
Distributed Systems 

[Fall 2013]

Lec 7: Time and Synchronization

Slide acks: Dave Andersen, Randy Bryant

(http://www.cs.cmu.edu/~dga/15-440/F11/lectures/09-time+synch.pdf)
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Any Questions for HW 2?

• Deadline is tomorrow before midnight!

• Poll: Where are you on HW 2?

a) Largely done with both parts (maybe some testing left)

b) Largely done with first part

c) Done with neither part
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Today’s outline

• Distributed time

– A baseball example

• Synchronizing real clocks

– Cristian’s algorithm

– The Berkeley Algorithm

– Network Time Protocol (NTP)

• Logical time

– Lamport logical clocks

– Vector clocks
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Distributed Time

• The notion of time is well-defined (and measurable) at 

each single location

• But the relationship between time at different locations 

is unclear

– Can minimize discrepancies, but never eliminate them

• Examples:

– If two file servers get different update requests to same 

file, what should be the order of those requests?

– Did the runner get to home base before the pitcher was 

eliminated?
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A Baseball Example

• Four locations:  pitcher’s mound (P), home plate, first 
base, and third base

• Ten events:
e

1
:   pitcher (P) throws ball toward home

e
2
:   ball arrives at home

e
3
:   batter (B) hits ball toward pitcher

e
4
:   batter runs toward first base

e
5
:   runner runs toward home

e
6
:   ball arrives at pitcher

e
7
:   pitcher throws ball toward first base

e
8
:   runner arrives at home

e
9
:   ball arrives at first base

e
10
:  batter arrives at first base

home plate

1st base

2nd base

3rd base

R

B

P
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A Baseball Example

• Pitcher knows e
1
 happens before e

6
, which happens 

before e
7

• Home plate umpire knows e
2
 is before e

3
, which is 

before e
4
, which is before e

8
, …

• Relationship between e
8
 and e

9
 is unclear
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Ways to Synchronize

• Send message from first base to home when ball 
arrives?

– Or both home and first base send messages to a central 
timekeeper when runner/ball arrives

– But: How long does this message take to arrive?

• Synchronize clocks before the game?

– Clocks drift
• One-in-a-million drifting => 1 second in 11 days

• Synchronize clocks continuously during the game?

– E.g.: NTP, GPS, etc.

– But how do these work?
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Real-Clock Synchronization

• Suppose I want to synchronize the clocks on two 

machines (M1 and M2)

• One solution:

– M1 (sender) sends its own time T in message to M2

– M2 (receiver) sets its time according to the message

– But what time should M2 set?
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Perfect Networks

• Messages always arrive, with propagation                   

delay exactly d

• Sender sends time T in a message

• Receiver sets clock to T+d 

– Synchronization is exact
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Synchronous Networks

• Messages always arrive, with propagation                    

delay at most D

• Sender sends time T in a message

• Receiver sets clock to T + D/2
– Synchronization error is at most D/2
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Synchronization in the Real World

• Real networks are asynchronous

– Propagation delays are arbitrary

• Real networks are unreliable

– Messages don’t always arrive
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Cristian’s Algorithm

• Request time, get reply

– Measure actual round-trip time d

• Sender’s time was T between t1 and t2

• Receiver sets time to T + d/2
– Synchronization error is at most d/2

• Can retry until we get a relatively small d
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The Berkeley Algorithm

• In Cristian’s algorithm, how does sender know the 

“right” time?

• Master uses Cristian’s algorithm to gather time from 

many clients

– Computes average time

– Discards outliers

• Sends time adjustments back to all clients
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The Network Time Protocol (NTP)

• Uses a hierarchy of time servers

– Class 1 servers have accurate (and expensive) clocks

• connected directly to atomic clocks or GPS receivers

– Class 2 servers get time from Class 1 and Class 2 servers

– Class 3 servers get time from any server

– Client machines (e.g., your smartphones, laptops, 

desktops, or server machines) synchronize w/ time servers

• Synchronization similar to Cristian’s alg.

