

Distributed Systems

[Fall 2012]

Lec 21: Bigtable: architecture, implementation,
and schema design

Slide acks: Mohsen Taheriyan
(http://www-scf.usc.edu/~csci572/2011Spring/presentations/Taheriyan.pptx)

1

http://www-scf.usc.edu/~csci572/2011Spring/presentations/Taheriyan.pptx
http://www-scf.usc.edu/~csci572/2011Spring/presentations/Taheriyan.pptx
http://www-scf.usc.edu/~csci572/2011Spring/presentations/Taheriyan.pptx
http://www-scf.usc.edu/~csci572/2011Spring/presentations/Taheriyan.pptx
http://www-scf.usc.edu/~csci572/2011Spring/presentations/Taheriyan.pptx

Data Model (Reminder)

• “A Bigtable is a sparse, distributed, persistent multi-
dimensional sorted map”

(row:string, column:string, timestamp:int64)  string

Webtable

2

Row key: any arbitrary byte string
Because we care about time-oriented data, we allow cells to have multiple value with different timestamps. So when we don’t want to overwrite old values (we care about historical information), we use them. For example, for holding multiple versions of a webpage.
There are operations in API we can say give me latest value, or in this timestamp range, or all the values.

Each table is a multi-dimensional sparse map. The table consists of rows and columns, and each cell has a time version. There can be multiple copies of each cell with different times, so they can keep track of changes over time. In his examples, the rows were URLs and the columns had names such as “contents:” (which would store the file data) or “language:” (which would contain a string such as “EN”).

The Bigtable Data Model (row, column, time) → string In the Webtable, row keys are the URL indexed by each row, with DNS names reversed to put the higher-level components ﬁrst, e.g. com.google.maps/index.html. This is an example of Google changing applications to suit infrastructure; the DNS reversal keeps similar pages together and lets whole domains be explored without ranging across too many tablets.

API (Reminder)

3

Bigtable Description Outline

• Motivation and goals (last time)
• Schemas, interfaces, and semantics (last time)
• Architecture and implementation (today)
• Key topic: schema design in Bigtable (today)

– There will be one schema-design question at the exam

4

Bigtable Description Outline

• Motivation and goals (last time)
• Schemas, interfaces, and semantics (last time)
• Architecture and implementation (today)
• Key topic: schema design in Bigtable (today)

– There will be one schema-design question at the exam

5

• A Bigtable table is partitioned into many tablets based on row keys
– Tablets (100-200MB each) are stored in a particular structure in GFS

• Each tablet is served by one tablet server
– Tablet servers are stateless (all state is in GFS), so they can restart any time

Tablets

6

“com.cnn.www”

“contents:”

“<html>…”

“language:”

 EN

“com.cnn.www/world/”

“com.zuppa/menu.html”

“com.yahoo/kids.html”
“com.yahoo/kids.html?d”

“com.website”

“com.aaa”

“com.cnn.edition”

“com.cnn.money”

…

“com.cnn.www/sports.html”

… …
…

“com.dodo.www”

Tablet :
Start: com.aaa
End: com.cnn.www

Tablet :
Start: com.cnn.www
End: com.dodo.www

…
…

…
…

Tablet Structure

• Uses Google SSTables, a key building block
• Without going into much detail, an SSTable:

– Is a file storing immutable key-value pairs
– Its keys are: <row, column, timestamp>
– It is stored in GFS
– It allows only appends, no updates (deletes are possible)

• Why do you think they don’t use something that supports updates?

SSTable

64KB

Block

64KB

Block

64KB

Block

Index (block ranges)

…

7

Now, its time to see how the tables actual data are stored in GFS.

The Google SSTable le format is used internally to store Bigtable data. An SSTable provides a persistent, ordered immutable(unchangeable – only append, delete handled by e.g., marking only the index) map from keys to values, where both keys and values are arbitrary byte strings. Operations are provided to look up the value associated with a specified key, and to iterate over all key/value pairs in a specified
key range. Internally, each SSTable contains a sequence of blocks (typically each block is 64KB in size, but this is configurable). A block index (stored at the end of the
SSTable) is used to locate blocks; the index is loaded into memory when the SSTable is opened. A lookup can be performed with a single disk seek: we first find the appropriate block by performing a binary search in the in-memory index, and then reading the appropriate block from disk. Optionally, an SSTable can be completely
mapped into memory, which allows us to perform lookups and scans without touching disk.

