Distributed Systems

Lec 16: Agreement in Distributed Systems:
Two-phase Commit Problems,
Three-phase Commit

Slide acks: Jinyang Li, “The Paper Trail”

(http:/mews cs nyu edu/~jinyang/fal0/notes/ds=paxos ppt,
http://the-paper-trail arg/hlagl)



Agreement in Distributed Systems

e The crown problem of distributed systems
— A.k.a. consensus

e Despite having different views of the world, all nodes in a
distributed system must act in concert, e.g.:

— All replicas that store the same object O must apply all updatesto O
In the same order (consistency)

— All nodes involved in a transaction must either commit or abort their
portion of the transaction (atomicity)

e All that, despite FAILURES
— Nodes can restart, die, be slow

— Networks can be slow, as well (but we assume they’re reliable here,

l.e., all network messages are eventually received)
4



The Agreement Problem

Some nodes propose values (or actions) by sending them
to the others

All nodes must decide whether to accept or reject those
values

ol BB

Examples of values to agree on:

— Whether or not to commit a transactionto a DB

— The value of the clock

— The leader that will coordinate some higher-level protocol

— Who has a lock in a distributed lock service among multiple clients
that request it almost simultaneously

— Whether to move to the next stage of a distributed alg. (a barrier)

5



Agreement Requirements

o Safety (correctness)
— All nodes agree on the same value
— The agreed value X has been proposed by some node

e Liveness (fault tolerance, availability)

— If less than some fraction of nodes crash, the rest
should still reach agreement

e |l.e., agreement aims to give the behavior of a single
machine with the fault-tolerance of multiple machines

X
X




Failure Models

For these classes, we define agreement in the context of
two failure models:

Synchronous systems: machines and networks can only be
delayed by a bounded time

— l.e., using a sufficiently large timeout, you can tell with certainty
whether the machine crashed or it or the network is just slow

Asynchronous systems: machines and networks can be
arbitrarily delayed < more general

— There’s no way you can tell whether a machine has crashedor is
just slow

We'll see that different safety/liveness properties are
possible under different models



What We've Learned So Far

 We've already been discussing about agreement, e.g.:
— Logical clocks are a form of agreement (what’s the time?)
— Distributed mutex algos (who has lock?)
— Two-phase commit (commit or abort?)

 However, none of the algorithms thus far are particularly
fault-tolerant (or live during failures)

— Distributed mutex algo block when any node crashes

— Two-phase commit (2PC) blocks when TC crashes (we’'ll
see example today)

o Last time, we talked about fault recovery
— Recovering 2PC (will finish today)



Today

Fault recovery is important, but is insufficient, because

recovery can be very slow

— E.g., the 2PC coordinator may be down for a long time before it
reboots, you don’'t want the whole protocol to wait for it

You want fault tolerance
— l.e., high availability despite concurrent faults

— (The ability to recover from faults is still important, so that a failed
replica can re-join the group after reboot as seamlessly as possible)

Today’s (and next time’s) plan:
— Finish discussion about recovery-enabled 2PC
— Talk about the fault-tolerance limitations of 2PC
— Introduce 3 phase commit (3PC)
— Introduce Paxos



Recovery-enabled
Two-Phase Commit

(repeat from last time’s slides, as we left them uncovered)

10



2PC (with consensus terminology)

Phase 1: proposal Phase 2: decision

proposal (e.g., “commit

transaction tid” decision (commit/abort)

vote (yes/no)

11



Recovery in Two-Phase Commit

 Easy: justlog the state-changes
— Participants: prepared, uncertain, committed/aborted

— Coordinator: prepared, committed/aborted, done
— The messages are idempotent!
 In recovery, resend whatever message was next
e If coordinator and uncommitted: abort

e Two cases:
— Recovery after timeouts
— Recovery after crashes and reboots

— (Note: you can't differentiate between the above in a
realistic, asynchronous network!)

12



Handling Timeouts

e Examples:
Ex. 1. TC times out waiting for B’s vote
Ex. 2: B times out waiting for TC’s decision message

e Btw, timeouts aren’'t necessarily due to network
— They could due to slow, overloaded hosts

decision

OK

Ex 1 Ex. 2

13



Handling Timeouts on A/B/C/D

e TC times out waiting for B (or A/C/D)’s vote
e Can TC unilaterally decide to commit?
e Can TC unilaterally decide to abort?

Ex 1

14



Handling Timeout on TC

* B times out waiting for TC’s

decision decision

e If B voted “no” ...
— Can it unilaterally abort?

 If B responded with “yes” ...
— Can it unilaterally abort?
— Can it unilaterally commit?

OK

15



Termination Protocol

« If B times out on TC and has voted “yes”, then
execute termination protocol:

B sends “status” message to A
— If A has received “commit’/"abort” from TC, ...
— If A has not respondedto TC, ...
— If A has responded with “no”, ...
— If A has responded with “yes”, ...

decision

OK ﬁtatus?

16



Handling Crash and Reboot

e Nodes cannot back out If commit is decided

Examples:

 Ex 3: TC crashes just after deciding “commit”
— Cannot forget about its decision after reboot

 Ex 4: A/B/C/D crashes after sending “yes”
— Cannot forget about their response after reboot

17



Handling Crash and Reboot

* All nodes must log protocol progress
 What and when does TC log to disk?
 What and when does A/B/C/D log to disk?

Phase 1 Phase 2
proposal

decision
OK

18



Recovery Upon Reboot

e Ex 3: TC crashes:
— |If TC finds no “commit” on disk, abort
— |If TC finds “commit”, commit

 Ex 4: A/B/C/D crash:
— If A/B/C/D finds no “yes” on disk, abort
— If A/IB/C/D finds “yes”, run termination protocol to decide

19



Fault-Tolerance Limitations of
Recovery-enabled 2PC

« Even with recovery enabled, 2PC isn’t really fault-
tolerant (or live), because it can block even when one
(or a few) machines fail

— Blocking means that it doesn’t make progress during
the failure

e Can you think of an example fault scenario?

20



Example Blocking Failure for 2PC

e Scenario;

— TC sends commit outcome to A, A gets it and commits, and then
both TC and A die

— B, C, D have already also replied Yes, have locked their mutexes,
and now need to wait for TC or A to reappear
» They cannot recover the decision with certainty until TC or A are online

— If that takes a long time (e.g., a human needs to replace a hardware
component), then the protocol is stuck and availability goes down

— If TC is also participant, as it typically is, then this protocol is
vulnerable to a single-node failure (the TC’s failure)!

 Thisis why 2 phase commit is called a blocking protocol

— Btw, the original, non-recovery-enabled protocol blocked even more
frequently, but we’ve fixed some of the obvious glitches

* |n context of consensus requirements: 2PC is safe, but not live 5,



Fixing Two-Phase Commit

o Surprisingly enough, there’s no simple fix!
— Creating a protocol that’s both correct and available is
tough!

— In fact, as we’ll see at the end of the class, it's impossible
In the general sense (and it can be proven so!!)

— But it’s tough to even get close to that

o |t took 25 years to come up with safe protocol
— 2PC appeared in 1979 (Gray)
— In 1981, a basic, unsafe 3PC was proposed (Stonebraker)
— In 1998, the safe, mostly live Paxos appeared (Lamport)

— Why so difficult? Well, we’'ll see later...
22



Next Time

e Three Phase Commit
e Paxos
e Usage of them

23



Extra Readings

Two-phase commit:
— http://the-paper-trail.org/blog/consensus-protocols-two-

phase-commit/
Three-phase commit:

— http://the-paper-trail.org/blog/consensus-protocols-
three-phase-commit

Paxos:

— http://the-paper-trail.ora/blog/consensus-protocols-
paxos/
FLP impossibility result in distributed systems:

— http://betathoughts.blogspot.com/2007/06/brief-history-
of-consensus-2pc-and.html

24


http://the-paper-trail.org/blog/consensus-protocols-two-phase-commit/
http://the-paper-trail.org/blog/consensus-protocols-two-phase-commit/
http://the-paper-trail.org/blog/consensus-protocols-two-phase-commit/
http://the-paper-trail.org/blog/consensus-protocols-three-phase-commit
http://the-paper-trail.org/blog/consensus-protocols-three-phase-commit
http://the-paper-trail.org/blog/consensus-protocols-paxos/
http://the-paper-trail.org/blog/consensus-protocols-paxos/
http://betathoughts.blogspot.com/2007/06/brief-history-of-consensus-2pc-and.html
http://betathoughts.blogspot.com/2007/06/brief-history-of-consensus-2pc-and.html

	Slide 1
	Agreement in Distributed Systems
	The Agreement Problem
	Agreement Requirements
	Failure Models
	What We’ve Learned So Far
	Today
	Slide Number 10
	2PC (with consensus terminology)
	Recovery in Two-Phase Commit
	Handling Timeouts
	Handling Timeouts on A/B/C/D
	Handling Timeout on TC
	Termination Protocol
	Handling Crash and Reboot
	Handling Crash and Reboot
	Recovery Upon Reboot
	Fault-Tolerance Limitations of �Recovery-enabled 2PC
	Example Blocking Failure for 2PC
	Fixing Two-Phase Commit
	Next Time
	Extra Readings�

