
Distributed Systems

[Fall 2012]

Topic: Synchronization

Lec 6: Local Synchronization Primitives

Slide acks: Jinyang Li, Dave Andersen, Randy Bryant

(http://www.news.cs.nyu.edu/~jinyang/fa10/notes/ds-lec2.ppt,

http://www.cs.cmu.edu/~dga/15-440/F12/lectures/05-concurrency.txt)

http://www.news.cs.nyu.edu/~jinyang/fa10/notes/ds-lec2.ppt
http://www.cs.cmu.edu/~dga/15-440/F12/lectures/05-concurrency.txt

Outline

• Example motivation: YFS

• Local synchronization primitives

– Semaphores

– Conditional variables

• Next time: distributed synchronization primitives

2

YFS Design (Reminder)
client

workstations

(applications)

lock service

3

file service

extent service (data)

file system interface (creat,read,write,..)

put/get acquire, release

YFS

server

YFS

server

YFS

server

lock

server

lock

server

extent

server

extent

server

extent

server

YFS Design

4

 Extent Service:

• stores the data (dir and file contents)
• replicated for fault tolerance
• incrementally scalable with more servers

YFS Service:

• serves file system requests
• it’s stateless (i.e., doesn’t store data)
• uses extent service to store data
• incrementally scalable with more

servers

Lock Service:
• ensure consistent updates by

multiple yfs servers
• replicated for fault tolerance

YFS

server

YFS

server

YFS

server

lock

server

lock

server

extent

server

extent

server

extent

server

file system interface (creat,read,write,..)

put/get acquire, release

YFS Server Implements FS Logic

• Application program:

creat(“/d1/f1”, 0777)

• YFS server:

1. GET root directory’s data from Extent Service

2. Find Extent Server address for dir “/d1” in root dir’s data

3. GET “/d1”s data from Extent Server

4. Find Extent Server address of “f1” in “/d1”’s data

5. If not exists

 alloc a new data block for “f1” from Extent Service

 add “f1” to “/d1”’s data, PUT modified “/d1” to Extent Serv.
5

YFS

server
YFS

server

YFS

server

lock

server

lock

server

extent

server

extent

server

extent

server

file system interface

put/get acquire, release

creat(“/d1/f1”)

Concurrent Accesses Cause

Inconsistency

App 1: creat(“/d1/f1”, 0777)

Server S1:
…

GET “/d1”

Find file “f1” in “/d1”

If not exists

 …

 PUT modified “/d1”

ti
m

e

App 2: creat(“/d1/f2”, 0777)

Server S2:
…

GET “/d1”

Find file “f2” in “/d1”

If not exists

 …

 PUT modified “/d1”

What is the final result of “/d1”? What should it be?
6

Solution: Use a Lock Service to

Synchronize Access

App 1: creat(“/d1/f1”, 0777)

Server S1:
…

GET “/d1”

Find file “f1” in “/d1”

If not exists

 …

 PUT modified “/d1”

ti
m

e

App 2: creat(“/d1/f2”, 0777)

Server S2:
…

GET “/d1”

…

ACQUIRE(“/d1”)

RELEASE(“/d1”)

ACQUIRE(“/d1”) // blocks

7RELEASE(“/d1”)

Putting It Together

creat(“/d1/f1”)

file system interface (creat,read,write,..)

put/get acquire, release

YFS

server

YFS

server

YFS

server

lock

server

lock

server

extent

server

extent

server

extent

server

4. release(“/d1”)

1. acquire(“/d1”)
creat(“/d1/f1”)

2. get(“/d1”) 3. put(“/d1”)

8

Another Problem: Naming

file system interface (creat,read,write,..)

put/get acquire, release

YFS

server

YFS

server

YFS

server

lock

server

lock

server

extent

server

extent

server

extent

server

4. release(“/d1”)

1. acquire(“/d1”)

2. get(“/d1”) 3. put(“/d1”)

Any issues with this version? 9

creat(“/d1/f1”)

creat(“/d1/f1”)

Another Problem: Naming

App 1: creat(“/d0/d1/f1”, 0777)

Server S1:
…

GET “/d0/d1”

Find file “f1” in d1

If not exists

 …

 PUT modified “/d0/d1”

ti
m

e

App 2:

Server S2:
…

rename(“/d0”, “/d2”)

rename(“/d3”, “/d0”)
…

acquire(“/d0/d1”)

Release(“/d0/d1”)

10

Same problem occurs for reading/writing files, if we use their

names when identifying them on the server.

Solution: Using GUIDs

App 1: creat(“/d0/d1/f1”, 0777)

Server S1:
…

d1 = GET d1_id

Find file “f1” in d1

If not exists

 …

 PUT(d1_id, modified d1)

ti
m

e

App 2:

Server S2:
…

rename(“/d0”, “/d2”)

rename(“/d3”, “/d0”)

…

acquire(d1_id)

release(d1_id)

11

• GUIDs are globally-unique, location-independent names
• GUID principle is pervasive in FSes and DSes!