• A Tablet stores a range of rows from a table using
SSTable files, which are stored in GFS

Tablet Structure

8

64KB

Block

64KB

Block

64KB

Block

Index (block ranges)

SSTable

… 64KB

Block

64KB

Block

64KB

Block

Index (block ranges)

SSTable

…
…

Tablet

Start: aardvark End: apple

Files in GFS

The way that table data are spread across a cluster is that we take the model view and we split it on row boundaries to things called tablets and tablet is a fundamental unit which is managed in single machine in a given time. It stores a continuous range of rows and we describe tablet data wit start row key and end row key.
In order to make each manage the huge tables, the tables are split at row boundaries and saved as tablets. Tablets are each around 100~200 MB and each machine stores about 100 of them (they are stored in GFS). This setup allows fine grain load balancing (if one tablet is receiving lots of queries, it can shed other tablets or move the busy tablet to another machine) and fast rebuilding (when a machine goes down, other machines take one tablet from the downed machine, so 100 machines get new tablet, but the load on each machine to pick up the new tablet is fairly small).

Clients can choose row keys to achieve locality.

Tablet Splitting

• When tablets grow too big, the tablet server splits them
• There’s merging, too

…

“contents:”

“<html>…”

“language:”

 EN

“com.zuppa/menu.html”

“com.yahoo/kids.html”

“com.yahoo/kids.html?d”

“com.website”

“com.aaa”

“com.cnn.edition”
“com.cnn.money”

…

…

“com.yahoo/parents.html”

“com.yahoo/parents.html?d”

“com.xuma”

…

Architecture

• Library linked into every client
• One master server

– Assigns/load-balances tablets to tablet servers
– Detects up/down tablet servers
– Garbage collects deleted tablets
– Coordinates metadata updates (e.g., create table, …)
– Does NOT provide tablet location (we’ll see how this is gotten)
– Master is stateless – its state (e.g., tablet locations, table

schemas, etc.) is in Chubby and Bigtable (recursively)!

• Many tablet servers
– Tablet servers handle data R/W requests to their tablets
– Split tablets that have grown too large
– Tablet servers are also stateless – their state (tablet contents)

is in GFS!

10

Architecture

GFS

holds tablet data

Chubby

holds metadata,
handles master-election,
holds tablet server leases

Bigtable tablet server

serves data

Bigtable tablet server

serves data

Bigtable tablet server

serves data

Bigtable master
performs metadata ops,
tablet server monitoring,

load balancing

Bigtable cell Bigtable client

Bigtable client
library

Bootstrap
location Read/write

Metadata ops

11

Lock service: handles master-election
There are some masters as backups and lock service selects one of them.

Open(): opens the table
 metadata operation like creating a new table is done by master who then talks to lock service.

Locating Tablets

• Since tablets move around from server to server, given
a row, how do clients find the right tablet server?
– Tablet properties: startRowIndex and endRowIndex
– Need to find tablet whose row range covers the target row

• One approach: could use the Bigtable master
– Central server almost certainly would be bottleneck in

large system
– Plus would need to make it reliable – that’s hard

• Instead: store special tables containing tablet location
info in the Bigtable cell itself (recursive design )

12

That special table can itself be split into multiple tablets and then we can lookup reading rows from special metadata tablets to find right tablet.

Tablets are located using a hierarchical
structure (B+ tree-like)

13

…

UserTable_1

UserTable_N

<table_id, end_row>  location

Each METADATA record ~1KB
Max METADATA table = 128MB

Addressable table values in Bigtable = 221 TB

…

METADATA

1st METADATA
(stored in one single
tablet, unsplittable)

Chubby lock file

120.12.10.7

It is essentially a 3 step hierarchy of lookups. The first thing to do is to bootstrap.
The first level is a file stored in Chubby that contains the location of the root tablet. The root tablet contains the location of all tablets in a special METADATA table.
Each METADATA tablet contains the location of a set of user tablets. The root tablet is just the first tablet in the METADATA table, but is treated specially- it is never
Split- to ensure that the tablet location hierarchy has no more than three levels.
The METADATA table stores the location of a tablet under a row key that is an encoding of the tablet's table identifier and its end row. Each METADATA row stores
approximately 1KB of data in memory. With a modest limit of 128 MB METADATA tablets, our three-level location scheme is sufficient to address 234 tablets (or 261
bytes in 128 MB tablets).

*** Client library caches tablet locations (To prevent heavy load on look up tablet machines).

(The file in chubby includes a pointer to ip and port of the machine which serves root tablet)

If Chubby becomes unavailable for an extended period of time, Bigtable becomes unavailable. We recently measured this effect in 14 Bigtable clusters spanning 11 Chubby instances. The average percentage of Bigtable server hours during which some data stored in Bigtable was not available due to Chubby unavailability (caused by either Chubby outages or network issues) was 0.0047%. The percentage for the single cluster that was most affected by Chubby unavailability was 0.0326%.

Tablet Assignment (1/3)

• 1 Tablet => 1 Tablet server
• Master

– keeps tracks of set of live tablet serves and unassigned tablets
– Master sends a tablet load request for unassigned tablet to the

tablet server

• Bigtable uses Chubby to keep track of tablet servers

• On startup a tablet server:
– Tablet server creates and acquires an exclusive lock on

uniquely named file in Chubby directory
– Master monitors the above directory to discover tablet servers

• Tablet server stops serving tablets if it loses its exclusive lock

– Tries to reacquire the lock on its file as long as the file still
exists 14

Chubby provides an efficient mechanism that allows a tablet server to check whether it still holds its lock without incurring network traffic.

Tablet Assignment (2/3)

• If the file no longer exists, tablet server not able to serve
again and kills itself

• Master is responsible for finding when tablet server is no
longer serving its tablets and reassigning those tablets as
soon as possible.

• Master detects by checking periodically the status of the
lock of each tablet server.
– If tablet server reports the loss of lock
– Or if master could not reach tablet server after several attempts.

15

To detect when a tablet server is no longer serving its tablets, the master periodically asks each tablet server for the status of its lock.

Tablet Assignment (3/3)

• Master tries to acquire an exclusive lock on server's file.
– If master is able to acquire lock, then chubby is alive and tablet

server is either dead or having trouble reaching chubby.
– If so master makes sure that tablet server can never serve again by

deleting its server file.
– Master moves all tablets assigned to that server into set of

unassigned tablets.

• If Chubby session expires, master kills itself.

• When master is started, it needs to discover the current
tablet assignment.
– Where does it go for that?

16

If the master is able to acquire the lock, then Chubby is live and the tablet server is either dead or having trouble reaching Chubby, so the master ensures that the tablet server can never serve again by deleting its server le. Once a server's le has been deleted, the master can move all the tablets that were previously assigned to that server into the set of unassigned tablets. To ensure that a Bigtable cluster is not vulnerable to networking issues between the master and Chubby, the master kills itself if its Chubby session expires. However, as described above, master failures do not change the assignment of tablets to tablet servers

Master Startup Operation

• Grabs unique master lock in Chubby
– Prevents others from becoming master

• Scans directory in Chubby for live servers

• Communicates with every live tablet server
– Discover all tablets

• Scans METADATA table to learn the set of tablets
– Unassigned tables are marked for assignment

17

(4) The master scans the METADATA table to learn the set of tablets. Whenever this scan encounters a tablet that is not already assigned, the master adds the tablet to the set of unassigned tablets, which makes the tablet eligible for tablet assignment.

One complication is that the scan of the METADATA table cannot happen until the METADATA tablets have been assigned. Therefore, before starting this scan (step 4), the master adds the root tablet to the set of unassigned tablets if an assignment for the root tablet was not discovered during step 3. This addition ensures that the root tablet will be assigned. Because the root tablet contains the names of all METADATA tablets, the master knows about all of them after it has scanned the root tablet.

The set of existing tablets only changes when a table is created or deleted, two existing tablets are merged to form one larger tablet, or an existing tablet is split into two smaller tablets. The master is able to keep track of these changes because it initiates all but the last. Tablet splits are treated specially since they are initiated by a tablet server. The tablet server commits the split by recording information for the new tablet in the METADATA table. When the split has committed, it notifies the master. In case the split notification is lost (either because the tablet server or the master died), the master detects the new tablet when it asks a tablet server to load
the tablet that has now split. The tablet server will notify the master of the split, because the tablet entry it finds in the METADATA table will specify only a portion of the tablet that the master asked it to load.

Bigtable-related Implementations

• Hbase is the open-source version of Bigtable
– Design is very similar, though not identical
– Terminology is different:

• Tablet -> Region
• Tablet server -> Region server

– API is slightly different, but we’ll ignore that here

• Hbase is part of the Apache Hadoop framework
– Can be used with Hadoop MapReduce
– Can be integrated with Facebook Thrift (high-performance

RPC/marshalling – we talked about it briefly in the RPC lectures)

• Hbase is heavily used by a lot of people
– Facebook, StumbleUpon, Twitter, ...

