
Distributed Systems

[Fall 2013]

Lec 7: Time and Synchronization

Slide acks: Dave Andersen, Randy Bryant

(http://www.cs.cmu.edu/~dga/15-440/F11/lectures/09-time+synch.pdf)

1

http://www.cs.cmu.edu/~dga/15-440/F11/lectures/09-time+synch.pdf

Any Questions for HW 2?

• Deadline is tomorrow before midnight!

• Poll: Where are you on HW 2?

a) Largely done with both parts (maybe some testing left)

b) Largely done with first part

c) Done with neither part

2

Today’s outline

• Distributed time

– A baseball example

• Synchronizing real clocks

– Cristian’s algorithm

– The Berkeley Algorithm

– Network Time Protocol (NTP)

• Logical time

– Lamport logical clocks

– Vector clocks

3

Distributed Time

• The notion of time is well-defined (and measurable) at

each single location

• But the relationship between time at different locations

is unclear

– Can minimize discrepancies, but never eliminate them

• Examples:

– If two file servers get different update requests to same

file, what should be the order of those requests?

– Did the runner get to home base before the pitcher was

eliminated?

4

A Baseball Example

• Four locations: pitcher’s mound (P), home plate, first
base, and third base

• Ten events:
e

1
: pitcher (P) throws ball toward home

e
2
: ball arrives at home

e
3
: batter (B) hits ball toward pitcher

e
4
: batter runs toward first base

e
5
: runner runs toward home

e
6
: ball arrives at pitcher

e
7
: pitcher throws ball toward first base

e
8
: runner arrives at home

e
9
: ball arrives at first base

e
10
: batter arrives at first base

home plate

1st base

2nd base

3rd base

R

B

P

5

A Baseball Example

• Pitcher knows e
1
 happens before e

6
, which happens

before e
7

• Home plate umpire knows e
2
 is before e

3
, which is

before e
4
, which is before e

8
, …

• Relationship between e
8
 and e

9
 is unclear

6

Ways to Synchronize

• Send message from first base to home when ball
arrives?

– Or both home and first base send messages to a central
timekeeper when runner/ball arrives

– But: How long does this message take to arrive?

• Synchronize clocks before the game?

– Clocks drift
• One-in-a-million drifting => 1 second in 11 days

• Synchronize clocks continuously during the game?

– E.g.: NTP, GPS, etc.

– But how do these work?
7

Real-Clock Synchronization

• Suppose I want to synchronize the clocks on two

machines (M1 and M2)

• One solution:

– M1 (sender) sends its own time T in message to M2

– M2 (receiver) sets its time according to the message

– But what time should M2 set?

8

Perfect Networks

• Messages always arrive, with propagation

delay exactly d

• Sender sends time T in a message

• Receiver sets clock to T+d

– Synchronization is exact

9

Synchronous Networks

• Messages always arrive, with propagation

delay at most D

• Sender sends time T in a message

• Receiver sets clock to T + D/2
– Synchronization error is at most D/2

10

Synchronization in the Real World

• Real networks are asynchronous

– Propagation delays are arbitrary

• Real networks are unreliable

– Messages don’t always arrive

11

Cristian’s Algorithm

• Request time, get reply

– Measure actual round-trip time d

• Sender’s time was T between t1 and t2

• Receiver sets time to T + d/2
– Synchronization error is at most d/2

• Can retry until we get a relatively small d
12

The Berkeley Algorithm

• In Cristian’s algorithm, how does sender know the

“right” time?

• Master uses Cristian’s algorithm to gather time from

many clients

– Computes average time

– Discards outliers

• Sends time adjustments back to all clients

13

The Network Time Protocol (NTP)

• Uses a hierarchy of time servers

– Class 1 servers have accurate (and expensive) clocks

• connected directly to atomic clocks or GPS receivers

– Class 2 servers get time from Class 1 and Class 2 servers

– Class 3 servers get time from any server

– Client machines (e.g., your smartphones, laptops,

desktops, or server machines) synchronize w/ time servers

• Synchronization similar to Cristian’s alg.

• Accuracy: Local ~1ms, Global ~10ms

14

Real Synchronization Is Imperfect

• Clocks are never exactly synchronized

• Often inadequate for distributed systems

– Might need totally-ordered events

• But, more often than not, distributed systems do not

need real time, but some time that every machine in a

protocol agrees upon!