• Accuracy: Local ~1ms, Global ~10ms

14



Real Synchronization Is Imperfect

• Clocks are never exactly synchronized

• Often inadequate for distributed systems

– Might need totally-ordered events

• But, more often than not, distributed systems do not 

need real time, but some time that every machine in a 

protocol agrees upon!

– E.g.: suppose file servers S1 and S2 receive two update 

requests, W1 and W2, for file F

– They need to apply W1 and W2 in the same order, but 

they may not really care precisely which order…
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Logical Time

• Capture just the “happens before” relationship 

between events

– Discard the infinitesimal granularity of time

– Corresponds roughly to causality

• Time at each process is well-defined

– Definition (→i):  We say e →i e’ if e happens before e’ at 

process i
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Global Logical Time

• Definition (→):  We define e → e’ using the following 

rules:

– Local ordering:  e → e’ if e →
i
 e’ for any process i

– Messages:  send(m) → receive(m) for any message m
– Transitivity:  e → e’’ if e → e’ and e’ → e’’

• We say e “happens before” e’ if e → e’
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Concurrency

• → is only a partial-order

– Some events are unrelated

• Definition (concurrency):  We say e is concurrent with 

e’ (written e║e’) if neither e → e’ nor e’ → e
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Back to Baseball

e
1
:   pitcher (P) throws ball toward home

e
2
:   ball arrives at home

e
3
:   batter (B) hits ball toward pitcher

e
4
:   batter runs toward first base

e
5
:   runner runs toward home

e
6
:   ball arrives at pitcher

e
7
:   pitcher throws ball toward first base

e
8
:   runner arrives at home

e
9
:   ball arrives at first base

e
10
:  batter arrives at first base
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The Baseball Example Revisited

• e1 → e2

– by the message rule

• e1 → e10, because

– e1 → e2, by the message rule

– e2 → e4, by local ordering at home plate

– e4 → e10, by the message rule

– Repeated transitivity of the above relations

• e8║e9, because

– No application of the → rules yields either e8 → e9 or    e9 
→ e8 20



Lamport Logical Clocks

• Lamport clock L assigns logical timestamps to 
events consistent with “happens before” ordering
– If e → e’, then L(e) < L(e’)

• But not the converse
– L(e) < L(e’) does not imply e → e’

• Similar rules for concurrency
– L(e) = L(e’) implies e║e’ (for distinct e,e’)
– e║e’ does not imply L(e) = L(e’)

• I.e., Lamport clocks arbitrarily order some 
concurrent events 21



Lamport’s Algorithm

• Each process i keeps a local clock, Li

• Three rules:
1. At process i, increment Li before each event

2. To send a message m at process i, apply rule 1 and 
then include the current local time in the message:  
i.e., send(m,Li)

3. When receiving a message (m,t) at process j, set Lj = 
max(Lj,t) and then apply rule 1 before time-stamping 

the receive event

• The global time L(e) of an event e is just its local 
time

– For an event e at process i, L(e) = Li(e) 22



Lamport on the baseball example

• Initializing each local clock to 0, we get
L(e1) = 1 (pitcher throws ball to home)

L(e2) = 2 (ball arrives at home)

L(e3) = 3 (batter hits ball to pitcher)

L(e4) = 4 (batter runs to first base)

L(e5) = 1 (runner runs to home)

L(e6) = 4 (ball arrives at pitcher)

L(e7) = 5 (pitcher throws ball to first base)

L(e8) = 5 (runner arrives at home)

L(e9) = 6 (ball arrives at first base)

L(e10) = 7 (batter arrives at first base)

• For our example, Lamport’s algorithm says that 
the run scores!
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Total-order Lamport Clocks

• Many systems require a total-ordering of events, not a 

partial-ordering

• Use Lamport’s algorithm, but break ties using the 

process ID

– L(e) = M * Li(e) + i
• M = maximum number of processes
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Important Points

• Physical Clocks

– Can keep closely synchronized, but never perfect

• Logical Clocks

– Encode causality relationship

– Lamport clocks provide only one-way encoding
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