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Last Time (Reminder/Quiz)

• What’s RPC? What are its goals?

• How does RPC work?

• What’s data marshaling/unmarshalling (or 

serialization/de-serialization)?

• What are some challenges of RPC?

• What’s at-most-once, at-least-once?
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Outline

• RPC challenges (from last lecture)

• RPC technologies

– XML/RPC

– Protocol buffers

– Thrift

• Handouts!

4



Outline

• RPC challenges (from last lecture)

• RPC technologies

– XML/RPC

– Protocol buffers

– Thrift

• Handouts!

5



RPC Technologies

• XML/RPC

– Over HTTP, huge XML parsing overheads

• SOAP

– Designed for web services via HTTP, huge XML overhead

• CORBA

– Relatively comprehensive, but quite complex and heavy

• COM

– Embraced mainly in Windows client software

• Protocol Buffers

– Lightweight, developed by Google

• Thrift

– Lightweight, supports services, developed by Facebook
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XML/RPC

• Data serialization: XML

– E.g.: RPC call to add(17, 13) results in this request:        

  

• Data transmission protocol: HTTP
7

<?xml version="1.0" encoding="ISO-8859-1"?>

<methodCall>   

 <methodName>sample.add</methodName>   

    <params>

        <param>

            <value><int>17</int></value>

        </param>

        <param>

            <value><int>13</int></value>

        </param>

    </params>

</methodCall>



Example: Apache’s XMLRPC Java Lib

• Handout: LISTING 1

• To remark:

– How error-prone the untyped, vector-based 

param passing is

– The verbosity of XML
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• XML is extremely verbose,                                                       

which affects performance

• The library doesn’t support                                              

protocol versioning

– What happens if I want                                                          to have 

another param?

– What happens if I reverse                                                                          

 order of x and y?

• In this case, nothing, but what                                                                         

if function weren’t commutative?

– What if I forget to add a param?

– In general, lack of types makes                                                                  

it difficult to build & maintain code

• A more complex XML/RPC library could support types, this 

one just doesn’t

The Problems with This Library

<?xml version="1.0" encoding="ISO-8859-1"?>

<methodCall>   

 <methodName>sample.add</methodName>   

    <params>

        <param>

            <value><int>17</int></value>

        </param>

        <param>

            <value><int>13</int></value>

        </param>

    </params>

</methodCall>

Vector params = new Vector();

params.addElement(new Integer(newParam));

params.addElement(new Integer(17));

params.addElement(new Integer(13));



Protocol Buffers
• Properties:

– Efficient, binary serialization

– Support protocol evolution
• Can add new parameters

• Order in which I specify parameters is not important

• Skip non-essential parameters

– Supports types, which give you compile-time errors!

– Supports somewhat complex structures

• Usage:

– Pattern: for each RPC call, define a new “message” type for its 

input and one for its output in a .proto file

– Protocol buffers are used for other things, e.g., serializing data 

to non-relational databases – their backward-compat features 

make for nice long-term storage formats

– Google uses ‘em *everywhere* (48,162 proto buf definitions) 10



Protocol Buffer Workflow
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Protocol Buffer Library Limitations

• Support service definitions and stub generation, but don’t 

come with transport for RPC

– There are third-party libraries for that
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Example: Protocol Buffer Address Book

• Handout: LISTING 2

• To remark:

– Field IDs, which allow protocol to evolve over time

• IDs are sent along with values and uniquely identify the fields

• IDs are written in stone – must never be changed in future

– Some fields may be optional

• You must never remove a non-optional field from a protobuf!

– Repeated fields have no special ordering by default

(Note: just noticed a bug in handout: two person variables)
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Versioning

• Without support for versioning, building distributed 

systems becomes a nightmare over time

• Protocol buffers, along with other solid RPC libraries, 

include support for versioning

• They make it hard for programmers to evolve their 

protocols in non-backward-compat ways
14

if (version == 3) {

   ...

} else if (version > 4) {

   if (version == 5) {

    ...

  }

  ...

}

urgh!



Example: Protocol Buffer Address Book

• Handout: LISTING 2

• To remark:

– Field IDs, which allow protocol to evolve over time

• IDs are sent along with values and uniquely identify the fields

• IDs are written in stone – must never be changed in future

– Some fields may be optional

• You must never remove a non-optional field from a protobuf!

