Distributed Systems [Fall 2013]

Lec 7: Time and Synchronization

Slide acks: Dave Andersen, Randy Bryant (http://www.cs.cmu.edu/~dga/15-440/F11/lectures/09-time+synch.pdf)

Any Questions for HW 2?

- Deadline is tomorrow before midnight!
- Poll: Where are you on HW 2?
a) Largely done with both parts (maybe some testing left)
b) Largely done with first part
c) Done with neither part

Today's outline

- Distributed time
- A baseball example
- Synchronizing real clocks
- Cristian's algorithm
- The Berkeley Algorithm
- Network Time Protocol (NTP)
- Logical time
- Lamport logical clocks
- Vector clocks

Distributed Time

- The notion of time is well-defined (and measurable) at each single location
- But the relationship between time at different locations is unclear
- Can minimize discrepancies, but never eliminate them
- Examples:
- If two file servers get different update requests to same file, what should be the order of those requests?
- Did the runner get to home base before the pitcher was eliminated?

A Baseball Example

- Four locations: pitcher's mound (P), home plate, first base, and third base
- Ten events:
e_{1} : pitcher (P) throws ball toward home
e_{2} : ball arrives at home
e_{3} : batter (B) hits ball toward pitcher
e_{4} : batter runs toward first base
e_{5} : runner runs toward home
e_{6} : ball arrives at pitcher
e_{T} : pitcher throws ball toward first base
e_{8} : runner arrives at home
e_{9} : ball arrives at first base
e_{10} : batter arrives at first base

A Baseball Example

- Pitcher knows e_{1} happens before e_{6}, which happens before e_{7}
- Home plate umpire knows e_{2} is before e_{3}, which is before e_{4}, which is before e_{8}, \ldots
- Relationship between e_{8} and e_{9} is unclear

Ways to Synchronize

- Send message from first base to home when ball arrives?
- Or both home and first base send messages to a central timekeeper when runner/ball arrives
- But: How long does this message take to arrive?
- Synchronize clocks before the game?
- Clocks drift
- One-in-a-million drifting => 1 second in 11 days
- Synchronize clocks continuously during the game?
- E.g.: NTP, GPS, etc.
- But how do these work?

Real-Clock Synchronization

- Suppose I want to synchronize the clocks on two machines (M1 and M2)
- One solution:
- M1 (sender) sends its own time T in message to M2
- M2 (receiver) sets its time according to the message
- But what time should M2 set?

Perfect Networks

- Messages always arrive, with propagation delay exactly d

- Sender sends time T in a message
- Receiver sets clock to $T+d$
- Synchronization is exact

Synchronous Networks

- Messages always arrive, with propagation delay at most D

- Sender sends time T in a message
- Receiver sets clock to $T+D / 2$
- Synchronization error is at most $D / 2$

Synchronization in the Real World

- Real networks are asynchronous
- Propagation delays are arbitrary
- Real networks are unreliable
- Messages don't always arrive

Cristian's Algorithm

- Request time, get reply
- Measure actual round-trip time d

- Sender's time was T between t_{1} and t_{2}
- Receiver sets time to $T+d / 2$
- Synchronization error is at most $d / 2$
- Can retry until we get a relatively small d

The Berkeley Algorithm

- In Cristian's algorithm, how does sender know the "right" time?
- Master uses Cristian's algorithm to gather time from many clients
- Computes average time
- Discards outliers
- Sends time adjustments back to all clients

The Network Time Protocol (NTP)

- Uses a hierarchy of time servers
- Class 1 servers have accurate (and expensive) clocks
- connected directly to atomic clocks or GPS receivers
- Class 2 servers get time from Class 1 and Class 2 servers
- Class 3 servers get time from any server
- Client machines (e.g., your smartphones, laptops, desktops, or server machines) synchronize w/ time servers
- Synchronization similar to Cristian's alg.
- Accuracy: Local ~1ms, Global ~10ms

Real Synchronization Is Imperfect

- Clocks are never exactly synchronized
- Often inadequate for distributed systems
- Might need totally-ordered events
- But, more often than not, distributed systems do not need real time, but some time that every machine in a protocol agrees upon!
- E.g.: suppose file servers S1 and S2 receive two update requests, W1 and W2, for file F
- They need to apply W1 and W2 in the same order, but they may not really care precisely which order...

