
Distributed Systems

[Fall 2013]

Lec 4: Remote Procedure Calls (RPC)

Slide acks: Dave Andersen, Jinyang Li

(http://www.cs.cmu.edu/~dga/15-440/F10/lectures/05-rpc.pdf,

http://www.news.cs.nyu.edu/~jinyang/fa10/notes/ds-lec2.ppt)
1

News

• HW 2 has been released

– Due in two weeks

– Much longer than HW1!

– And it's GRADED!

– So start very early

• Yu will give background now

2

YFS Lab Series Background

3

YFS

• Instructional distributed file system developed by MIT after
a research distributed file system, called Frangipani

– Analogous to xv6 for OS courses

– When we discuss YFS, we really refer to Frangipani (or a
simplified version thereof)

– Thekkath, Chandramohan A., Timothy Mann, and Edward K. Lee.
"Frangipani: A scalable distributed file system." ACM SIGOPS
Operating Systems Review. Vol. 31. No. 5. ACM, 1997.

YFS Design Goals

• Aggregate many disks from
many servers

• Incrementally scalable

• Tolerates and recovers from
node, network, disk failures

Design

Design

Lock Service

• Resolve concurrent read/write issues

– If one client is writing to a file while another
client is reading it, inconsistency appears.

• Lock server grants/releases locks to
client upon request

• Becomes scalable with more instances

• All the actual data are provided by the
extent server

Some Specific Questions I

• How to make a file system in user space?

– We need to build a real file system that can be
mounted. How?

– Use FUSE library (http://fuse.sourceforge.net/)

– We will provide you with skeleton code

– You are responsible for filling in the actual
function implementations.

http://fuse.sourceforge.net/

Some Specific Questions II

• How do nodes communicate with each other?

– Use the in-house RPC library

– No more low-level socket programming!

– It has drawbacks though, next homework will ask
you to fix it.

• How do I store the actual data?

– The data does not need to be persistent.

– Store them in memory is OK.

Lab Schedule

• Lab 1: C++ warm up (Passed)

• Lab 2: Lock server and reliable RPC

• Lab 3: File server

• Lab 4: Cache Locks

• Lab 5: Cache extent server

• Lab 6: Paxoes

• Lab 7: Replicated lock server

Lab 2: Lock Server and Reliable RPC

• Centralized lock server

• Lock service consists of:

– Lock server: grant a lock to clients, one at a time

– Lock client: talk to server to acquire/release locks

• Correctness:

– At most one lock is granted to any client

• Additional requirement:

– acquire() at client does not return until lock is granted

Lab 2 Steps

• Step 1: Checkout the skeleton code from ds-git

• Step 2: Implement server lock and client lock

– Test it using locker_tester

• Step 3: Implement RPC at-most-once semantics

– Use a sliding window to store the sent RPC ids.

Today's Lecture

14

Last Time (Reminder/Quiz)

• Processes: A resource container for execution on a

single machine

• Threads: One “thread” of execution through code.

Can have multiple threads per process.

• Why processes? Why threads? Why either?

• Local communication

– Inter-process communication

– Thread synchronization

15

Today: Distributed Communication

• Socket communication

• Remote Procedure Calls (RPCs)

• RPC challenges

16

Common Communication Pattern

ClientClient ServerServerHey, do something

working {

Done/Result

Communication Mechanisms

• Many possibilities and protocols for communicating in
a distributed system

– Sockets (mostly in HW1)

– RPC (today)

– Distributed shared memory (possibly later classes)

– Map/Reduce, Dryad (later classes)

– MPI (on your own)

18

Socket Communication

• You your own protocol on top of a transmission

protocol (e.g., TCP or UDP)

• Quiz from your networking course :

– What’s TCP?

– What’s UDP?

– When is it best to use TCP vs. UDP?

19

Socket Communication

• TCP (Transmission Control Protocol)

– Protocol built upon the IP networking protocol, which

supports sequenced, reliable, two-way transmission over a

connection (or session, stream) between two sockets

• UDP (User Datagram Protocol)

– Also protocol built on top of IP. Supports best-effort,

transmission of single datagrams

• Use:
– TCP when you need reliability, but when performance of setting up

connection is not a huge (e.g., file transmission, a lock service)

– UDP when it’s OK to lose, re-order, or duplicate messages, but you

want low latency (e.g., online games, messaging, games)
20

Client /
Server
Session

Client Server

socket socket

bind

listen

read

writeread

write

Connection
request

read

close

close
EOF

acceptconnect

Socket API Overview

int socket(domain, type,

 protocol)

bind(server_sock,

 &server_address,

 server_len)

listen(server_sock,

 backlog)

accept(server_sock,

 &client_addr,

 &client_len)

connect(client_sock,

 &server_addr,

 server_len)

