
Distributed Systems

[Fall 2013]

Lec 3: Example use cases (continued)

Cloud computing

1

Example Use Cases

• Web architectures (last time)

– Simple architectures and real-world architectures

• Cloud computing (today)

– What it means and how it began

2

What Are Some Web Architectures?

3

1. The Client-Server Model

4

Client

Server

requests responses

2. The Three-Tiered Architecture

5

application

database

Client (browser)

S
e

rv
ic

e

WAN

LAN

LAN

user interface

(front end)
stateless

stateful

3. Real Architectures

6
http://www.codemass.com/presentations/apachecon2005/ac2005scalablewebarch.ppt

Clients (browsers)

So, What Did We Learn?

• Web architectures are complex

• But there are well-known solutions

• There are lots of tradeoffs and understanding workload

is key in choosing the right solution at each layer

• Each layer has distinct hardware requirements and

likely distinct bottlenecks

• What does the last observation tell us?

7

Example Use Cases

• Web architectures (last time)

– Simple architectures and real-world architectures

• Cloud computing (today)

– What it means and how it began

8

What is cloud computing?

• Computing technology in which data and/or

computation are outsourced to a massive-scale,

multi-user infrastructure that is managed by a

third-party.

• Appeared gradually due to two important challenges

facing the Web:

– Scaling

– Management

• I’ll tell you the story of how it appeared, so as to help

you understand what it is
9

• The Web and e-commerce were gaining traction

• Their challenge: how to scale?

– 1996 to 1997: eBay grew from 41,000 to 341,000 users!

Around 1995: The Scaling Challenge

10

Pre-1995 Answer: Big, Expensive

Computers

• Example: eBay used Sun E-10000 “supermini”

– 64 processors @250MHz, 64GB RAM, 20TB disk, ~$1M

• The good:

– Easy to manage

– Easy to program

– Simple failure mode

• The bad:

– Q: Any ideas?

11

Pre-1995 Answer: Big, Expensive

Computers

• Example: eBay used Sun E-10000 “supermini”

– 64 processors @250MHz, 64GB RAM, 20TB disk, ~$1M

• The good:

– Easy to manage

– Easy to program

– Simple failure mode

• The bad:

– Expensive

– Single point of failure

– No incremental scalability 12

1995: Berkeley Network of Workstations

(NOW)

• Idea: Leverage many interconnected small, cheap,

general-purpose machines for incremental scalability

and reliability

– Typical PC: 200 MHz CPU, 32MB RAM, 4GB disk

13

NOW-0

14

• 1994: NOW had 4 HP-735’s

NOW-1

• 1995: NOW had 32 Sun SPARC stations

15

NOW-2

• 1997: 60 Sun SPARC-2’s

• Build Inktomi app

16

Companies Adopt NOW

• Everybody builds their own clusters and grows them to

handle more and more load

– Examples: eBay, Amazon, Google, all .com bubble

companies

• Similar to early days of electricity when everyone built

their own generator

Q: What do you think happened next?

17

Late 1990s: The Manageability

Challenge

• Hard to manage and program large clusters

– How to write scalable distributed programs?

– How to debug large-scale programs?

– How to make services reliable?

– How to architect the network infrastructure?

– How to provision a cluster to handle peak load?

– How to administer a huge number of computers?

– …

• Each company had to build own complex software

– Like each of us building an OS from scratch!
18

Early 2000s: Scalable Cluster Primitives

• Very few technically strong companies create powerful

scalable and reliable primitives for cluster management

and programming

• Examples:

– Google’s Map/Reduce

– The Google File System (GFS)

– Google’s Bigtable

– Amazon’s Dynamo

– Distributed debugging and tracing tools

– Datacenter temperature regulators

– Scalable distributed communication mechanisms

– … 19

Mid 2000s: Three Valuable Commodities

20

Mid 2000s: Three Valuable Commodities

• Giant-scale clusters with enormous excess capacity

– Everybody provisioned for peak

• Expertise for managing and operating clusters at low

cost

– “Economies of scale”

• Complex software to help program/manage clusters

– Even full applications (e.g., Gmail, Google Calendar, etc.)

Q: What do you think happened next?

21

2006: Cloud computing

• AWS sells resources, expertise, and access to cloud

primitives in a pay-for-what-you-use model

– Resources: CPU, network bandwidth, persistent storage

– Cloud primitives: Amazon S3, EC2, SQS, Map/Reduce, ...

• Google launches Google Apps for Your Domain

– Customizable Gmail, Google Docs, Google Calendar

under a custom domain (e.g., gmail.cs.columbia.edu)

• Google then launches the App Engine

– Web hosting infrastructure (such infrastructures existed

before, but didn't come with many primitives)

• Microsoft launches Azure in 2009
22

Advantages of cloud computing

• Low barrier of market entry for startups

• Cheaper, low-management email, calendars, CRM

solutions

• New mobile applications

• Faster batch processing via parallelization across

many machines

23

What do Clouds have to do w/

distributed systems?

• Clouds are powered by (and sell) distributed, scalable

systems, which can be used as building blocks for easy

bootstrap of new applications and services

– Often times, you hear about clouds as being great because

you don't have to purchase machines upfront

– I think their major advantage lies in fact in the scalable

services they provide

• This is unlike prior Web hosting infrastructures that

predated “clouds” by many years

– Those offered (and some still do) bare-metal and no

add-on value-added services 24

Next time

• Communication: remote procedure calls

• Homework 1 is due tomorrow

• Homework 2 will be out on Thursday

– Start with the writing piece and then do the coding

– It's long, so start coding soon

– Next time TA will go over the YFS series

25

Distributed Systems

[Fall 2012]

Lec 3 (Part 2): OS Background

Processes, Threads, and Local Coordination

1

OS Background

• Topics:

– Processes

– Threads

– Local coordination

• Inter-process communication (or how processes coordinate)

• Thread synchronization (or how threads coordinate)

• Is this an OS course?!
– No, but concepts are essential for distributed systems

– They often have 1:1 relationships with distributed coordination

concepts

2

Outline

• Processes

• Inter-process communication (IPC)

• Threads

• Thread synchronization

• Slide acknowledgements:
– Junfeng Yang (www.cs.columbia.edu/~junfeng/12sp-w4118/lectures/l04-proc.pdf)

– Dave Andersen (www.cs.cmu.edu/~dga/15-440/F10/lectures/04-work.pdf)

– Jinyang Li (www.news.cs.nyu.edu/~jinyang/fa09/notes/ds-lec2.pdf)

3

http://www.cs.columbia.edu/~junfeng/12sp-w4118/lectures/l04-proc.pdf
http://www.cs.cmu.edu/~dga/15-440/F10/lectures/04-work.pdf
http://www.news.cs.nyu.edu/~jinyang/fa09/notes/ds-lec2.pdf
http://www.news.cs.nyu.edu/~jinyang/fa09/notes/ds-lec2.pdf

What Is a Process?

• Process: an execution stream (or program) in the

context of a particular process state

– “Program in execution,” “virtual CPU”

• Execution stream: a stream of instructions

• Process state: determines effect of running code

– Registers: general purpose, instruction pointer (program

counter), floating point, …

– Memory: everything a process can address, code, data,

stack, heap, …

– I/O status: file descriptor table, …

4

Program vs. Process

• Program != process

– Program: static code + static data

– Process: dynamic instantiation of code + data + more

• Program process: no 1:1 mapping

– Process > program: more than code and data

– Program > process: one program runs many processes

– Process > program: many processes of same program

5

The CPU

 Retrieve next

 instruction

 Interpret retrieved

 instruction

 Interrupt signal? yes

 1. Save counter and

 state

 2. Update them with

 new counter and

 state

no

statestate

program program

countercounter

Why Use Processes?

• Express concurrency

– Systems have many concurrent jobs going on

– E.g. Apache can spawn multiple processes to process

requests in parallel on multiple CPUs and parallelize I/O…

– OS manages concurrency

• General principle of divide and conquer

– Decompose a large problem into smaller ones easier to

think of well contained smaller problems

• Processes are isolated from each other

– Sequential with well defined interactions
7

Address Spaces

• Address Space (AS): all memory a process can address

– Really large memory to use

– Linear array of bytes: [0, N), N roughly 232 / 264

• Process address space: 1 : 1 mapping

– Address space = protection domain

• OS isolates address spaces

– One process can’t access another’s address space

– Same pointer address in different processes point to

different memory

8

Address Space Illustration

9

Process 1

Process 2

Practical Stuff: Using Processes

• Creating a new process: fork()

– Makes an almost exact copy of calling process (PID

changes, etc.)

– New process has its own memory (although some of it

is shared – copy-on-write)

– How to tell difference between the two processes?

Return value is 0 in child, child PID in parent.

• Executing a different program: exec()

– Replaces the process’ image with a new one running

the new program

10

Example: Fork/Exec

11

#include <iostream>

#include <sys/wait.h>

#include <unistd.h>

using namespace std;

int main() {

 pid_t pid;

 int status, died;

 switch (pid = fork()) {

 case -1: cout << "can't fork\n";

 exit(-1);

 case 0 : execl("/usr/bin/date","date",0); // this is the code the child runs

 default: died= wait(&status); // this is the code the parent runs

 }

}

Source: students.cs.byu.edu

Outline

• Processes

• Inter-process communication (IPC)

• Threads

• Thread synchronization

12

Interprocess Communication

• Often, multiple processes are part of the same “program”

• Hence, they need to coordinate

• Example: Apache and its worker processes, each

serving a request

– Apache must send requests to each worker

• This is very similar to how processes (or tasks) in

distributed systems must coordinate

13

IPC Models

14

Message passing Shared memory

Message Passing vs. Shared Memory

• Message passing

– Why good? All sharing is explicit – less chance for error

– Why bad? Overhead

• Data copying, across protection domains (context switches)

• Shared memory

– Why good? Performance

• Set up shared memory once, then access w/o crossing protection

domains

– Why bad? Things change behind your back – error prone

15

IPC Example: UNIX Signals

• Signals

– A very short message: just a small integer

– A fixed set of available signals. Examples:

• 9: kill

• 11: segmentation fault

• Installing a handler for a signal: signal()

– sighandler_t signal(int signum, sighandler_t handler);

• Send a signal to a process: kill()

– kill(pid_t pid, int signum)

16

IPC Example: UNIX Pipe

• int pipe(int fds[2])
– Creates a one way communication channel

– fds[2] holds the returned two file descriptors

– Bytes written to fds[1] will be read from fds[0]

 int pipefd[2];

 pipe(pipefd); // error handling ignored

 switch(pid = fork()) {

 case -1: perror("fork"); exit(1);

 case 0: close(pipefd[0]);

 // write to fd 1

 break;

 default: close(pipefd[1]);

 // read from fd 0

 break;

 } 17

IPC Example: UNIX Shared Memory

• int shmget(key_t key, size_t size, int shmflg)
– Create a shared memory segment; returns ID of segment

– key: unique key of a shared memory segment, or IPC_PRIVATE

• int shmat(int shmid, const void *addr, int flg)
– Attach shared memory segment to address space of calling process

– shmid: id returned by shmget()

• int shmdt(const void *shmaddr);
– Detach from shared memory

• Problem: synchronization! (similar concept as in threads)

18

Today

• Processes

• Inter-process communication (IPC)

• Threads

• Thread synchronization

19

Threads

• Threads: separate streams of executions that

share an address space

– Allow one process to have multiple points

 of execution, can use multiple CPUs

• Per-thread state (not shared across threads)

– Program counter (EIP on x86)

– Other registers

– Stack

• Conceptually similar to processes, but different

– Often called “lightweight processes”
20

Threads in Memory

21

Process 1

Thread vs. Process

• Why threads?

– Thread allows running code concurrently within a
single process

– Switching among threads is lightweight

– Sharing data among threads requires no IPC

• Why processes?

– Fault isolation: One buggy process cannot crash others

22

Why Multi-threaded Programming?

• Exploit multiple CPUs (multi-core) with little overhead

• Exploit I/O concurrency

– Do some processing while waiting for disk, network, user

• Reduce latency of networked services

– Servers serve multiple requests in parallel

– Clients issue multiple requests in parallel

• Example:

– In addition to multi-process support, Apache has
multi-thread support, which is much more common.

23

Single-threaded servers do not fully

utilize I/O and CPU

time

time

time

CPU usage

disk usage

Network usage

24

Multi-threaded servers achieve

I/O concurrency

time

time

time

CPU usage

disk usage

Network usage

25

Practical Stuff: The pthread Library

• int pthread_create(pthread_t *thread, const pthread_attr_t *attr,

 void *(*start_routine)(void*), void *arg);

– Create a new thread to run start_routine on arg

– thread holds the new thread’s id

– Can be customized via attr

• int pthread_join(pthread_t thread, void **value_ptr);

– Wait for thread termination, and retrieve return value in value_ptr

• void pthread_exit(void *value_ptr);

– Terminates the calling thread, and returns value_ptr to threads

waiting in pthread_join

26

Pthread Creation Example

void* thread_fn(void *arg) {

 int id = (int)arg;

 printf("thread %d runs\n", id);

 return NULL;

}

int main() {

 pthread_t t1, t2;

 pthread_create(&t1, NULL, thread_fn, (void*)1);

 pthread_create(&t2, NULL, thread_fn, (void*)2);

 pthread_join(t1, NULL);

 pthread_join(t2, NULL);

 return 0;

}

27

$ gcc –o threads threads.c –Wall –lpthread

$./threads

thread 1 runs

thread 2 runs

Thread Pools

• Problem:

– Creating a thread for each request: costly

• And, the created thread exits after serving a request

– More user requests more threads, server overload

• Solution: thread pool

– Pre-create a number of threads waiting for work

– Wake up thread to serve user request – faster than thread

creation

– When request done, don’t exit – go back to pool and wait

– Limits the max number of threads

• Your YFS server will have thread pools

• Apache supports thread (and process) pools 28

Today

• Processes

• Inter-process communication (IPC)

• Threads

• Thread synchronization

29

The Problem

• Memory is shared across all threads

• Hence threads must coordinate so as to update

shared memory correctly

30

int balance = 1000;

int main() {

 pthread_t t1, t2;

 pthread_create(&t1, NULL, withdraw, (void*)800);

 pthread_create(&t2, NULL, withdraw, (void*)800);

 pthread_join(t1, NULL);

 pthread_join(t2, NULL);

 printf(“All done: balance is $%d\n”, balance);

 return 0;

}

void* withdraw(void *arg) {

 int amount = (int)arg;

 if (balance >= amount) {

 balance -= amount;

 printf(“ATM gives user $%d\n”, amount);

 }

}

Banking Example

31

Imagine that these

threads are created in

response to requests

from ATM machines

What are possible

results?

Results of Banking Example

$ gcc –Wall –lpthread –o bank bank.c

$./bank

 ATM gives user $800 Result 1

 All done: balance is $200

$./bank

 ATM gives user $800

 ATM gives user $800 Result 2

 All done: balance is $-600

$./bank

 ATM gives user $800

 ATM gives user $800 Result 3

 All done: balance is $200

32

How are each of

these achieved?

Schedule 1 (for Result 1)

33time

Thread 1 Thread 2

 if (balance >= amount)

register = balance - amount;

balance = register

 if (balance >= amount)

balance -= amount;

 if (balance >= amount)

register = balance - amount;

balance = register

Schedule 2 (for Result 2)

34time

Thread 1 Thread 2

 if (balance >= amount)

register = balance - amount;

balance = register

 if (balance >= amount)

register = balance - amount;

balance = register

Schedule 3 (for Result 3)

35time

Thread 1 Thread 2

 if (balance >= amount)

register = balance - amount;

balance = register

 if (balance >= amount)

register = balance - amount;

balance = register

Race Conditions

• Definition: a timing dependent error involving shared

state

• Can be very bad

– “Non-deterministic:” don’t know what the output will be,

and it is likely to be different across runs

– Hard to detect: too many possible schedules

– Hard to debug: debugging changes timing so hides

bugs (“heisenbug”)

36

Synchronization Mechanisms

• Multiple mechanisms, each solving a different problem

– Locks

– Condition variables

– Semaphores

– Monitors

– Barriers

• Synchronization – both local and distributed – is used

pervasively in distributed systems

– Will use synchronization mechanisms in most labs

– Will build distributed locking for Lab 1

– MapReduce uses barriers to synchronize threads

– … 37

We’ll cover here briefly

Read in OS textbook or lectures:
http://www.cs.columbia.edu/~junfeng/12sp-

w4118/lectures/l09-lock.pdf,

http://www.cs.columbia.edu/~junfeng/12sp-

w4118/lectures/l10-semaphore-monitor.pdf)

Locks

• Locks allow only one thread to pass through a “critical

section” at any time

– lock(l): acquire lock exclusively; wait if not available

– unlock(l): release exclusive access to lock

 pthread_mutex_t l = PTHREAD_MUTEX_INITIALIZER;

 void* withdraw(void *arg) {

 int amount = (int)arg;

 pthread_mutex_lock(l);

 if (balance >= amount) {

 balance -= amount;

 printf(“ATM gives user $%d\n”, amount);

 }

 pthread_mutex_unlock(l);

 }
38

What’s

the

problem

now?

Common Pitfalls

• Wrong lock granularity

– Too small granularity leads to races

– Too large granularity leads to bad performance

• Deadlocks

– Better bugs than race

• Starvation

• Discussion of each is subject of another course…

39

Processes, Threads, and Coordination

in Distributed Systems

• All these topics are extremely relevant for distributed

systems

– Every server is multi-threaded

– Servers need to coordinate, and they do so using similar

methods as IPC, shared memory, locking, barriers, etc.

• In distributed systems, a process is often times called

a “task” (unit of processing)

• A program is often times called a “job”

40

Next Time

• Inter-machine communication

– Remote procedure calls

– Semantics and complexities of RPCs

41

Appendix

42

Cool Process Internals:

Copy-on-Write (CoW)

• CoW is a useful, general technique that shows up all

over in systems

– Mark parents’ memory read-only

– Have child share parents memory instead of copying

– If either one writes -- hey, it was read only! (CPU will

raise an exception)

• Now give the child its own copy of the page of

memory someone was writing

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