18

Bigtable Description Outline

• Motivation and goals (last time)
• Schemas, interfaces, and semantics (last time)
• Architecture and implementation (today)
• Key topic: schema design in Bigtable (today)

19

Key Topic: Schema Design
• Designing a schema for Bigtable is very different from

designing a schema for an RDBMS

• The key idea in Hbase is de-normalization, a concept
largely frowned upon in RDBMS

• RDBMS mantra: Normalize your database!
– I.e., remove all redundant data from your DB
– Positives:
– Negatives:

• Bigtable mantra: De-normalize your database!
– Replicate, cluster data if you can!
– Positives:
– Negatives: 20

Row key: any arbitrary byte string
Because we care about time-oriented data, we allow cells to have multiple value with different timestamps. So when we don’t want to overwrite old values (we care about historical information), we use them. For example, for holding multiple versions of a webpage.
There are operations in API we can say give me latest value, or in this timestamp range, or all the values.

Each table is a multi-dimensional sparse map. The table consists of rows and columns, and each cell has a time version. There can be multiple copies of each cell with different times, so they can keep track of changes over time. In his examples, the rows were URLs and the columns had names such as “contents:” (which would store the file data) or “language:” (which would contain a string such as “EN”).

The Bigtable Data Model (row, column, time) → string In the Webtable, row keys are the URL indexed by each row, with DNS names reversed to put the higher-level components ﬁrst, e.g. com.google.maps/index.html. This is an example of Google changing applications to suit infrastructure; the DNS reversal keeps similar pages together and lets whole domains be explored without ranging across too many tablets.

Key Topic: Schema Design
• Designing a schema for Bigtable is very different from

designing a schema for an RDBMS

• The key idea in Hbase is de-normalization, a concept
largely frowned upon in RDBMS

• RDBMS mantra: Normalize your database!
– I.e., remove all redundant data from your DB
– Positives: saves space, great for updates
– Negatives: many reads from DB will involve joining a lot of

data that’s stored in different tables, hence no locality

• Bigtable mantra: De-normalize your database!
– Replicate, cluster data for best read performance!
– Positives: efficient reads
– Negatives: bad for writes, redundancy 21

Row key: any arbitrary byte string
Because we care about time-oriented data, we allow cells to have multiple value with different timestamps. So when we don’t want to overwrite old values (we care about historical information), we use them. For example, for holding multiple versions of a webpage.
There are operations in API we can say give me latest value, or in this timestamp range, or all the values.

Each table is a multi-dimensional sparse map. The table consists of rows and columns, and each cell has a time version. There can be multiple copies of each cell with different times, so they can keep track of changes over time. In his examples, the rows were URLs and the columns had names such as “contents:” (which would store the file data) or “language:” (which would contain a string such as “EN”).

The Bigtable Data Model (row, column, time) → string In the Webtable, row keys are the URL indexed by each row, with DNS names reversed to put the higher-level components ﬁrst, e.g. com.google.maps/index.html. This is an example of Google changing applications to suit infrastructure; the DNS reversal keeps similar pages together and lets whole domains be explored without ranging across too many tablets.

Example: Webtable in RDBMS

• If we were to design a Webtable database in an
RDBMS, how would we have done it?

ID URL Lang …

1234 www.cnn.com EN

Table 1: WebPageInfo

ID Timestamp Contents

1234 1234566000 “<html>..</html>”

Table 2: WebPageContents

ID Anchor ID Anchor
text ID

1234 5678 6543

Table 3: WebPageAnchors

Anchor
text ID

Timestamp Anchor text
value

6543 1234566000 “CNN home”

Table 4: WebPageAnchorText

Database: “Webtable”

Example: Webtable in RDBMS

• What does this mean for queries?
– How do you select the latest anchors to www.cnn.com? (whiteboard)
– Complex joins of many tables

• That probably means different machines, hence poor locality, scale, and
performance!

ID URL Lang …

1234 www.cnn.com EN

Table 1: WebPageInfo

ID Timestamp Contents

1234 1234566000 “<html>..</html>”

Table 2: WebPageContents

ID Anchor ID Anchor
text ID

1234 5678 6543

Table 3: WebPageAnchors

Anchor
text ID

Timestamp Anchor text
value

6543 1234566000 “CNN home”

Table 4: WebPageAnchorText

Database: “Webtable”

http://www.cnn.com/

Webtable in Bigtable

• Everything’s stored in one single table, with locality
considerations, hence queries like that are very fast

• But there’s can be a lot of redundancy:
– Example 1: to efficiently retrieve every link to which cnn.com points to,

you’d need to add a column family, e.g., “link:”, into Webtable, which will
replicate the “anchor” data in every row!

– Example 2 (more subtle): each <row name, column name, and
timestamp> is replicated for each and every item down in the SSTables!