– Repeated fields have no special ordering by default
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Comparison: Protobuf vs. XML

• Protobufs are marshaled extremely efficiently

– Binary format (as opposed to XML’s textual format)

• Example (according to protobuf documentation):

• BUT: Do you see any problems, too?
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<person>

  <name>John Doe</name>   

  <email>jdoe@example.com</email>

</person>

person {

    1:“John Doe”

    3:”jdoe@example.com”

}

- size: 28 bytes

- parse: 100-200ns
- size: 69 bytes (w/o whitespaces)

- parse: 5,000-10,000ns

XML Protobuf

https://developers.google.com/protocol-buffers/docs/overview



Thrift

• Similar in flavor to protocol buffer technology

• Advantages:

– Supports somewhat more fancy types

• Lists, sets, maps, exceptions, constants

– Compiles to additional languages:

• C#, Php, Ruby, Erlang, Haskell, …

– Serializes to both binary and JSON

– Incorporates RPC transport!

– Supports streaming

• I.e., server can start processing on parts of input!

17



Example: Thrift AddressBook

• Handout: LISTING 3

• To observe:

– Very similar flavor to protocol buffers

– Supports both ordered lists and unordered sets
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RPC Summary

• RPC technology focuses on programming use and   

aims to:

– Make distributed communication similar to local calls

– Support protocol evolution

– Make it hard to get it wrong

• Semantics are challenging

– Can't really hide the network and make it all look local

• Performance is key

• You've learned about a few technologies, which you 

might use in future
19



Distributed Systems 

Lecture 5: RPC Technologies 
 

LISTING 1: Apache’s XML/RPC Java Library Example 

(http://www.tutorialspoint.com/xml-rpc/xml_rpc_examples.htm) 

 

1.a)  The client-side code: 

import org.apache.xmlrpc.*; 
 
public class JavaClient { 
  public static void main(String [] args) { 
    try { 
      XmlRpcClient server = new XmlRpcClient("http://localhost/RPC2"); 
 
      Vector params = new Vector(); 
      params.addElement(new Integer(17)); 
      params.addElement(new Integer(13)); 
 
      Object result = server.execute(" sample.add", params); 
      int sum = ((Integer) result).intValue(); 
      System.out.println("The sum is: "+ sum); 
    } catch (Exception exception) { // … 
    } 
  } 
} 

 

1.b) The server-side code: 

import org.apache.xmlrpc.*; 
 
public class RPCHandler { 
  public Integer add(int x, int y) { 
    return new Integer( x + y); 
  } 
 
  public static void main (String[] args) { 
    try { 
      WebServer server = new WebServer(80); 
      server.addHandler(" sample", new RPCHandler());  // register the handler class 
      server.start(); 
    } catch (Exception exception) { // … 
    } 
  } 
} 

 

1.c) XML Marshaling: 

<?xml version="1.0" encoding="ISO-8859-1"?> 
<methodCall> 
   <methodName> sample.add</methodName> 
   <params> 
       <param> 
            <value><int> 17</int></value> 
       </param> 
       <param> 
     <value><int> 13</int></value> 
       </param> 
   </params> 
</methodCall> 

 

 

http://www.tutorialspoint.com/xml-rpc/xml_rpc_examples.htm


LISTING 2: Protocol Buffer API Example 

(https://developers.google.com/protocol-buffers/docs/overview) 

 

2.a) Defining the protocol buffer: 

You define a protocol buffer (or a set thereof) by writing their definitions in the protocol-buffer language into 

a .proto file. Example: AddressBook.proto, which defines protocol buffers for an address book: 

package tutorial 
option java_package = "com.example.tutorial"; 
option java_outer_classname = "AddressBookProtos"; 
 
message Person { 
  required string name  = 1; 
  required int32 id     = 2; 
  optional string email = 3; 
 
  enum PhoneType { 
    MOBILE = 0; 
    HOME   = 1; 
    WORK   = 2; 
  } 
 
  message PhoneNumber { 
    required string number  = 1; 
    optional PhoneType type = 2 [default = HOME]; 
  } 
 
  repeated PhoneNumber phone = 4; 
} 
 
message AddressBook { 
    repeated Person person = 1; 
} 

 

2.b) Compiling protocol buffers: 

The protocol-buffer library provides a compiler, which takes in a .proto file and generates corresponding 

classes in a language of your choice, e.g. Java, Python, or C++ (third parties provide compiler extensions for 

other languages, too). 