• Lots of boiler-plate when using a raw socket API

• Lots of bugs/inefficiencies if you’re not careful

– E.g.: retransmissions, multi-threading, …

• Plus, you have to invent the data transmission protocol

– Can be complex

– Hard to maintain

– May not interact

well with others’

protocols

…

Complexities of Using the Socket API

22

 struct foomsg {struct foomsg {
 u_int32_t len;u_int32_t len;
 }}

 send_foo(char *contents) {send_foo(char *contents) {
 int msglen = sizeof(struct foomsg) + int msglen = sizeof(struct foomsg) +
 strlen(contents);strlen(contents);
 char buf = malloc(msglen);char buf = malloc(msglen);
 struct foomsg *fm = (struct foomsg *)buf;struct foomsg *fm = (struct foomsg *)buf;
 fm->len = htonl(strlen(contents));fm->len = htonl(strlen(contents));
 memcpy(buf + sizeof(struct foomsg),contents,memcpy(buf + sizeof(struct foomsg),contents,
 strlen(contents));strlen(contents));
 write(outsock, buf, msglen);write(outsock, buf, msglen);
 }}

RPC

• A type of client/server communication

• Attempts to make remote procedure calls

look like local ones

 Client:Client:

 { ...{ ...

 resp = foo(“hello”);resp = foo(“hello”);

 }}

 Server:Server:

 int foo(char* arg) {int foo(char* arg) {

 … …

 }}

RPC Goals

• Ease of programming

– Familiar model for programmers (just make a function call)

• Hide complexity (or some of it – we’ll see later)

• Automate a lot of task of implementing

• Standardize some low-level data packaging protocols

across components

Historical note: Seems obvious in retrospect, but RPC was only invented in the

‘80s. See Birrell & Nelson, “Implementing Remote Procedure Call” ... or

Bruce Nelson, Ph.D. Thesis, Carnegie Mellon University: Remote Procedure

Call., 1981 :)

RPC Architecture Overview

• Servers export their local procedure APIs

• On client, RPC library generates RPC requests

over network to server

• On server, called procedure executes, result is

returned in RPC response to client

• Back on client, RPC library

reconstructs the response and

 returns it to the caller

 Client:Client:

 { ...{ ...

 resp = foo(“hello”);resp = foo(“hello”);

 }}

 Server:Server:

 int foo(char* arg) {int foo(char* arg) {

 … …

 }}

RPC Architecture

transmit

wait

receive

marshal

args

unmarshal

result

App

Client
RPC client library

rpc call

rpc call

return

receive

transmit

unmarshal

args

marshal

result

App

Server

rpc

handler

rpc

handler

return

RPC server library

RPC request

RPC response

work

 Client:Client:

 { ...{ ...

 resp = foo(“hello”);resp = foo(“hello”);

 }}

 Server:Server:

 int foo(char* arg) {int foo(char* arg) {

 … …

 }}

Why Marshaling?

• Calling and called procedures run on different

machines, with different address spaces

– Therefore, pointers are meaningless

– Plus, perhaps different environments, different operating

systems, different machine organizations, …

– E.g.: the endian problem:

• If I send a request to transfer $1 from my little-endian machine,

the server might try to transfer $16M if it’s a big-endian machine

• Must convert to local representation of data

• That’s what marshaling does

Marshaling and Unmarshaling

• hotnl() -- “host to network-byte-order, long”

– network-byte-order (big-endian) standardized to deal

with cross-platform variance

Marshaling and Unmarshaling

• htonl() -- “host to network-byte-order, long”

– network-byte-order (big-endian) standardized to deal

with cross-platform variance

• In our foomsg example, remember how we arbitrarily

decided to send the string by sending its length followed

by “len” bytes of the string? That’s marshaling, too.
 struct foomsg {struct foomsg {
 u_int32_t len;u_int32_t len;
 }}
 send_foo(char *contents) {send_foo(char *contents) {
 int msglen = sizeof(struct foomsg) + strlen(contents);int msglen = sizeof(struct foomsg) + strlen(contents);
 char buf = malloc(msglen);char buf = malloc(msglen);
 struct foomsg *fm = (struct foomsg *)buf;struct foomsg *fm = (struct foomsg *)buf;
 fm->len = htonl(strlen(contents));fm->len = htonl(strlen(contents));
 memcpy(buf + sizeof(struct foomsg),memcpy(buf + sizeof(struct foomsg),
 contents,contents,
 strlen(contents));strlen(contents));
 write(outsock, buf, msglen);write(outsock, buf, msglen);
 }}

Marshaling and Unmarshaling

• htonl() -- “host to network-byte-order, long”

– network-byte-order (big-endian) standardized to deal

with cross-platform variance

• In our foomsg example, remember how we arbitrarily

decided to send the string by sending its length followed

by “len” bytes of the string? That’s marshaling, too.

• Other things to marshal:

– Floating point

– Nested structures

– Complex data structures? (Some RPC systems let you

send lists and maps as first-order objects)

“Stubs” and IDLs

• RPC stubs are automatically generated codes that

appear to implement the desired functions, but

actually do just marshalling/unmarshalling and then

call the RPC library for request transmission

• How does this stub generation work?