Logical Time

- Capture just the "happens before" relationship between events
- Discard the infinitesimal granularity of time
- Corresponds roughly to causality
- Time at each process is well-defined
- Definition (\rightarrow): We say $e \rightarrow_{i} e^{\prime}$ if e happens before e^{\prime} at process i

Global Logical Time

- Definition (\rightarrow) : We define $\mathrm{e} \rightarrow \mathrm{e}$ ' using the following rules:
- Local ordering: $e \rightarrow e^{\prime}$ if $e \rightarrow_{i} e^{\prime}$ for any process i
- Messages: send $(m) \rightarrow$ receive (m) for any message m
- Transitivity: $e \rightarrow e$ " if $e \rightarrow e$ ' and $e^{\prime} \rightarrow e$ "
- We say e "happens before" e^{\prime} if $e \rightarrow e$ '

Concurrency

- \rightarrow is only a partial-order
- Some events are unrelated
- Definition (concurrency): We say e is concurrent with $e^{\prime}\left(\right.$ written $\left.e \| e^{\prime}\right)$ if neither $e \rightarrow e^{\prime}$ nor $e^{\prime} \rightarrow e$

Back to Baseball

Events: $\quad e_{1}$: pitcher (P) throws ball toward home
e_{2} : ball arrives at home
e_{3} : batter (B) hits ball toward pitcher
e_{4} : batter runs toward first base
e_{5} : runner runs toward home
e_{6} : ball arrives at pitcher
e_{7} : pitcher throws ball toward first base
e_{8} : runner arrives at home
e_{9} : ball arrives at first base

The Baseball Example Revisited

- $e_{1} \rightarrow e_{2}$
- by the message rule
- $e_{1} \rightarrow e_{10}$, because
$-e_{1} \rightarrow e_{2}$, by the message rule
$-e_{2} \rightarrow e_{4}$, by local ordering at home plate
$-e_{4} \rightarrow e_{10}$, by the message rule
- Repeated transitivity of the above relations
- $e_{8} \| e_{9}$, because
- No application of the \rightarrow rules yields either $e_{8} \rightarrow e_{9}$ or e_{9} $\rightarrow e_{8}$

Lamport Logical Clocks

- Lamport clock L assigns logical timestamps to events consistent with "happens before" ordering
- If $\mathrm{e} \rightarrow \mathrm{e}^{\prime}$, then $L(\mathrm{e})<L\left(e^{\prime}\right)$
- But not the converse
$-L(e)<L\left(e^{\prime}\right)$ does not imply $e \rightarrow e^{\prime}$
- Similar rules for concurrency
$-L(e)=L\left(e^{\prime}\right)$ implies $e \| e^{\prime}$ (for distinct e, e^{\prime})
$-e \| e^{\prime}$ does not imply $L(e)=L\left(e^{\prime}\right)$
- I.e., Lamport clocks arbitrarily order some concurrent events

Lamport's Algorithm

- Each process i keeps a local clock, L_{i}
- Three rules:

1. At process i, increment L_{i} before each event
2. To send a message m at process i, apply rule 1 and then include the current local time in the message: i.e., send(m, L)
3. When receiving a message (m, t) at process j, set $L_{i}=$ $\max (L, t)$ and then apply rule 1 before time-stamping the receive event

- The global time $L(e)$ of an event e is just its local time
- For an event e at process $i, L(e)=L_{i}(e)$

Lamport on the baseball example

- Initializing each local clock to 0, we get

```
L(e) = 1 (pitcher throws ball to home)
L(e) = 2 (ball arrives at home)
L(e) = 3 (batter hits ball to pitcher)
L(e) = 4 (batter runs to first base)
L(e) = 1 (runner runs to home)
L(e) = 4 (ball arrives at pitcher)
L(e) = 5 (pitcher throws ball to first base)
L(e) = 5 (runner arrives at home)
L(e.)=6 (ball arrives at first base)
L(e.10)=7(batter arrives at first base)
```

- For our example, Lamport's algorithm says that the run scores!

Total-order Lamport Clocks

- Many systems require a total-ordering of events, not a partial-ordering
- Use Lamport's algorithm, but break ties using the process ID
$-L(e)=M * L_{i}(e)+i$
- $M=$ maximum number of processes

Important Points

- Physical Clocks
- Can keep closely synchronized, but never perfect
- Logical Clocks
- Encode causality relationship
- Lamport clocks provide only one-way encoding

