
Distributed Systems

[Fall 2013]

Lec 5: RPC Frameworks

Slide acks: Jinyang Li

(http://www.news.cs.nyu.edu/~jinyang/fa10/notes/ds-lec2.ppt)

1

Last Time (Reminder/Quiz)

• What’s RPC? What are its goals?

• How does RPC work?

• What’s data marshaling/unmarshalling (or

serialization/de-serialization)?

• What are some challenges of RPC?

• What’s at-most-once, at-least-once?

2

RPC Architecture

send

wait

receive

marshal

args

unmarshal

result

App

Client
RPC client library

rpc call

rpc call

return

receive

send

unmarshal

args

marshal

result

App

Server

rpc

handler

rpc

handler

return

RPC server library

RPC request

RPC response

work

 Client:Client:

 { ...{ ...

 resp = foo(“hello”);resp = foo(“hello”);

 }}

 Server:Server:

 int foo(char* arg) {int foo(char* arg) {

 … …

 }}

Outline

• RPC challenges (from last lecture)

• RPC technologies

– XML/RPC

– Protocol buffers

– Thrift

• Handouts!

4

Outline

• RPC challenges (from last lecture)

• RPC technologies

– XML/RPC

– Protocol buffers

– Thrift

• Handouts!

5

RPC Technologies

• XML/RPC

– Over HTTP, huge XML parsing overheads

• SOAP

– Designed for web services via HTTP, huge XML overhead

• CORBA

– Relatively comprehensive, but quite complex and heavy

• COM

– Embraced mainly in Windows client software

• Protocol Buffers

– Lightweight, developed by Google

• Thrift

– Lightweight, supports services, developed by Facebook

6

XML/RPC

• Data serialization: XML

– E.g.: RPC call to add(17, 13) results in this request:

• Data transmission protocol: HTTP
7

<?xml version="1.0" encoding="ISO-8859-1"?>

<methodCall>

 <methodName>sample.add</methodName>

 <params>

 <param>

 <value><int>17</int></value>

 </param>

 <param>

 <value><int>13</int></value>

 </param>

 </params>

</methodCall>

Example: Apache’s XMLRPC Java Lib

• Handout: LISTING 1

• To remark:

– How error-prone the untyped, vector-based

param passing is

– The verbosity of XML

8

• XML is extremely verbose,

which affects performance

• The library doesn’t support

protocol versioning

– What happens if I want to have

another param?

– What happens if I reverse

 order of x and y?

• In this case, nothing, but what

if function weren’t commutative?

– What if I forget to add a param?

– In general, lack of types makes

it difficult to build & maintain code

• A more complex XML/RPC library could support types, this

one just doesn’t

The Problems with This Library

<?xml version="1.0" encoding="ISO-8859-1"?>

<methodCall>

 <methodName>sample.add</methodName>

 <params>

 <param>

 <value><int>17</int></value>

 </param>

 <param>

 <value><int>13</int></value>

 </param>

 </params>

</methodCall>

Vector params = new Vector();

params.addElement(new Integer(newParam));

params.addElement(new Integer(17));

params.addElement(new Integer(13));

Protocol Buffers
• Properties:

– Efficient, binary serialization

– Support protocol evolution
• Can add new parameters

• Order in which I specify parameters is not important

• Skip non-essential parameters

– Supports types, which give you compile-time errors!

– Supports somewhat complex structures

• Usage:

– Pattern: for each RPC call, define a new “message” type for its

input and one for its output in a .proto file

– Protocol buffers are used for other things, e.g., serializing data

to non-relational databases – their backward-compat features

make for nice long-term storage formats

– Google uses ‘em *everywhere* (48,162 proto buf definitions) 10

Protocol Buffer Workflow

11

Message

classes

=> .java, .cc, .py

Client

stub

Server

stub

Client-side

program

Server-side

program

protocol buffer compiler

compiler/linker compiler/linkerjavac, jar, gcc

.proto file

Client

code

Server

code

RPC

3rd-party library

Protocol Buffer Library Limitations

• Support service definitions and stub generation, but don’t

come with transport for RPC

– There are third-party libraries for that

12

transmit

wait

receive

marshal

args

unmarshal

result

Client

code
RPC client library

rpc call

rpc call

return

receive

transmit

unmarshal

args

marshal

result

Server

code

rpc

handler

rpc

handler

return

RPC server library

RPC request

RPC response

work

client

stub

transport transport server

stub

not included in

protocol buffers

Example: Protocol Buffer Address Book

• Handout: LISTING 2

• To remark:

– Field IDs, which allow protocol to evolve over time

• IDs are sent along with values and uniquely identify the fields

• IDs are written in stone – must never be changed in future

– Some fields may be optional

• You must never remove a non-optional field from a protobuf!

– Repeated fields have no special ordering by default

(Note: just noticed a bug in handout: two person variables)

13

Versioning

• Without support for versioning, building distributed

systems becomes a nightmare over time

• Protocol buffers, along with other solid RPC libraries,

include support for versioning

• They make it hard for programmers to evolve their

protocols in non-backward-compat ways
14

if (version == 3) {

 ...

