Distributed Systems
[Fall 2013]

Lec 5: RPC Frameworks

Slide acks: Jinyang Li
(http://www.news.cs.nyu.edu/~jinyang/fal0/notes/ds-lec2.ppt)

Last Time (Reminder/Quiz)

What's RPC? What are its goals?
How does RPC work?

What's data marshaling/unmarshalling (or
serialization/de-serialization)?

What are some challenges of RPC?

What's at-most-once, at-least-once?

RPC Architecture

App RPC client library
Client
rpc call+—marshal send
args l
wait
rpc call/_lunmarshal | l o
Client:
{.

}

resp = foo(“hello”);

RPC request

RPC response

RPC server library ~PP

Server
rreceive+—tunmarshat—rpc
args handler
'
work
rpc
send marshal |_| handler
result return
Server:

}

int foo(char* arg) {

Outline

* RPC challenges (from last lecture)

* RPC technologies
— XML/RPC
— Protocol buffers
— Thrift

e Handouts!

Outline

* RPC challenges (from last lecture)

* RPC technologies
— XML/RPC
— Protocol buffers
— Thrift

e Handouts!

RPC Technologies

XML/RPC
— Over HTTP, huge XML parsing overheads

SOAP

— Designed for web services via HTTP, huge XML overhead

CORBA
— Relatively comprehensive, but quite complex and heavy

COM
— Embraced mainly in Windows client software

Protocol Buffers
— Lightweight, developed by Google

Thrift
— Lightweight, supports services, developed by Facebook

XML/RPC

* Data serialization: XML
— E.g.: RPC call to add(17, 13) results in this request:

<?xml version="1.0" encoding="1S0O-8859-1"?>
<methodCall>
<methodName>sample.add</methodName>
<params>
<param>
<value><int>17</int></value>
</param>
<param>
<value><int>13</int></value>
</param>
</params>
</methodCall>

* Data transmission protocol: HTTP

Example: Apache’s XMLRPC Java Lib

e Handout: LISTING 1

* To remark:
— How error-prone the untyped, vector-based
param passing Is
— The verbosity of XML

The Problems with This Library

* XML is extremely verbose,
which affects performance

* The library doesn’t support
protocol versioning

— What happens if | want
another param?

— What happens if | reverse
order of x and y?

* |In this case, nothing, but what
if function weren’t commutative?

— What if | forget to add a param?
— In general, lack of types makes

It difficult to build & maintain code

<?xml version="1.0" encoding="1S0O-8859-1"?>
<methodCall>
<methodName>sample.add</methodName>
<params>
<param>
<value><int>17</int></value>
</param>
<param>
<value><int>13</int></value>
</param>
</params>
</methodCall>

Vector params = new Vector();
params.addElement(new Integer(newParam));
params.addElement(new Integer(17));
params.addElement(new Integer(13));

* A more complex XML/RPC library could support types, this

one just doesn't

Protocol Buffers

* Properties:
— Efficient, binary serialization

— Support protocol evolution

* Can add new parameters
* Order in which | specify parameters is not important
* Skip non-essential parameters

— Supports types, which give you compile-time errors!
— Supports somewhat complex structures

 Usage:
— Pattern: for each RPC call, define a new “message” type for its
Input and one for its output in a .proto file

— Protocol buffers are used for other things, e.g., serializing data
to non-relational databases — their backward-compat features
make for nice long-term storage formats

— Google uses ‘em *everywhere* (48,162 proto buf definitions) 10

Client
code

.proto file

!

Protocol Buffer Workflow

< protocol buffer compiler> => java, .cc, .py

Z: \"4
Client Message
stub classes

AN

A\7Z

javac, jar, gcc ——< compiler/linker>
|

v

Client-side
program

Server

stub

Server
code

|

V2

< compiler/linker>

v

Server-side
program

3-party library

11

Protocol Buffer Library Limitations

* Support service definitions and stub generation, but don’t
come with transport for RPC

— There are third-party libraries for that

Client iant li RPC server librar Server
code RPC client library y code
RPC request
rpc call1T—t marshakh d ‘unmarshat—rpc
args args hfmdler
ivork
rpc call«—unmarshal rpc
rmarshal |«
return result RPC response o handler
------ return
client transport transport server

stub \[ﬁ/ stub
not included In

protocol buffers 12

Example: Protocol Buffer Address Book

e Handout: LISTING 2

e Toremark:

— Field IDs, which allow protocol to evolve over time
* |Ds are sent along with values and uniguely identify the fields
* |Ds are written in stone — must never be changed in future

— Some fields may be optional
* You must never remove a non-optional field from a protobuf!

— Repeated fields have no special ordering by default

(Note: just noticed a bug in handout: two person variables)

13

Versioning

* Without support for versioning, building distributed
systems becomes a nightmare over time

if (version == 3) {

} else if (version > 4) { urgh!
if (version == 5) {

} .

} .

* Protocol buffers, along with other solid RPC libraries,
Include support for versioning

* They make it hard for programmers to evolve their
protocols in non-backward-compat ways

14

Example: Protocol Buffer Address Book

e Handout: LISTING 2

e Toremark:

— Field IDs, which allow protocol to evolve over time
* |Ds are sent along with values and uniguely identify the fields
* |Ds are written in stone — must never be changed in future

— Some fields may be optional
* You must never remove a non-optional field from a protobuf!

— Repeated fields have no special ordering by default

15

Comparison: Protobuf vs. XML

* Protobufs are marshaled extremely efficiently
— Binary format (as opposed to XML'’s textual format)

* Example (according to protobuf documentation):

XML

<person>
<name>John Doe</name>
<email>jdoe@example.com</email>
</person>

- size: 69 bytes (w/o whitespaces)
- parse: 5,000-10,000ns

Protobuf

person {
1:“John Doe”
3:”jdoe@example.com”

- Size: 28 bytes
- parse: 100-200ns

BUT: Do you see any problems, too?

16

https://developers.google.com/protocol-buffers/docs/overview

Thrift

* Similar in flavor to protocol buffer technology

* Advantages:

— Supports somewhat more fancy types
* Lists, sets, maps, exceptions, constants

— Compiles to additional languages:
* C#, Php, Ruby, Erlang, Haskell, ...

— Serializes to both binary and JSON
— Incorporates RPC transport!

— Supports streaming
* |.e., server can start processing on parts of input!

17

Example: Thrift AddressBook

e Handout: LISTING 3

* To observe:
— Very similar flavor to protocol buffers
— Supports both ordered lists and unordered sets

18

RPC Summary

RPC technology focuses on programming use and
aims to:

— Make distributed communication similar to local calls
— Support protocol evolution
— Make it hard to get it wrong

Semantics are challenging
— Can't really hide the network and make it all look local

Performance is key

You've learned about a few technologies, which you

might use in future '

Distributed Systems
Lecture 5: RPC Technologies

LISTING 1: Apache’s XML/RPC Java Library Example
(http://www.tutorialspoint.com/xml-rpc/xml rpc examples.htm)

1.a) The client-side code:

import org.apache.xmlrpc.*;

public class JavaClient {
public static void main(String [] args) {

try {
XmIRpcClient server =new XmIRpcClient("http://localhost/RPC2");
Vector par ans = new Vector();
par ans.addElement(new Integer(17));
par ans.addElement(new Integer(13));
Object = server.execute(" sanple.add", parans);
int sum = ((Integer)).intValue();

System.out.printin("The sum is: "+ sum);
} catch (Exception exception) { // ...

1.b) The server-side code:

import org.apache.xmlrpc.*;

public class RPCHandl er {

public Integer add(int x,int y){
return new Integer(X +)
}
public static void main (String[] args) {
try {
WebServer server =new WebServer(80);

server .addHandler(" sanpl e", new RPCHandl er ()); // register the handler class
ser ver .start();
} catch (Exception exception) {// ...
}
}
}

1.c) XML Marshaling:

<?xml version="1.0" encoding="ISO-8859-1"?>
<methodCall>
<methodName> sanpl e. add</methodName>
<params>
<param>
<value><int> 17</int></value>
</param>
<param>
<value><int> 13</int></value>
</param>
</params>
</methodCall>

http://www.tutorialspoint.com/xml-rpc/xml_rpc_examples.htm

LISTING 2: Protocol Buffer APl Example
(https://developers.google.com/protocol-buffers/docs/overview)

2.a) Defining the protocol buffer:
You define a protocol buffer (or a set thereof) by writing their definitions in the protocol-buffer language into
a .proto file. Example: Addr essBook. pr ot 0, which defines protocol buffers for an address book:

package tutorial
option java_package = "com.example.tutorial”;
option java_outer_classname = "AddressBookProtos";

message Person {
required string name = 1;
required int32id =2;
optional string email = 3;

enum PhoneType {

MOBILE = 0;
HOME =1,
WORK = 2;

}

message PhoneNunber {
required string number = 1;

optional PhoneType type = 2 [default = HOME];
}
repeated PhoneNunber phone = 4;
}
message Addr essBook {
repeated Person person = 1;
}

2.b) Compiling protocol buffers:

The protocol-buffer library provides a compiler, which takes in a .proto file and generates corresponding
classes in a language of your choice, e.g. Java, Python, or C++ (third parties provide compiler extensions for
other languages, too).

