
Distributed Systems Fundamentals

[Fall 2013]

Lec 2: Example use case: The Web

1

Reminder/Quiz

• Define distributed systems

• Distributed systems goals

• Distributed systems challenges

2

Reminder/Quiz

• Define distributed systems

• Distributed systems goals
– Raise the level of abstraction, provide location transparency,

scalable capacity, availability, modularity

• Distributed systems challenges
– Interfaces, scalability, consistency, fault-tolerance, security,

implementation
3

Local OS Local OS Local OS

Middleware services

Distributed applications

Network

Linux, OSX, Windows

Distributed FSes, distributed

computation systems, locking

services, CDNs, …

Gmail, search, Facebook,

mobile apps, data analytics, …

Today: Web Architectures

• Simple architectures

– From Tanenbaum textbook

• Real-world architectures

– Acknowledgements to Aaron Bannert, whose slides

were used here (his slides no longer available online)

4

What Are Some Simple Architectures?

• Recall Tanenbaum reading for today

5

1. The Client-Server Model

• Popular protocols between clients/servers:

– HTTP, HTTPS

– AJAX: asynchronous requests

– XMLRPC, SOAP: web service API requests
6

Client

Server

requests responses

time

request response

wait for result

provide service

Server-Side Processing

• Initially, Web servers returned static HTML pages

– No processing on server, no state, no user-provided data

• 1994: CGI (Common Gateway Interface)

– Server invokes a program upon each request

– Program gets client data from stdin, outputs HTML to stdout

– Example: Listing 1

• Then came a lot of server-side frameworks:

– Django, ASP, JSP, Ruby-on-Rails, …

– Much more flexible and extensible than CGI

– Separate presentation, logic, and DB

– Example: Listing 2
7

• What are the benefits/problems with this architecture?

 + Modularity, better reliability/scalability opportunities

- Poor user latency

2. The Three-Tiered Architecture

8

application

database

time

request

operation
return

result

wait for result

wait for

data

request data return data

UI

app

server

DB

Client (browser)

S
e

rv
ic

e

WAN

LAN

LAN

user interface

• In reality, the line is much fuzzier and the architecture is

not as clean on service-side…

Client-side Computation

9

user interface

application

database

user interface

Client (browser)

S
e

rv
ic

e

database

user interface

application

application

user interface

database

database

application

Javascript, Flash, NativeClient, …

3. Real Architectures

10

Clients (browsers)

• Discuss each layer:

– What constitutes it?

– What does it do?

– Hardware requirements

– Deployment choices

External Caching Tier

11

Clients (browsers)

• What is this?

– Squid, Apache mod_proxy

– Content-delivery networks

(CDNs), e.g., Akamai

External Caching Tier

12

Clients (browsers)

• What does it do?

– Caches outbound data

• Images, CSS, XML,

HTML, pictures, videos,

…

– Denial of Service defense

– Cache may be close to user

External Caching Tier

13

Clients (browsers)

• Hardware requirements

– Lots of memory

– Moderate to little CPU

– Fast network

– Potentially distributed

across the world

Front-end Tier

14

Clients (browsers)

• What is this?

– Apache

– thttpd

– Tux Web Server

– IIS

Front-end Tier

15

Clients (browsers)

• What does it do?

– HTTP, HTTPS

– Serves static content from

disk

– Generates dynamic content

• CGI/PHP/python/Django/..

– Dispatches requests to the

App Server Tier

• Tomcat, Weblogic,

Websphere, JRun, …

Front-end Tier

16

Clients (browsers)

• Hardware requirements

– Lots and lots of memory

• Memory is main bottleneck I

in web serving

– CPU depends on usage

• Dynamic pages need CPU

• Static pages need little CPU

– Cheap slow disk is enough

17

Clients (browsers)

• What does it do?
– Dynamic page processing

• ASP, JSP

• Servlets

– Internal services

• Eg.: search, shopping

cart, credit card

processing

• There can be a tens of

these services!

Application Server Tier

18

Clients (browsers)

• How does it work?
1. Web Tier generates the

request using

• Home-brewed RPC

• REST

• Corba

• Java RMI

• SOAP

• XMLRPC

2. App Server processes

request and responds

Application Server Tier

19

Clients (browsers)

Application Server Tier

• Decoupling of services is GOOD

– Manage Complexity using well-defined APIs

• BUT: remote calling overhead can be expensive!

– Marshaling of data, sockets, net latency, …

– SOAP, XMLRPC … don’t scale that well…

– We’ll talk about some

efficient RPC systems

 next week

20

Clients (browsers)

• Hardware requirements

– Lots and lots and lots of memory

• App Servers are very memory hungry

– Fast CPU required, and lots of them

– Disk typically isn’t needed

Application Server Tier

– (This will be an expensive

 machine.)

21

Clients (browsers)

• What is this?
– Relational databases (distributed or not)

• PostgreSQL, SQLite, Oracle, MySQL, Berkeley DB

– Non-relational databases or distributed file systems
• Bigtable, Megastore, MongoDB, Hadoop Hbase, HDFS, …

• Tradeoffs:

– Relational databases don’t scale that well, but provide
convenient interface, sound properties (e.g., strong consistency)

– Non-relational DBs scale better

Database Tier

22

Clients (browsers)

• Hardware Requirements
– Entirely dependent upon application

– Likely to be your most expensive machine(s)

– Tons of memory

– Large disks

– Spindles galore

– RAID is useful for redundancy

Database Tier

23

Clients (browsers)

• What is this?
– Object cache (e.g., intermediary

app-level results)

• What applications?
– Memcached

– Application-level caching inside the
application servers

Internal Caching Tier

24

Clients (browsers)

• What does it do?
– Caches objects closer to the

Application or Web Tiers

– Tuned for the application

• The external cache is generic

– Very fast access (<1ms)

Internal Caching Tier

25

Clients (browsers)

• Hardware requirements
– Lots of Memory

– Little or no disk

– Moderate to low CPU

– Fast Network

Internal Caching Tier

26

Clients (browsers)

• Lots of extra services commonly used in Web services

– DNS

– Time synchronization (we’ll see why this is very important)

– System health monitoring

– Intrusion detection systems

– …

Misc. Services

27

Clients (browsers)

The Glue

• Load balancers

• Routers

• Switches

• Firewalls

Whew! What Did We Learn?

• Web architectures are complex

• But there are well-known solutions

• There are lots of tradeoffs and understanding the

workload is key in choosing the right product to use at

each layer

• Each layer has distinct hardware requirements and

likely distinct bottlenecks

– Except for RAM, which is very popular

• What does the last observation tell us?

28

Next time

• Another case study: Cloud computing

– What it means and how it began

• Remember to look on website for HW2

– HW 2 is graded and is MUCH longer than HW1

– So start it ASAP after it's released

– TA will give an overview next time of YFS series

29

Code Listing 1: CGI Script

http://www.djangobook.com/en/1.0/chapter01/

#!/usr/bin/python

import MySQLdb

print "Content - Type: text/html"
print
print "<html><head><title>Books</title></head>"
print "<body>"
print "<h1>Books</h1>"
print ""

connection = MySQLdb.connect(user='me', passwd='letmein', db='my_db')
cursor = connection.cursor()
cursor.execute("SELECT name FROM books ORDER BY pub_date DESC LIMIT 10")
for row in cursor.fetchall():
 print "%s" % row[0]

print ""
print "</body></html>"

connection.close()

Code Listing 2: Django

http://www.djangobook.com/en/1.0/chapter01/

models.py (the database tables)

from django.db import models

class Book(models.Model):
 name = models.CharField(maxlength=50)
 pub_date = models.DateField()

views.py (the business logic)

from django.shortcuts import render_to_response
from models import Book

def latest_books (request):
 book_list = Book.objects.order_by(' - pub_date')[:10]
 return render_to_response('latest_books.html', {'book_list': book_list})

(continued on other side)

http://www.djangobook.com/en/1.0/chapter01/
http://www.djangobook.com/en/1.0/chapter01/

urls.py (the URL configuration)

from django.conf.urls.defaults import *
import views

urlpatterns = patterns('',
 (r'latest/$', views.latest_books),
)

latest_books.html (the template)

<html><head><title>Books</title></head>
<body>
<h1>Books</h1>

{% for book in book_list %}
{{ book.name }}
{% endfor %}

</body></html>

	Distributed Systems [Fall 2012] [W4995-2]
	Last Time (Reminder/Quiz)
	Slide 3
	Today
	What Are Some Simple Architectures?
	1. The Client-Server Model
	Server-Side Processing
	2. The Three-Tiered Architecture
	Client-side Computation
	3. Real Architectures
	External Caching Tier
	Slide 12
	Slide 13
	Front-end Tier
	Slide 15
	Slide 16
	Application Server Tier
	Slide 18
	Slide 19
	Slide 20
	Database Tier
	Slide 22
	Internal Caching Tier
	Slide 24
	Slide 25
	Misc. Services
	The Glue
	Whew! What Did We Learn?
	Next time

