes

Solution 5’: Dealing with deadlock

�

Allow processes to ask for their vote back

–

If already VOTEd

for T’

and get a request for
an earlier request T, RESCIND-VOTE for T’

–

If receive RESCIND-VOTE request and not in
critical section, RELEASE-VOTE and re-

 REQUEST

�

Guarantees that some process will
eventually get a majority of VOTEs

�

Still not fair…

Algorithm Comparison

Algorithm Messages per
entry/exit

Synchronization
delay (in RTTs)

Liveness

Central
server

3 1 RTT Bad: coordinator crash
prevents progress

Token
ring

N <= sum(RTTs)/2 Horrible: any process’
failure prevents progress

Lamport 3*(N-1) max(RTT) across
processes

Horrible: any process’
failure prevents progress

Ricart &
Agrawal

2*(N-1) max(RTT) across
processes

Horrible: any process’
failure prevents progress

Voting >= 2*(N-1)
 (might have
vote recalls, too)

max(RTT) between
the fastest N/2+1
processes

Great: can tolerate up to
N/2-1 failures

You want the lock; no one else

has it; how long till you get it?

So, Who Wins?

• Well, none of the algorithms we’ve looked at thus far

• But the closest one to industrial standards is…

So, Who Wins?

• Well, none of the algorithms we’ve looked at thus far

• But the closest one to industrial standards is…

– The centralized model (e.g., Google’s Chubby, Yahoo’s

ZooKeeper)

So, Who Wins?

• Well, none of the algorithms we’ve looked at thus far

• But the closest one to industrial standards is…

– The centralized model (e.g., Google’s Chubby, Yahoo’s

ZooKeeper)

– But replicate it for fault-tolerance across a few machines

– Replicas coordinate closely via mechanisms similar to

the ones we’ve shown for the distributed algorithms (e.g.,

voting) – we’ll talk later about generalized voting alg.

– For manageable load, app writers must avoid using the

centralized lock service as much as humanly possible!

Take-Aways

• Lamport algorithm demonstrates how distributed

processes can maintain consistent replicas of a data

structure (the priority queue)!

• Lamport and Ricart & Agrawala’s algorithms

demonstrate utility of logical clocks

• If you build your distributed system wrong, then you

get worse properties from distribution than if you didn’t

distribute at all

• None of these algorithms can tolerate dropped

messages

Clarification for Last Lecture:

The NTP Protocol

• Uses a hierarchy of time servers

• Synchronization similar to Cristian’s alg.

– Modified to use multiple one-way messages instead of

immediate round-trip

set time to T+d/2

sender

receiver
t1 t2

T

d

request time T

Clarification for Last Lecture:

The NTP Protocol

• Uses a hierarchy of time servers

• Synchronization similar to Cristian’s alg.

– Modified to use multiple one-way messages instead of

immediate round-trip

set time to T+d/2

sender

receiver
t1 t2

T

d

request time T

Clarification for Last Lecture:

The NTP Protocol

• Uses a hierarchy of time servers

• Synchronization similar to Cristian’s alg.

– Modified to use multiple one-way messages instead of

immediate round-trip

set time to T2+(d–d1)/2

sender

receiver
t1 t2

T1

request time T1,T2

T2

d

d1

	Distributed Systems [Fall 2012] [W4995-2]
	Any Questions for Lab 1?
	Last Time: Time & Synchronization
	Slide 4
	Today: Distributed Mutual Exclusion
	Slide 6
	Distributed Mutual Exclusion
	Slide 8
	Slide 9
	Goals of Distributed Mutual Exclusion
	Slide 11
	Slide 12
	Distributed Mutual Exclusion Is Different
	Slide 14
	Distributed Mutual Exclusion Protocols
	Solution 1: Centralized Lock Server
	Slide 17
	Distributed Mutual Exclusion
	Last time…
	Goals of distributed mutual exclusion
	Distributed mutex is different
	Solution 1: A central mutex server
	Solution 1: A central mutex server
	Solution 2: A ring-based algorithm
	2’: A fair ring-based algorithm
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 3: A shared priority queue
	Solution 4: Ricart and Agrawala
	Solution 4: Ricart and Agrawala
	Ricart and Agrawala safety
	Solution 4: Ricart and Agrawala
	Solution 5: Majority rules
	Solution 5: Majority rules
	Solution 5: Majority rules
	Solution 5’: Dealing with deadlock
	Solution 6: Maekawa voting
	Solution 6: Maekawa voting
	Algorithm Comparison
	So, Who Wins?
	Slide 21
	Slide 22
	Take-Aways
	Clarification for Last Lecture: The NTP Protocol
	Slide 25
	Slide 26

