
Distributed Systems

Lec 16: Agreement in Distributed Systems:
 Two-phase Commit Problems,

 Three-phase Commit

Slide acks: Jinyang Li, “The Paper Trail”

(http://news.cs.nyu.edu/~jinyang/fa10/notes/ds-paxos.ppt,

http://the-paper-trail.org/blog/)

Agreement in Distributed Systems

• The crown problem of distributed systems
– A.k.a. consensus

• Despite having different views of the world, all nodes in a
distributed system must act in concert, e.g.:
– All replicas that store the same object O must apply all updates to O

in the same order (consistency)
– All nodes involved in a transaction must either commit or abort their

portion of the transaction (atomicity)

• All that, despite FAILURES

– Nodes can restart, die, be slow
– Networks can be slow, as well (but we assume they’re reliable here,

i.e., all network messages are eventually received)
4

The Agreement Problem

• Some nodes propose values (or actions) by sending them
to the others

• All nodes must decide whether to accept or reject those
values

• Examples of values to agree on:

– Whether or not to commit a transaction to a DB
– The value of the clock
– The leader that will coordinate some higher-level protocol
– Who has a lock in a distributed lock service among multiple clients

that request it almost simultaneously

– Whether to move to the next stage of a distributed alg. (a barrier)

5

v

v

v

v v

v

v’

Agreement Requirements

• Safety (correctness)
– All nodes agree on the same value
– The agreed value X has been proposed by some node

• Liveness (fault tolerance, availability)
– If less than some fraction of nodes crash, the rest

should still reach agreement

• I.e., agreement aims to give the behavior of a single

machine with the fault-tolerance of multiple machines

6

Failure Models

• For these classes, we define agreement in the context of
two failure models:

• Synchronous systems: machines and networks can only be
delayed by a bounded time
– I.e., using a sufficiently large timeout, you can tell with certainty

whether the machine crashed or it or the network is just slow

• Asynchronous systems: machines and networks can be
arbitrarily delayed  more general
– There’s no way you can tell whether a machine has crashed or is

just slow

• We’ll see that different safety/liveness properties are
possible under different models

7

What We’ve Learned So Far

• We’ve already been discussing about agreement, e.g.:
– Logical clocks are a form of agreement (what’s the time?)
– Distributed mutex algos (who has lock?)

– Two-phase commit (commit or abort?)

• However, none of the algorithms thus far are particularly
fault-tolerant (or live during failures)
– Distributed mutex algo block when any node crashes
– Two-phase commit (2PC) blocks when TC crashes (we’ll

see example today)

• Last time, we talked about fault recovery
– Recovering 2PC (will finish today)

8

Today

• Fault recovery is important, but is insufficient, because
recovery can be very slow
– E.g., the 2PC coordinator may be down for a long time before it

reboots, you don’t want the whole protocol to wait for it

• You want fault tolerance
– I.e., high availability despite concurrent faults
– (The ability to recover from faults is still important, so that a failed

replica can re-join the group after reboot as seamlessly as possible)

• Today’s (and next time’s) plan:
– Finish discussion about recovery-enabled 2PC
– Talk about the fault-tolerance limitations of 2PC
– Introduce 3 phase commit (3PC)
– Introduce Paxos

9

Recovery-enabled
Two-Phase Commit

(repeat from last time’s slides, as we left them uncovered)

10

2PC (with consensus terminology)

Phase 1: proposal Phase 2: decision

TC

A

B

C

proposal (e.g., “commit
transaction tid”)

vote (yes/no)

TC

A

B

C

decision (commit/abort)

OK

11

D D

Recovery in Two-Phase Commit

• Easy: just log the state-changes

– Participants: prepared, uncertain, committed/aborted

– Coordinator: prepared, committed/aborted, done

– The messages are idempotent!
• In recovery, resend whatever message was next
• If coordinator and uncommitted: abort

• Two cases:

– Recovery after timeouts
– Recovery after crashes and reboots
– (Note: you can’t differentiate between the above in a

realistic, asynchronous network!) 12

Handling Timeouts

• Examples:
Ex. 1: TC times out waiting for B’s vote
Ex. 2: B times out waiting for TC’s decision message

• Btw, timeouts aren’t necessarily due to network
– They could due to slow, overloaded hosts

13

vote
TC

A

B

C

proposal

D

Ex. 1 TC

A

B

C

decision
OK

D

Ex. 2

Handling Timeouts on A/B/C/D

• TC times out waiting for B (or A/C/D)’s vote
• Can TC unilaterally decide to commit?
• Can TC unilaterally decide to abort?

14

vote
TC

A

B

C

proposal

D

Ex. 1

Handling Timeout on TC

• B times out waiting for TC’s
decision

• If B voted “no” …
– Can it unilaterally abort?

• If B responded with “yes” …
– Can it unilaterally abort?
– Can it unilaterally commit?