• Consistent updates are hard when you have redundancy in DB

24

Webtable

Another Example:
StumbleUpon’s Time Series DB

• StumbleUpon.com is a site/content recommendation service
• As all big sites do, they have big scaling issues, too
• They needed a database that could store enormous amounts

of time series data at high rates (<series, time>  value)

• They created and open-sourced OpenTSDB, a time-series
database based on Hbase

• Let’s look at their
recommendations
for how to define
Hbase schemas

25

Movie Time: OpenTSDB Schemas

• Nice presentation from StumbleUpon on the choice and
evolution of their Hbase schemas for OpenTSDB

http://www.cloudera.com/content/cloudera/en/resources/library/hbasecon/
video-hbasecon-2012-lessons-learned-from-opentsdb.html

 26

http://www.cloudera.com/content/cloudera/en/resources/library/hbasecon/video-hbasecon-2012-lessons-learned-from-opentsdb.html
http://www.cloudera.com/content/cloudera/en/resources/library/hbasecon/video-hbasecon-2012-lessons-learned-from-opentsdb.html
http://www.cloudera.com/content/cloudera/en/resources/library/hbasecon/video-hbasecon-2012-lessons-learned-from-opentsdb.html
http://www.cloudera.com/content/cloudera/en/resources/library/hbasecon/video-hbasecon-2012-lessons-learned-from-opentsdb.html
http://www.cloudera.com/content/cloudera/en/resources/library/hbasecon/video-hbasecon-2012-lessons-learned-from-opentsdb.html
http://www.cloudera.com/content/cloudera/en/resources/library/hbasecon/video-hbasecon-2012-lessons-learned-from-opentsdb.html
http://www.cloudera.com/content/cloudera/en/resources/library/hbasecon/video-hbasecon-2012-lessons-learned-from-opentsdb.html
http://www.cloudera.com/content/cloudera/en/resources/library/hbasecon/video-hbasecon-2012-lessons-learned-from-opentsdb.html
http://www.cloudera.com/content/cloudera/en/resources/library/hbasecon/video-hbasecon-2012-lessons-learned-from-opentsdb.html
http://www.cloudera.com/content/cloudera/en/resources/library/hbasecon/video-hbasecon-2012-lessons-learned-from-opentsdb.html

An Exercise for You:
Define Bigtable Schema for (Simplified) Twitter

27

• At the exam, you’ll get a Bigtable schema design question

– To prep, do this example alone or in teams, ask specific questions on Piazza

• Exercise: Define a schema for an efficient, simplified version of Twitter
– Use Webtable schema as reference
– At the end of the class, we’ll have a few more examples on schema design

• Recommended design steps:
– Restrict Twitter to some basic functionality and formulate the kinds of queries

you might need to run to achieve that functionality
• Example functionality: list tweets from the persons the user follows

– Identify locality requirements for your queries to be efficient
– Design your Bigtable schema (row names, column families, column names

within each family, and cell contents) that would support the queries efficiently
– Hint:

• De-normalize (replicate tweets across followers for fast listing of tweets)
• Reflect on why it’s OK to replicate (e.g., storage is cheap, tweets are not editable!)

Bigtable Summary

• Scalable distributed storage system for semi-structured
data

• Offers a multi-dimensional-map interface
– <row, column, timestamp>  value

• Offers atomic reads/writes within a row

• Key design philosophies: statelessness and layered
design, which are key for scalability
– All Bigtable servers (including master) are stateless
– All state is stored in reliable GFS and Chubby systems
– Bigtable leverages strong-semantic operations in these systems

(appends in GFS, file locks in Chubby, atomic row-updates of
Bigtable itself)

28

	�Distributed Systems �[Fall 2012]��
	Data Model (Reminder)
	API (Reminder)
	Bigtable Description Outline
	Bigtable Description Outline
	Tablets
	Tablet Structure
	Tablet Structure
	Tablet Splitting
	Architecture
	Architecture
	Locating Tablets
	Tablets are located using a hierarchical structure (B+ tree-like)
	Tablet Assignment (1/3)
	Tablet Assignment (2/3)
	Tablet Assignment (3/3)
	Master Startup Operation
	Bigtable-related Implementations
	Bigtable Description Outline
	Key Topic: Schema Design
	Key Topic: Schema Design
	Example: Webtable in RDBMS
	Example: Webtable in RDBMS
	Webtable in Bigtable
	Another Example:�StumbleUpon’s Time Series DB
	Movie Time: OpenTSDB Schemas
	An Exercise for You:�Define Bigtable Schema for (Simplified) Twitter
	Bigtable Summary