• Typically: Write a description of the function

signature using an IDL -- interface definition language

– Lots of these. Some look like C, some like XML

– Example: SunRPC (now), next time we’ll look at

other IDLs (e.g., Google’s protocol buffers)

SunRPC

• Venerable, widely-used RPC system

• Defines “XDR” (“eXternal Data Representation”) --

C-like language for describing structures and

functions -- and provides a compiler that creates

stubs

struct fooargs {struct fooargs {

 string msg<255>;string msg<255>;

 int baz;int baz;

}}

And Describes Functions

program FOOPROG {program FOOPROG {
 version VERSION {version VERSION {
 void FOO(fooargs) = 1;void FOO(fooargs) = 1;
 void BAR(barargs) = 2;void BAR(barargs) = 2;
 } = 1;} = 1;
} = 9999;} = 9999;

More requirements

• Provide reliable transmission (or indicate failure)

– May have a “runtime” that handles this

• Authentication, encryption, etc.

– Nice when you can add encryption to your system by

changing a few lines in your IDL file

• (it’s never really that simple, of course -- identity/key

management)

Big challenges

• What happens during communication failures? Programmer code

still has to deal with exceptions! (Normally, calling foo() to add 5

+ 5 can’t fail and doesn’t take 10 seconds to return)

• Machine failures?

– Did server fail before/after processing request?? Impossible to

tell, if it’s still down...

• It’s impossible to hide all of the complexity under an RPC system.

 But marshaling/unmarshaling support is great!

Key challenges of RPC

• RPC semantics in the face of
– Communication failures

• delayed and lost messages
• connection resets
• expected packets never arrive

– Machine failures
• Server or client failures
• Did server fail before or after processing the request?

– Might be impossible to tell communication failures
from machine failures

RPC failures

• Request from cli -> srv lost

• Reply from srv -> cli lost

• Server crashes after receiving request

– Before it has completed it or

– After it has completed it

• Client crashes after sending request

– He won’t know whether the server executed the

request

RPC semantics

• At-least-once semantics

– Keep retrying...

• At-most-once

– Use a sequence # to ensure idempotency against

network retransmissions

– and remember it at the server

At-least-once versus at-most-once?
 let's take an example: acquiring a lock
 if client and server stay up, client receives lock
 if client fails, it may have the lock or not (server
needs a plan!)
 if server fails, client may have lock or not
 at-least-once: client keeps trying
 at-most-once: client will receive an exception
 what does a client do in the case of an exception?
 need to implement some application-specific protocol
 ask server, do i have the lock?

server needs to have a plan for remembering state
across reboots
 e.g., store locks on disk.
 at-least-once (if we never give up)
 clients keep trying. server may run procedure several
times
 server must use application state to handle duplicates
 if requests are not idempotent

but difficult to make all request idempotent
 e.g., server good store on disk who has lock and req id
 check table for each requst
 even if server fails and reboots, we get correct
semantics
 What is right?
 depends where RPC is used.
 simple applications:
 at-most-once is cool (more like procedure calls)
 more sophisticated applications:
 need an application-level plan in both cases

 not clear at-once gives you a leg up
comparison from Kaashoek, 6.842 notes

Implementing at-most-once

• At-least-once: Just keep retrying on client side until you get a

response.

– Server just processes requests as normal, doesn’t remember

anything. Simple!

• At-most-once: Server might get same request twice...

– Must re-send previous reply and not process request (implies:

keep cache of handled requests/responses)

– Must be able to identify requests

– Strawman: remember all RPC IDs handled. -> Ugh! Requires

infinite memory.

– Real: Keep sliding window of valid RPC IDs, have client number

them sequentially.

Exactly-Once?

• Sorry - no can do in general.

• Imagine that message triggers an external physical

thing (say, a robot fires a nerf dart at the professor)

• The robot could crash immediately before or after

firing and lose its state. Don’t know which one

happened. Can, however, make this window very

small.

Implementation Concerns

• As a general library, performance is often a big concern

for RPC systems

• Major source of overhead: copies and

marshaling/unmarshaling overhead

• Zero-copy tricks:

– Representation: Send on the wire in native format and

indicate that format with a bit/byte beforehand. What

does this do? Think about sending uint32 between two

little-endian machines

Next Time

• A bunch of RPC library examples

• With code! 

43

	Distributed Systems [Fall 2012] [W4995-2]
	News
	Slide 3
	YFS
	YFS Design Goals
	Design
	Slide 7
	Lock Service
	Some Specific Questions I
	Some Specific Questions II
	Lab Schedule
	Lab 2: Lock Server and Reliable RPC
	Lab 2 Steps
	Slide 14
	Last Time (Reminder/Quiz)
	Today: Distributed Communication
	Common Communication Pattern
	Communication Mechanisms
	Socket Communication
	Slide 20
	Socket API Overview
	Complexities of Using the Socket API
	RPC
	RPC Goals
	RPC Architecture Overview
	RPC Architecture
	Why Marshaling?
	Marshaling and Unmarshaling
	Slide 29
	Slide 30
	“Stubs” and IDLs
	SunRPC
	And Describes Functions
	More requirements
	Big challenges
	Key challenges of RPC
	RPC failures
	RPC semantics
	PowerPoint Presentation
	Implementing at-most-once
	Exactly-Once?
	Implementation Concerns
	Next Time