} else if (version > 4) {

 if (version == 5) {

 ...

 }

 ...

}

urgh!

Example: Protocol Buffer Address Book

• Handout: LISTING 2

• To remark:

– Field IDs, which allow protocol to evolve over time

• IDs are sent along with values and uniquely identify the fields

• IDs are written in stone – must never be changed in future

– Some fields may be optional

• You must never remove a non-optional field from a protobuf!

– Repeated fields have no special ordering by default

15

Comparison: Protobuf vs. XML

• Protobufs are marshaled extremely efficiently

– Binary format (as opposed to XML’s textual format)

• Example (according to protobuf documentation):

• BUT: Do you see any problems, too?
16

<person>

 <name>John Doe</name>

 <email>jdoe@example.com</email>

</person>

person {

 1:“John Doe”

 3:”jdoe@example.com”

}

- size: 28 bytes

- parse: 100-200ns
- size: 69 bytes (w/o whitespaces)

- parse: 5,000-10,000ns

XML Protobuf

https://developers.google.com/protocol-buffers/docs/overview

Thrift

• Similar in flavor to protocol buffer technology

• Advantages:

– Supports somewhat more fancy types

• Lists, sets, maps, exceptions, constants

– Compiles to additional languages:

• C#, Php, Ruby, Erlang, Haskell, …

– Serializes to both binary and JSON

– Incorporates RPC transport!

– Supports streaming

• I.e., server can start processing on parts of input!

17

Example: Thrift AddressBook

• Handout: LISTING 3

• To observe:

– Very similar flavor to protocol buffers

– Supports both ordered lists and unordered sets

18

RPC Summary

• RPC technology focuses on programming use and

aims to:

– Make distributed communication similar to local calls

– Support protocol evolution

– Make it hard to get it wrong

• Semantics are challenging

– Can't really hide the network and make it all look local

• Performance is key

• You've learned about a few technologies, which you

might use in future
19

Distributed Systems

Lecture 5: RPC Technologies

LISTING 1: Apache’s XML/RPC Java Library Example

(http://www.tutorialspoint.com/xml-rpc/xml_rpc_examples.htm)

1.a) The client-side code:

import org.apache.xmlrpc.*;

public class JavaClient {
 public static void main(String [] args) {
 try {
 XmlRpcClient server = new XmlRpcClient("http://localhost/RPC2");

 Vector params = new Vector();
 params.addElement(new Integer(17));
 params.addElement(new Integer(13));

 Object result = server.execute(" sample.add", params);
 int sum = ((Integer) result).intValue();
 System.out.println("The sum is: "+ sum);
 } catch (Exception exception) { // …
 }
 }
}

1.b) The server-side code:

import org.apache.xmlrpc.*;

public class RPCHandler {
 public Integer add(int x, int y) {
 return new Integer(x + y);
 }

 public static void main (String[] args) {
 try {
 WebServer server = new WebServer(80);
 server.addHandler(" sample", new RPCHandler()); // register the handler class
 server.start();
 } catch (Exception exception) { // …
 }
 }
}

1.c) XML Marshaling:

<?xml version="1.0" encoding="ISO-8859-1"?>
<methodCall>
 <methodName> sample.add</methodName>
 <params>
 <param>
 <value><int> 17</int></value>
 </param>
 <param>
 <value><int> 13</int></value>
 </param>
 </params>
</methodCall>

http://www.tutorialspoint.com/xml-rpc/xml_rpc_examples.htm

LISTING 2: Protocol Buffer API Example

(https://developers.google.com/protocol-buffers/docs/overview)

2.a) Defining the protocol buffer:

You define a protocol buffer (or a set thereof) by writing their definitions in the protocol-buffer language into

a .proto file. Example: AddressBook.proto, which defines protocol buffers for an address book:

package tutorial
option java_package = "com.example.tutorial";
option java_outer_classname = "AddressBookProtos";

message Person {
 required string name = 1;
 required int32 id = 2;
 optional string email = 3;

 enum PhoneType {
 MOBILE = 0;
 HOME = 1;
 WORK = 2;
 }

 message PhoneNumber {
 required string number = 1;
 optional PhoneType type = 2 [default = HOME];
 }

 repeated PhoneNumber phone = 4;
}

message AddressBook {
 repeated Person person = 1;
}

2.b) Compiling protocol buffers:

The protocol-buffer library provides a compiler, which takes in a .proto file and generates corresponding

classes in a language of your choice, e.g. Java, Python, or C++ (third parties provide compiler extensions for

other languages, too).

$PROTOC_HOME/bin/ protoc –java_out $PWD AddressBook.proto
 // generates com.example.tutorial.AddressBookProtos.java, with two classes:
 // Person and AddressBook

2.c) Using protobufs:

We can serialize and de-serialize protocol buffer structures to/from input and output streams. These streams

can be backed either by some network channel or by files or even by database connections.

import com.example.tutorial.AddressBookProtos.Person;
import com.example.tutorial.AddressBookProtos.AddressBook;

public class HandleAddressBook {
 public static void createAndSerializeAddressBook(OutputStream output) {
 Person.Builder person = Person.newBuilder();
 person.setId(1234);
 person.setName(“John Doe”);

 Person.PhoneNumber.Builder phoneNumber =
 Person.PhoneNumber.newBuilder().setNumber(“102-203-4005”);
 phoneNumber.setType(Person.PhoneType.MOBILE);
 person.addPhone(phoneNumber);
 // Can add other phone numbers.

https://developers.google.com/protocol-buffers/docs/overview

 // person.setEmail(“johndoe@email.com”); // this is optional –may or may not add it.

 Person person = person.build(); // generate the Person object.
 AddressBook.Builder addressBook = AddressBook.newBuilder();
 addressBook.addPerson(person);
 // Add other persons.

 // Write the new address book to an OutputStream (can be backed by a file, a
 // socket stream, etc.).
 addressBook.build(). writeTo(output);
 }

 public static void readAndDisplayAddressBook(InputStream input) {
 AddressBook addressBook = AddressBook. parseFrom(input);
 for (Person person: addressBook.getPersonList()) {

 System.out.println("Person ID: " + person.getId());
 System.out.println(" Name: " + person.getName());
 if (person.hasEmail()) {
 System.out.println(" E-mail address: " + person.getEmail());
 }

 for (Person.PhoneNumber phoneNumber : person.getPhoneList()) {
 switch (phoneNumber.getType()) {
 case MOBILE:
 System.out.print(" Mobile phone #: "); break;
 case HOME:
 System.out.print(" Home phone #: "); break;
 case WORK:
 System.out.print(" Work phone #: "); break;
 }
 System.out.println(phoneNumber.getNumber());
 }
 }
 }
}

2.d) Services

Protocol buffers let us define services, which describe RPC functions exported by a server and used by clients.

The protoc compiler will generate stubs for these RPC functions. For example, you can include the following

definitions in the AddressBook.proto file, as well:

service AddressBookService {
 rpc searchForPerson(SearchRequest) returns (Person); // might want to wrap the
 // returned Person into a new response type, which also includes error signaling.
 ...
}
message SearchRequest {
 string query = 1; // e.g., can be the name, the phone number, etc…
}

The protoc compiler will then generate a Stub class for the service (AddressBookService.Stub), which will

contain all of its functions (searchForPerson, ...). Please see https://developers.google.com/protocol-

buffers/docs/proto#services for details on how to use services.

https://developers.google.com/protocol-buffers/docs/proto#services
https://developers.google.com/protocol-buffers/docs/proto#services

LISTING 3: Thrift API Example

(http://www.scribd.com/doc/95866167/Thrift-Protobuf)

3.a) Thrift structures:

Language is somewhat different, but flavor is the same: you create a .thrift file, compile it, and link the

resulting code with your own. Example of AddressBook.thrift:

namespace java tutorial
namespace csharp Tutorial

enum PhoneType {
 MOBILE = 1,
 HOME = 2,
 WORK = 3
}

struct PhoneNumber {
 1: string number,
 2: PhoneType type = 2
}

struct Person {
 1: string name,
 2: i32 id,
 3: string email,
 4: set< PhoneNumber> phone
}

struct AddressBook {
 1: list<Person> person
}

3.b) Thrift API:

$THRIFT_ROOT/bin/ thrift –gen-java tutorial.thrift
 // code will be generated in gen-java/*.java

// Create new object and populate its fields.
AddressBook addressBook = new AddressBook(name, id, ...)

// Serialize:
TSerializer serializer = new TSerializer(newTBinaryProtocol.Factory());
byte[] bytes = serializer. serialize(addressBook);
// Send the bytes over some stream.

// De-serialize:
TDeserializer deserializer = new TDeserializer(new TBinaryProtocol.Factory());
deserializer. deserialize(addressBook, bytes);
// Do something with addressBook.

DISCLAIMER

All code listed in this document is approximate, does not do error handling, and in some cases may not even

compile. Use it to get a sense for what these technologies are about, but refer to docs for in-depth guidance.

http://www.scribd.com/doc/95866167/Thrift-Protobuf

	Distributed Systems [Fall 2012] [W4995-2]
	Last Time (Reminder/Quiz)
	Slide 3
	Slide 4
	Slide 5
	RPC Technologies
	XML/RPC
	Example: Apache’s XMLRPC Java Lib
	The Problems with This Library
	Protocol Buffers
	Protocol Buffer Workflow
	Protocol Buffer Library Limitations
	Example: Protocol Buffer Address Book
	Slide 14
	Slide 15
	Comparison: Protobuf vs. XML
	Thrift
	Example: Thrift AddressBook
	Slide 19