# $PROTOC_HOME/bin/ protoc –java_out $PWD AddressBook.proto 
        // generates com.example.tutorial.AddressBookProtos.java, with two classes:  
        // Person and AddressBook 

 

2.c) Using protobufs: 

We can serialize and de-serialize protocol buffer structures to/from input and output streams. These streams 

can be backed either by some network channel or by files or even by database connections. 

import com.example.tutorial.AddressBookProtos.Person; 
import com.example.tutorial.AddressBookProtos.AddressBook; 
 
public class HandleAddressBook { 
  public static void createAndSerializeAddressBook(OutputStream output) { 
    Person.Builder person = Person.newBuilder(); 
    person.setId(1234); 
    person.setName(“John Doe”); 
     
    Person.PhoneNumber.Builder phoneNumber = 
        Person.PhoneNumber.newBuilder().setNumber(“102-203-4005”); 
    phoneNumber.setType( Person.PhoneType.MOBILE); 
    person.addPhone(phoneNumber); 
    // Can add other phone numbers. 
 

https://developers.google.com/protocol-buffers/docs/overview


    // person.setEmail(“johndoe@email.com”);  // this is optional –may or may not add it. 
 
    Person person = person.build();  // generate the Person object. 
    AddressBook.Builder addressBook = AddressBook.newBuilder(); 
    addressBook.addPerson(person); 
    // Add other persons. 
 
    // Write the new address book to an OutputStream (can be backed by a file, a  
    // socket stream, etc.). 
    addressBook.build(). writeTo(output); 
  } 
 
  public static void readAndDisplayAddressBook(InputStream input) { 
    AddressBook addressBook = AddressBook. parseFrom(input); 
    for ( Person person: addressBook.getPersonList()) { 
 
      System.out.println("Person ID: " + person.getId()); 
      System.out.println("  Name: " + person.getName()); 
      if (person.hasEmail()) { 
        System.out.println("  E-mail address: " + person.getEmail()); 
      } 
 
      for ( Person.PhoneNumber phoneNumber : person.getPhoneList()) { 
        switch (phoneNumber.getType()) { 
        case MOBILE: 
          System.out.print("  Mobile phone #: "); break; 
        case HOME: 
          System.out.print("  Home phone #: "); break; 
        case WORK: 
          System.out.print("  Work phone #: "); break; 
        } 
        System.out.println(phoneNumber.getNumber()); 
      } 
    }  
  } 
} 

 

2.d) Services 

Protocol buffers let us define services, which describe RPC functions exported by a server and used by clients. 

The protoc compiler will generate stubs for these RPC functions. For example, you can include the following 

definitions in the AddressBook.proto file, as well: 

  

service AddressBookService { 
  rpc searchForPerson( SearchRequest) returns ( Person);  // might want to wrap the  
      // returned Person into a new response type, which also includes error signaling. 
  ... 
} 
message SearchRequest { 
  string query = 1;  // e.g., can be the name, the phone number, etc… 
} 

 

The protoc compiler will then generate a Stub class for the service (AddressBookService.Stub), which will 

contain all of its functions (searchForPerson, ...). Please see https://developers.google.com/protocol-

buffers/docs/proto#services for details on how to use services. 

 

 

 

 

 

https://developers.google.com/protocol-buffers/docs/proto#services
https://developers.google.com/protocol-buffers/docs/proto#services


 

 

LISTING 3: Thrift API Example 

(http://www.scribd.com/doc/95866167/Thrift-Protobuf) 

3.a) Thrift structures: 

Language is somewhat different, but flavor is the same: you create a .thrift file, compile it, and link the 

resulting code with your own. Example of AddressBook.thrift: 

namespace java tutorial 
namespace csharp Tutorial 
 
enum PhoneType { 
    MOBILE = 1, 
    HOME = 2, 
    WORK = 3 
} 
 
struct PhoneNumber { 
    1: string number,  
    2: PhoneType type = 2 
} 
 
struct Person { 
    1: string name, 
    2: i32 id, 
    3: string email, 
    4: set< PhoneNumber> phone 
} 
 
struct AddressBook { 
    1: list<Person> person 
} 

 

3.b) Thrift API: 

# $THRIFT_ROOT/bin/ thrift –gen-java tutorial.thrift 
    // code will be generated in gen-java/*.java 
 
// Create new object and populate its fields. 
AddressBook addressBook = new AddressBook(name, id, ...) 
 
// Serialize: 
TSerializer serializer = new TSerializer(newTBinaryProtocol.Factory()); 
byte[] bytes = serializer. serialize(addressBook); 
// Send the bytes over some stream. 
 
// De-serialize: 
TDeserializer deserializer = new TDeserializer(new TBinaryProtocol.Factory()); 
deserializer. deserialize(addressBook, bytes); 
// Do something with addressBook. 

 

 

DISCLAIMER 

All code listed in this document is approximate, does not do error handling, and in some cases may not even 

compile. Use it to get a sense for what these technologies are about, but refer to docs for in-depth guidance. 

 

http://www.scribd.com/doc/95866167/Thrift-Protobuf
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