• Think of inode numbers

User-level

kernel

App

FUSE

syscall

(Paranthesis) HW 2-7

Build a Simplified YFS Version

Extent

server

yfs

server

lock

server

yfs

server

Single

extent server

to store data

Communication using in-house RPC

12

HW 2: Lock Server

• Lock service consists of:

– Lock server: grant a lock to clients, one at a time

– Lock client: talk to server to acquire/release locks

• Correctness:

– At most one lock is granted to any client at any time

• Additional requirement:

– acquire() at client does not return until lock is granted

13

HW 2 Steps

• Step 1: Implement server lock and client lock code

– Use in-house RPC mechanism:

• It’s a bit more primitive than Thrift and the like (see next slide)

• Step 2: Implement at-most-once semantics

– Why?

– How do we do that?

• Due next Sept 25 before midnight

– Absolutely no extensions!

– Lab is significantly more difficult than HW 1, so start now

working on it NOW!

– Work in layers, submit imperfect but on time! 14

YFS’s RPC library (End Paranthesis)

transmit

wait

receive

marshal

args

unmarshal

args

lock_client

rpcc

rpc call

rpc call

return

receive

transmit

marshal

args

unmarshal

args

lock_server

rpc

handler

rpc

handler

return

RPC request

RPC response

work

rpcs

cl->call(lock_protocol::acquire, x, ret)

server.reg(lock_protocol::acquire, &ls, &lock_server::acquire)

15

Outline

• Detailed YFS lab introduction

– Plus Lab 1 description

– From last lecture’s slides, which we didn’t cover

• Local synchronization primitives

– Locks // already talked about these

– Semaphores

– Conditional variables

• Next time: distributed synchronization

– Many of the primitives here distribute or build upon

local primitives 16

Locks are great. Why others?

• Locks are very low level, and often times you need

more to accomplish a synchronization goal

– Hence, people have developed a variety of

synchronization primitives that raise level of abstraction

17

Semaphores

• Integer variable x that allows interaction via 2 operations:

– x.P():

– x.V():

• Both operations are done atomically

– All steps take place without any intervening operations

• When do we use semaphores?

18

while (x == 0) wait;
--x

++x

Example: Thread-Safe FIFO Queue

• Assume that we already have a sequential queue

implementation: sq

– But sq is not thread-safe!

• So, how do we make q thread-safe?
19

q.Initialize():
 initialize state

q.Insert(x):
 add item into queue

q.Remove():
 block until queue not empty;

 return item at head of queue

q.Flush():
 clear queue

FIFO Queue with Mutexes

20

q.Initialize():
 q.sq = NewSQueue()
 q.mutex = 1

q.Insert(x):
 q.mutex.lock()
 q.sq.Insert(x)
 q.mutex.unlock()

q.Remove():
 q.mutex.lock()
 x = q.sq.Remove()
 q.mutex.unlock()
 return x

q.Flush():
 q.mutex.lock()
 q.sq.Flush()
 q.mutex.unlock()

Are we done?

FIFO Queue with Mutexes

21

Are we done?

Nope: Remove doesn’t block when buffer’s empty

q.Initialize():
 q.sq = NewSQueue()
 q.mutex = 1

q.Insert(x):
 q.mutex.lock()
 q.sq.Insert(x)
 q.mutex.unlock()

q.Remove():
 q.mutex.lock()
 x = q.sq.Remove()
 q.mutex.unlock()
 return x

q.Flush():
 q.mutex.lock()
 q.sq.Flush()
 q.mutex.unlock()

FIFO Queue with Semaphores

• Use semaphore to count number of elements in queue

22

q.Initialize():
 q.sq = NewSQueue()
 q.mutex = 1
 q.items = 0

q.Insert(x):
 q.mutex.lock()
 q.sq.Insert(x)
 q.mutex.unlock()
 q.items.V()

q.Remove():
 q.items.P()
 q.mutex.lock()
 x = q.sq.Remove()
 q.mutex.unlock()
 return x

q.Flush():
 q.mutex.lock()
 q.sq.Flush()
 q.items = 0
 q.mutex.unlock()

Are we done?

FIFO Queue with Semaphores

• Use semaphore to count number of elements in queue

23

q.Initialize():
 q.sq = NewSQueue()
 q.mutex = 1
 q.items = 0

q.Insert(x):
 q.mutex.lock()
 q.sq.Insert(x)
 q.mutex.unlock()
 q.items.V()

q.Remove():
 q.items.P()

 q.mutex.lock()
 x = q.sq.Remove()
 q.mutex.unlock()
 return x

q.Flush():
 q.mutex.lock()
 q.sq.Flush()
 q.items = 0
 q.mutex.unlock()

Are we done?

Nope: Just Insert & Remove work fine,

but Flush messes things up

q.Flush()

Fixing Race with Mutex?

24

q.Initialize():
 q.sq = NewSQueue()
 q.mutex = 1
 q.items = 0

q.Insert(x):
 q.mutex.lock()
 q.sq.Insert(x)
 q.mutex.unlock()
 q.items.V()

q.Remove():
 q.mutex.lock()
 q.items.P()
 x = q.sq.Remove()
 q.mutex.unlock()
 return x

q.Flush():
 q.mutex.lock()
 q.sq.Flush()
 q.items = 0
 q.mutex.unlock()

Are we done?

Yes, from a correctness perspective

Nope, from a liveness perspective -- deadlock

Condition Variables

• Condition variables provide synchronization point,

where one thread suspends until activated by another

• Condition variable always associated with a mutex

• cvar.Wait():

– Must be called after locking mutex

– Atomically: { release mutex & suspend operation }

– When resume, lock the mutex (may have to wait for it)

• cvar.Signal():

– If no thread suspended, then no-op

– Wake up one suspended thread

25

FIFO Queue with Condition Variable

26

q.Initialize():
 q.sq = NewSQueue()
 q.mutex = 1
 q.cvar = NewCond(q.mutex)

q.Insert(x):
 q.mutex.lock()
 q.sq.Insert(x)
 q.cvar.Signal()
 q.mutex.unlock()

q.Remove():
 q.mutex.lock()
 if q.sq.IsEmpty():
 q.cvar.Wait()
 x = q.sq.Remove()
 q.mutex.unlock()
 return x

q.Flush():
 q.mutex.lock()
 q.sq.Flush()
 q.mutex.unlock()

atomic

q.Flush()

Thread-Safe FIFO Queue

• Actually, one could build this using mutexes

– Build semaphore using mutex

– Build cond variable using semaphore + mutex

– But, boy, it’s a mind-bender to do that – that’s why you want higher

level of abstraction 27

q.Initialize():
 q.sq = NewSQueue()
 q.mutex = 1
 q.cvar = NewCond(q.mutex)

q.Insert(x):
 q.mutex.lock()
 q.sq.Insert(x)
 q.cvar.Signal()
 q.mutex.unlock()

q.Remove():
 q.mutex.lock()
 while q.sq.IsEmpty():
 q.cvar.Wait()
 x = q.sq.Remove()
 q.mutex.unlock()
 return x

q.Flush():
 q.mutex.lock()
 q.sq.Flush()
 q.mutex.unlock()

Synchronization in Distributed Systems

• As we’ve already seen in YFS Lab, distributed systems

have similar issues:

– Multiple processes on different machines share the same

resource: the data (or a printer, or the user’s screen, …)

• Synchronization is even hairier in distributed systems,

as you have to worry about failures, not just

overlappings

– E.g.: when you get a lock, you may not even know you’ve

gotten it 

28

Analogy: The Generals’ Dilemma

29

Let’s attack together at 0500pm

OK

Hmm, should I

attack? Did he

get my OK?

e.g., carrier pigeon

• Same with distributed systems: machines need to

agree on how to progress via an unreliable medium

• Things can get even messier if generals/machines can

also fail (or even worse, go rogue)…

Distributed Synchronization Mechanisms

• Logical clocks: clock synchronization is a real issue in distributed

systems, hence they often maintain logical clocks, which count

operations on the shared resource

• Consensus: multiple machines reach majority agreement over the

operations they should perform and their ordering

• Data consistency protocols: replicas evolve their states in

pre-defined ways so as to reach a common state despite different

views of the input

• Distributed locking services: machines grab locks from a

centralized, but still distributed, locking service, so as to coordinate

their accesses to shared resources (e.g., files)

• Distributed transactions: an operation that involves multiple

services either succeeds or fails at all of them

• We’re going to look at all of these in the following lectures
30

Next Time

• Clocks in distributed systems

– Clock synchronization problem

– Logical (protocol) clocks

31

	Distributed Systems [Fall 2012] [W4995-2]
	Outline
	Design (Reminder)
	Slide 4
	YFS Server Implements FS Logic
	Concurrent Accesses Cause Inconsistency
	Solution: Use a Lock Service to Synchronize Access
	Putting It Together
	Another Problem: Naming
	Slide 10
	Solution: Using GUIDs
	Slide 12
	Lab 1: Lock Server
	Lab 1 Steps
	YFS’s RPC library
	Slide 16
	Thread Synchronization (Reminder)
	Semaphores
	Example: Thread-Safe FIFO Queue
	FIFO Queue with Mutexes
	Slide 21
	FIFO Queue with Semaphores
	Slide 23
	Fixing Race with Mutex?
	Condition Variables
	FIFO Queue with Condition Variable
	Thread-Safe FIFO Queue
	Synchronization in Distributed Systems
	Analogy: The Generals’ Dilemma
	Distributed Synchronization Mechanisms
	Next Time