15

TC

A

B

C

decision
OK

D

Ex. 2

Termination Protocol

• If B times out on TC and has voted “yes”, then
execute termination protocol:

• B sends “status” message to A
– If A has received “commit”/”abort” from TC, …
– If A has not responded to TC, …
– If A has responded with “no”, …
– If A has responded with “yes”, …

16

TC

A

B

C

decision
OK

D

status?

Handling Crash and Reboot

• Nodes cannot back out if commit is decided

Examples:

• Ex 3: TC crashes just after deciding “commit”
– Cannot forget about its decision after reboot

• Ex 4: A/B/C/D crashes after sending “yes”
– Cannot forget about their response after reboot

17

Handling Crash and Reboot

• All nodes must log protocol progress
• What and when does TC log to disk?
• What and when does A/B/C/D log to disk?

18

vote
TC

A

B

C

proposal

D

TC

A

B

C

decision
OK

D

Phase 1 Phase 2

Recovery Upon Reboot

• Ex 3: TC crashes:
– If TC finds no “commit” on disk, abort
– If TC finds “commit”, commit

• Ex 4: A/B/C/D crash:

– If A/B/C/D finds no “yes” on disk, abort
– If A/B/C/D finds “yes”, run termination protocol to decide

19

Fault-Tolerance Limitations of
Recovery-enabled 2PC

• Even with recovery enabled, 2PC isn’t really fault-
tolerant (or live), because it can block even when one
(or a few) machines fail
– Blocking means that it doesn’t make progress during

the failure

• Can you think of an example fault scenario?

20

Example Blocking Failure for 2PC

• Scenario:
– TC sends commit outcome to A, A gets it and commits, and then

both TC and A die
– B, C, D have already also replied Yes, have locked their mutexes,

and now need to wait for TC or A to reappear
• They cannot recover the decision with certainty until TC or A are online

– If that takes a long time (e.g., a human needs to replace a hardware
component), then the protocol is stuck and availability goes down

– If TC is also participant, as it typically is, then this protocol is
vulnerable to a single-node failure (the TC’s failure)!

• This is why 2 phase commit is called a blocking protocol
– Btw, the original, non-recovery-enabled protocol blocked even more

frequently, but we’ve fixed some of the obvious glitches

• In context of consensus requirements: 2PC is safe, but not live 21

Fixing Two-Phase Commit

• Surprisingly enough, there’s no simple fix!
– Creating a protocol that’s both correct and available is

tough!
– In fact, as we’ll see at the end of the class, it’s impossible

in the general sense (and it can be proven so!!)
– But it’s tough to even get close to that

• It took 25 years to come up with safe protocol
– 2PC appeared in 1979 (Gray)

– In 1981, a basic, unsafe 3PC was proposed (Stonebraker)
– In 1998, the safe, mostly live Paxos appeared (Lamport)
– Why so difficult? Well, we’ll see later…

22

Next Time

• Three Phase Commit
• Paxos
• Usage of them

23

Extra Readings

• Two-phase commit:
– http://the-paper-trail.org/blog/consensus-protocols-two-

phase-commit/

• Three-phase commit:
– http://the-paper-trail.org/blog/consensus-protocols-

three-phase-commit

• Paxos:
– http://the-paper-trail.org/blog/consensus-protocols-

paxos/

• FLP impossibility result in distributed systems:
– http://betathoughts.blogspot.com/2007/06/brief-history-

of-consensus-2pc-and.html

 24

http://the-paper-trail.org/blog/consensus-protocols-two-phase-commit/
http://the-paper-trail.org/blog/consensus-protocols-two-phase-commit/
http://the-paper-trail.org/blog/consensus-protocols-two-phase-commit/
http://the-paper-trail.org/blog/consensus-protocols-three-phase-commit
http://the-paper-trail.org/blog/consensus-protocols-three-phase-commit
http://the-paper-trail.org/blog/consensus-protocols-paxos/
http://the-paper-trail.org/blog/consensus-protocols-paxos/
http://betathoughts.blogspot.com/2007/06/brief-history-of-consensus-2pc-and.html
http://betathoughts.blogspot.com/2007/06/brief-history-of-consensus-2pc-and.html

	Slide 1
	Agreement in Distributed Systems
	The Agreement Problem
	Agreement Requirements
	Failure Models
	What We’ve Learned So Far
	Today
	Slide Number 10
	2PC (with consensus terminology)
	Recovery in Two-Phase Commit
	Handling Timeouts
	Handling Timeouts on A/B/C/D
	Handling Timeout on TC
	Termination Protocol
	Handling Crash and Reboot
	Handling Crash and Reboot
	Recovery Upon Reboot
	Fault-Tolerance Limitations of �Recovery-enabled 2PC
	Example Blocking Failure for 2PC
	Fixing Two-Phase Commit
	Next Time
	Extra Readings�

