
Distributed Systems Fundamentals

[Fall 2013]

Lec 2: Example use case: The Web
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Reminder/Quiz

• Define distributed systems

• Distributed systems goals

• Distributed systems challenges
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Reminder/Quiz

• Define distributed systems

• Distributed systems goals
– Raise the level of abstraction, provide location transparency, 

scalable capacity, availability, modularity 

• Distributed systems challenges
– Interfaces, scalability, consistency, fault-tolerance, security, 

implementation
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Local OS Local OS Local OS

Middleware services

Distributed applications

Network

Linux, OSX, Windows

Distributed FSes, distributed 

computation systems, locking 

services, CDNs, … 

Gmail, search, Facebook, 

mobile apps, data analytics, …



Today: Web Architectures

• Simple architectures

– From Tanenbaum textbook

• Real-world architectures

– Acknowledgements to Aaron Bannert, whose slides 

were used here (his slides no longer available online)
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What Are Some Simple Architectures?

• Recall Tanenbaum reading for today
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1. The Client-Server Model

• Popular protocols between clients/servers:

– HTTP, HTTPS

– AJAX: asynchronous requests

– XMLRPC, SOAP: web service API requests
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Server-Side Processing

• Initially, Web servers returned static HTML pages

– No processing on server, no state, no user-provided data

• 1994: CGI (Common Gateway Interface)

– Server invokes a program upon each request

– Program gets client data from stdin, outputs HTML to stdout

– Example: Listing 1

• Then came a lot of server-side frameworks:

– Django, ASP, JSP, Ruby-on-Rails, …

– Much more flexible and extensible than CGI

– Separate presentation, logic, and DB

– Example: Listing 2
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• What are the benefits/problems with this architecture?

     + Modularity, better reliability/scalability opportunities

-  Poor user latency

2. The Three-Tiered Architecture
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• In reality, the line is much fuzzier and the architecture is 

not as clean on service-side…

Client-side Computation
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3. Real Architectures
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Clients (browsers)

• Discuss each layer:

– What constitutes it?

– What does it do?

– Hardware requirements

– Deployment choices



External Caching Tier
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Clients (browsers)

• What is this?

– Squid, Apache mod_proxy

– Content-delivery networks 

(CDNs), e.g., Akamai



External Caching Tier
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Clients (browsers)

• What does it do?

– Caches outbound data

• Images, CSS, XML, 

HTML, pictures, videos, 

…

– Denial of Service defense

– Cache may be close to user



External Caching Tier
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Clients (browsers)

• Hardware requirements

– Lots of memory

– Moderate to little CPU

– Fast network

– Potentially distributed 

across the world



Front-end Tier
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Clients (browsers)

• What is this?

– Apache

– thttpd

– Tux Web Server

– IIS



Front-end Tier
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Clients (browsers)

• What does it do?

– HTTP, HTTPS

– Serves static content from 

disk

– Generates dynamic content

• CGI/PHP/python/Django/..

– Dispatches requests to the 

App Server Tier

• Tomcat, Weblogic, 

Websphere, JRun, …



Front-end Tier
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Clients (browsers)

• Hardware requirements

– Lots and lots of memory

• Memory is main bottleneck    I   

in web serving

– CPU depends on usage

• Dynamic pages need CPU

• Static pages need little CPU

– Cheap slow disk is enough
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Clients (browsers)

• What does it do?
– Dynamic page processing

• ASP, JSP

• Servlets
 

– Internal services

• Eg.: search, shopping 

cart, credit card 

processing

• There can be a tens of 

these services!

Application Server Tier
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Clients (browsers)

• How does it work?
1. Web Tier generates the 

request using

• Home-brewed RPC

• REST

• Corba

• Java RMI

• SOAP

• XMLRPC

2. App Server processes 

request and responds

Application Server Tier
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Clients (browsers)

Application Server Tier

• Decoupling of services is GOOD

– Manage Complexity using well-defined APIs

• BUT: remote calling overhead can be expensive!