$PROTOC_HOME/bin/ pr ot oc —java_out $PWD Addr essBook. pr ot o
/I generates com.example.tutorial. AddressBookProtos.java, with two classes:
I Person and Addr essBook

2.c) Using protobufs:
We can serialize and de-serialize protocol buffer structures to/from input and output streams. These streams
can be backed either by some network channel or by files or even by database connections.

import com.example.tutorial. AddressBookProtos.Person;
import com.example.tutorial. AddressBookProtos.AddressBook;

public class HandleAddressBook {
public static void createAndSerializeAddressBook(OutputStream output) {
Per son.Builder person = Person.newBuilder();
person.setld(1234);
person.setName(“John Doe”);

Per son. PhoneNunber .Builder phoneNumber =
Person.PhoneNumber.newBuilder().setNumber(“102-203-4005");
phoneNumber.setType(Per son. PhoneType.MOBILE);
person.addPhone(phoneNumber);
/I Can add other phone numbers.

https://developers.google.com/protocol-buffers/docs/overview

I/l person.setEmail(“johndoe@email.com”); // this is optional —may or may not add it.

Person person = person.build(); // generate the Person object.
Addr essBook.Builder addressBook = AddressBook.newBuilder();
addressBook.addPerson(person);
// Add other persons.

I/ Write the new address book to an OutputStream (can be backed by a file, a
/I socket stream, etc.).
addressBook.build(). wr i t eTo(output);

}

public static void readAndDisplayAddressBook(InputStream input) {
Addr essBook addressBook = AddressBook. par seFr on(input);
for (Per son person: addressBook.getPersonList()) {

System.out.printin("Person ID: " + person.getld());
System.out.printin(* Name: " + person.getName());
if (person.hasEmail()) {

System.out.printin(" E-mail address: " + person.getEmail());

}
for (Per son. PhoneNunber phoneNumber : person.getPhonelList()) {
switch (phoneNumber.getType()) {
case MOBILE:
System.out.print(" Mobile phone #: "); break;
case HOME:
System.out.print(" Home phone #: "); break;
case WORK:

System.out.print(" Work phone #: "); break;

System.out.printin(phoneNumber.getNumber());

2.d) Services

Protocol buffers let us define services, which describe RPC functions exported by a server and used by clients.
The protoc compiler will generate stubs for these RPC functions. For example, you can include the following
definitions in the Addr essBook. pr ot o file, as well:

servi ce AddressBookService {
r pc searchForPerson(Sear chRequest) returns (Per son); // might want to wrap the
/l returned Person into a new response type, which also includes error signaling.

.

message Sear chRequest {
string query = 1; // e.g., can be the name, the phone number, etc...

The protoc compiler will then generate a Stub class for the service (AddressBookService.Stub), which will
contain all of its functions (searchForPerson, ...). Please see https://developers.google.com/protocol-

buffers/docs/proto#tservices for details on how to use services.

https://developers.google.com/protocol-buffers/docs/proto#services
https://developers.google.com/protocol-buffers/docs/proto#services

LISTING 3: Thrift APl Example
(http://www.scribd.com/doc/95866167/Thrift-Protobuf)

3.a) Thrift structures:
Language is somewhat different, but flavor is the same: you create a .thrift file, compile it, and link the
resulting code with your own. Example of Addr essBook. t hri ft:

namespace java tutorial
namespace csharp Tutorial

enum PhoneType {
MOBILE =1,
HOME = 2,
WORK =3

}

struct PhoneNunber {

1: string number,

2: PhoneType type =2
}

struct Per son {
1: string name,

2:i321id,
3: string email,
4: set< PhoneNunber > phone

}

struct Addr essBook {
1: list<Person> person
}

3.b) Thrift API:

$THRIFT_ROOT/bin/ thrift —gen-java tutorial.thrift
I/l code will be generated in gen-java/*.java

/I Create new object and populate its fields.
Addr essBook addressBook = new Addr essBook(name, id, ...)

Il Serialize:
TSerializer serializer = new TSerializer(newTBinaryProtocol.Factory());
byte[] bytes = serializer. seri al i ze(addressBook);

/l Send the bytes over some stream.

/I De-serialize:

TDeserializer deserializer = new TDeserializer(new TBinaryProtocol.Factory());
deserializer. deseri al i ze(addressBook, bytes);

/l Do something with addressBook.

DISCLAIMER
All code listed in this document is approximate, does not do error handling, and in some cases may not even
compile. Use it to get a sense for what these technologies are about, but refer to docs for in-depth guidance.

http://www.scribd.com/doc/95866167/Thrift-Protobuf

	Distributed Systems [Fall 2012] [W4995-2]
	Last Time (Reminder/Quiz)
	Slide 3
	Slide 4
	Slide 5
	RPC Technologies
	XML/RPC
	Example: Apache’s XMLRPC Java Lib
	The Problems with This Library
	Protocol Buffers
	Protocol Buffer Workflow
	Protocol Buffer Library Limitations
	Example: Protocol Buffer Address Book
	Slide 14
	Slide 15
	Comparison: Protobuf vs. XML
	Thrift
	Example: Thrift AddressBook
	Slide 19