– E.g.: suppose file servers S1 and S2 receive two update

requests, W1 and W2, for file F

– They need to apply W1 and W2 in the same order, but

they may not really care precisely which order…

15

Logical Time

• Capture just the “happens before” relationship

between events

– Discard the infinitesimal granularity of time

– Corresponds roughly to causality

• Time at each process is well-defined

– Definition (→i): We say e →i e’ if e happens before e’ at

process i

16

Global Logical Time

• Definition (→): We define e → e’ using the following

rules:

– Local ordering: e → e’ if e →
i
 e’ for any process i

– Messages: send(m) → receive(m) for any message m
– Transitivity: e → e’’ if e → e’ and e’ → e’’

• We say e “happens before” e’ if e → e’

17

Concurrency

• → is only a partial-order

– Some events are unrelated

• Definition (concurrency): We say e is concurrent with

e’ (written e║e’) if neither e → e’ nor e’ → e

18

Back to Baseball

e
1
: pitcher (P) throws ball toward home

e
2
: ball arrives at home

e
3
: batter (B) hits ball toward pitcher

e
4
: batter runs toward first base

e
5
: runner runs toward home

e
6
: ball arrives at pitcher

e
7
: pitcher throws ball toward first base

e
8
: runner arrives at home

e
9
: ball arrives at first base

e
10
: batter arrives at first base

19

Events:

The Baseball Example Revisited

• e1 → e2

– by the message rule

• e1 → e10, because

– e1 → e2, by the message rule

– e2 → e4, by local ordering at home plate

– e4 → e10, by the message rule

– Repeated transitivity of the above relations

• e8║e9, because

– No application of the → rules yields either e8 → e9 or e9
→ e8 20

Lamport Logical Clocks

• Lamport clock L assigns logical timestamps to
events consistent with “happens before” ordering
– If e → e’, then L(e) < L(e’)

• But not the converse
– L(e) < L(e’) does not imply e → e’

• Similar rules for concurrency
– L(e) = L(e’) implies e║e’ (for distinct e,e’)
– e║e’ does not imply L(e) = L(e’)

• I.e., Lamport clocks arbitrarily order some
concurrent events 21

Lamport’s Algorithm

• Each process i keeps a local clock, Li

• Three rules:
1. At process i, increment Li before each event

2. To send a message m at process i, apply rule 1 and
then include the current local time in the message:
i.e., send(m,Li)

3. When receiving a message (m,t) at process j, set Lj =
max(Lj,t) and then apply rule 1 before time-stamping

the receive event

• The global time L(e) of an event e is just its local
time

– For an event e at process i, L(e) = Li(e) 22

Lamport on the baseball example

• Initializing each local clock to 0, we get
L(e1) = 1 (pitcher throws ball to home)

L(e2) = 2 (ball arrives at home)

L(e3) = 3 (batter hits ball to pitcher)

L(e4) = 4 (batter runs to first base)

L(e5) = 1 (runner runs to home)

L(e6) = 4 (ball arrives at pitcher)

L(e7) = 5 (pitcher throws ball to first base)

L(e8) = 5 (runner arrives at home)

L(e9) = 6 (ball arrives at first base)

L(e10) = 7 (batter arrives at first base)

• For our example, Lamport’s algorithm says that
the run scores!

23

Total-order Lamport Clocks

• Many systems require a total-ordering of events, not a

partial-ordering

• Use Lamport’s algorithm, but break ties using the

process ID

– L(e) = M * Li(e) + i
• M = maximum number of processes

24

Important Points

• Physical Clocks

– Can keep closely synchronized, but never perfect

• Logical Clocks

– Encode causality relationship

– Lamport clocks provide only one-way encoding

25

	Distributed Systems [Fall 2012] [W4995-2]
	Any Questions for Lab 1?
	Today’s outline
	Distributed Time
	A Baseball Example
	Slide 6
	Ways to Synchronize
	Real-Clock Synchronization
	Perfect Networks
	Synchronous Networks
	Synchronization in the Real World
	Cristian’s Algorithm
	The Berkeley Algorithm
	The Network Time Protocol (NTP)
	Real Synchronization Is Imperfect
	Logical Time
	Global Logical Time
	Concurrency
	Back to Baseball
	The Baseball Example Revisited
	Lamport Logical Clocks
	Lamport’s Algorithm
	Lamport on the baseball example
	Total-order Lamport Clocks
	Important Points