– Marshaling of data, sockets, net latency, …

– SOAP, XMLRPC … don’t scale that well…

– We’ll talk about some                                                              

efficient RPC systems                                                                       

  next week
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Clients (browsers)

• Hardware requirements

– Lots and lots and lots of memory

• App Servers are very memory hungry

– Fast CPU required, and lots of them

– Disk typically isn’t needed

Application Server Tier

– (This will be an expensive         

      machine.) 
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Clients (browsers)

• What is this?
– Relational databases (distributed or not)

• PostgreSQL, SQLite, Oracle, MySQL, Berkeley DB

– Non-relational databases or distributed file systems
• Bigtable, Megastore, MongoDB, Hadoop Hbase, HDFS, …

• Tradeoffs:

– Relational databases don’t scale that well, but provide 
convenient interface, sound properties (e.g., strong consistency)

– Non-relational DBs scale better

Database Tier
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Clients (browsers)

• Hardware Requirements
– Entirely dependent upon application

– Likely to be your most expensive machine(s)

– Tons of memory

– Large disks

– Spindles galore

– RAID is useful for redundancy

Database Tier
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Clients (browsers)

• What is this?
– Object cache (e.g., intermediary 

app-level results)

• What applications?
– Memcached

– Application-level caching inside the 
application servers

Internal Caching Tier
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Clients (browsers)

• What does it do?
– Caches objects closer to the 

Application or Web Tiers

– Tuned for the application

• The external cache is generic

– Very fast access (<1ms)

Internal Caching Tier
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Clients (browsers)

• Hardware requirements
– Lots of Memory

– Little or no disk

– Moderate to low CPU

– Fast Network

Internal Caching Tier
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Clients (browsers)

• Lots of extra services commonly used in Web services

– DNS

– Time synchronization (we’ll see why this is very important)

– System health monitoring

– Intrusion detection systems

– …

Misc. Services
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Clients (browsers)

The Glue

• Load balancers

• Routers

• Switches

• Firewalls



Whew! What Did We Learn?

• Web architectures are complex

• But there are well-known solutions

• There are lots of tradeoffs and understanding the 

workload is key in choosing the right product to use at 

each layer

• Each layer has distinct hardware requirements and 

likely distinct bottlenecks

– Except for RAM, which is very popular

• What does the last observation tell us?
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Next time

• Another case study: Cloud computing

– What it means and how it began

• Remember to look on website for HW2

– HW 2 is graded and is MUCH longer than HW1

– So start it ASAP after it's released

– TA will give an overview next time of YFS series

29



Code Listing 1: CGI Script 

http://www.djangobook.com/en/1.0/chapter01/ 

#!/usr/bin/python  
 
import MySQLdb  
 
print "Content - Type: text/html"  
print  
print "<html><head><title>Books</title></head>"  
print "<body>"  
print "<h1>Books</h1>"  
print "<ul>"  
 
connection = MySQLdb.connect(user='me', passwd='letmein', db='my_db')  
cursor = connection.cursor()  
cursor.execute("SELECT name FROM books ORDER BY pub_date DESC LIMIT 10")  
for row in cursor.fetchall():  
    print "<li>%s</li>" % row[0]  
 
print "</ul>"  
print "</body></html>"  
 
connection.close()  

 

Code Listing 2: Django 

http://www.djangobook.com/en/1.0/chapter01/ 

# models.py (the database tables)  
 
from  django.db import models  
 
class Book(models.Model):  
    name = models.CharField(maxlength=50)  
    pub_date = models.DateField()  
 
 
# views.py (the business logic)  
 
from django.shortcuts import render_to_response  
from models import Book  
 
def latest_books (request):  
    book_list = Book.objects.order_by(' - pub_date')[:10]  
    return render_to_response('latest_books.html', {'book_list': book_list})  
  
 
# (continued on other side)  
 
 
 

http://www.djangobook.com/en/1.0/chapter01/
http://www.djangobook.com/en/1.0/chapter01/


# urls.py (the URL configuration)  
 
from django.conf.urls.defaults import *  
import  views  
 
urlpatterns = patterns('',  
    (r'latest/$', views.latest_books),  
) 
 
 
# latest_books.html (the template)  
 
<html><head><title>Books</title></head>  
<body>  
<h1>Books</h1>  
<ul>  
{% for book in book_list %}  
<li>{{ book.name }}</li>  
{% endfor %}  
</ul>  
</body></html>  
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