

Distributed Systems

[Fall 2012]

Lec 18: Agreement in Distributed Systems:
Paxos

Slide acks: Jinyang Li

1

Last Times: Agreement/Commitment

• 2PC: simple, safe, but blocking commitment protocol
• 3PC: unsafe, but live commitment protocol

• Paxos: safe and mostly live agreement protocol
– Agreement is somewhat different from commitment in semantic

• Commitment = everyone agrees
• Agreement = sufficient agree so that I can always tell what the outcome was

• NLP impossibility result: you can’t have both liveness and
safety in an asynchronous network

• Today:
– Continue Paxos
– One application of it in a real system: Google’s Chubby

2

Paxos Functioning (Reminder)
Proposer

(a.k.a. leader)

Acceptors

One successful round
(trial) of Paxos

• Similar to 2PC, but also different…
• Two differentiating mechanisms:
1. Proposal ordering and

acceptance protocol
– Acceptors accept only proposals of

monotonic sequence numbers
– Once a value is accepted, acceptors

ask for that value to be preserved

2. Majorities
– (half+1) need to agree to accept proposal
– Guarantees that if two proposals are

accepted (simultaneously or sequentially),
there will be at least one overlapping node
to arbitrate them and make sure their
values are the same

Outline of Paxos Presentation

• High-level overview (last time)
• Detailed operation (today)

4

Paxos with Multiple Proposers

5

propose (2)

agree(2,nil)

propose (1)

reject(1, 2) commit(2, v)

accept(2),
chosen
value is v

• Case 1: proposals
with lower sequence
numbers

A1 A2 A3 P1 P2

? reject(1,2)

Paxos with Multiple Proposers

• Case 2:
concurrent
monotonic
proposals

6

propose (1)

agree(1,nil)

propose (2)

? commit(1, v) agree(2,nil)

commit (2, v’)

? accept(2),
chosen value is v’

A1 A2 A3 P1 P2

? accept(1)

Paxos with Multiple Proposers

• Case 3:
sequential
monotonic
proposals

7

propose (1)

agree(1,nil)

commit(1, v)

? agree(2,v)

propose(2)

? commit(2, v)

A1 A2 A3 P1 P2

?
agree(1),
chosen
value is v

Paxos with Failures – Why It works?

• Back to Case 2:
concurrent
monotonic
proposals

• Add network
partitions

8

propose (1)

agree(1,nil)

propose (2)

commit(1, v) agree(2,nil)

no majority => cancel, sleep, and
try again (unless you hear about
the chosen value in the meantime
– P1 will announce the chosen
value, v, to everyone)

A1 A2 A3 P1 P2

reject(1,2)

Paxos with Failures – Why It works?

• Back to Case 2:
concurrent
monotonic
proposals

• Add network
partitions

9

propose (1)

agree(1,nil)

propose (2)

commit(1, v)
agree(2,nil)

accept(1)

A1 A2 A3 P1 P2

Majorities overlap:
A2 has seen both
proposals and can
arbitrate them

no majority =>
cancel, sleep, and
try again

? accept(1),
chosen value

is v
(P1’s default)

Paxos with Failures – Why It Works?

• Back to Case 3:
sequential
monotonic
proposals

• Add network
failures

10

propose (1)

propose(2)

A1 A2 A3 P1 P2

…

accept(2), chosen value
is still v, thanks to A2

P3

propose(3)

accept(3), chosen value
is still v, thanks to A1

Paxos Safety

• Stems from:
– At most one value can be chosen by simultaneous

proposals
– After a value is chosen, any subsequent proposal will

preserve it
– Any chosen value is one of the proposed values

• Nodes learn about chosen values:
– From leader, which announces the chosen value after a

successful round
– Or by becoming leaders themselves, making a new

proposal, and learning about what the chosen value
was in this way

11

Paxos Liveness

• A Paxos run consists of one or more trials (rounds)
run by different nodes

• If one leader dies, another one times out and offers be
a leader

• A Paxos run is successful if at least a majority of the
nodes is up and accepts the proposal

• But, there are degenerate cases where Paxos just
doesn’t finish

12

Paxos May Not
Terminate

• For example, if two or
more proposers race
to propose new
values, they might
step on each other
toes all the time
– This is a liveness

exception

• With randomness, this

occurs exceedingly
rarely 13

Proposer Proposer

Algorithm: Node State

• Each node maintains:
– na, va: highest proposal # accepted and its

corresponding accepted value
– nh: highest proposal # seen
– myn: my proposal # in the current Paxos round

Algorithm: Phase 1

• Phase 1 (Propose)
– A node decides to be proposer (a.k.a. leader)
– Leader chooses myn > nh
– Leader sends <propose, myn> to all nodes
– Upon receiving <propose, n>

If n < nh
 reply <reject, nh>
Else
 nh = n
 reply <agree, na,va>

This node will never accept
any proposal lower than n

in the future

Algorithm: Phase 2

• Phase 2 (Commit):
– If proposer gets “agree” from a majority

V = value corresponding to the highest na received
If V == null, then proposer can pick any V
Send <commit, myn, V> to all nodes

– If leader fails to get majority prepare-ok
• Delay and restart Paxos

– Upon receiving <accept, n, V>
If n < nh

 reply with <reject, nh>
else
 na = n; va = V; nh = n
 reply with <accept>

Algorithm: Phase 3

• Phase 3 (Decide)
– If leader gets accept-ok from a majority

• Send <decide, va> to all nodes

– If leader fails to get accept-ok from a majority
• Delay and restart Paxos

Exam FAQ

• When is the value V chosen?
1. When leader receives a majority prepare-ok and

proposes V
2. When a majority nodes accept V
3. When the leader receives a majority accept-ok for

value V

Exam FAQ

• What if more than one leader is active?
• Suppose two leaders use different proposal number,

N0:10, N1:11
• Can both leaders see a majority of prepare-ok?

Exam FAQ

• What if leader fails while sending accept?
• What if a node fails after receiving accept?

– If it doesn’t restart …
– If it reboots …

• What if a node fails after sending prepare-ok?
– If it reboots …

Using Paxos

• As we said before, Paxos can be used for lots of things
– Distributed lock service
– Choose master/primary in a master-slave/primary-

secondary system
– Choose which operation to perform next
– …

• It can used in conjunction with 2PC to implement ACID
transactions
– For exam: think about how it would be used, what

problems it would solve, etc.

• Next time: Chubby – Google’s distributed lock service

	�Distributed Systems �[Fall 2012]��
	Last Times: Agreement/Commitment
	Paxos Functioning (Reminder)
	Outline of Paxos Presentation
	Paxos with Multiple Proposers
	Paxos with Multiple Proposers
	Paxos with Multiple Proposers
	Paxos with Failures – Why It works?
	Paxos with Failures – Why It works?
	Paxos with Failures – Why It Works?
	Paxos Safety
	Paxos Liveness
	Paxos May Not �Terminate
	Algorithm: Node State
	Algorithm: Phase 1
	Algorithm: Phase 2
	Algorithm: Phase 3
	Exam FAQ
	Exam FAQ
	Exam FAQ
	Using Paxos

