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Last Few Times (Reminder)

• Single-operation consistency

– Strict, sequential, causal, and eventual consistency

• Multi-operation transactions

– ACID properties: atomicity, consistency, isolation, durability

• Isolation: two-phase locking (2PL)

– Grab locks for all touched objects, then release all locks

– Detect or avoid deadlocks by timing out and reverting

• Atomicity: two-phase commit (2PC)
– Two phases: prepare and commit



Two-Phase Commit (Reminder)

TP not allowed to Abort after it’s agreed to Commit

Transaction 

Coordinator (TC)

-- just one --

Transaction 

Participant (TP)

-- one or more --



Example

Bank A Bank B

transfer (X@bank A, Y@bank B, $20)

Suppose initially: X.bal = $100

                            Y.bal = $3

• Clients desire:
1. Atomicity: transfer either happens or not at all

2. Concurrency control: maintain serializability

client



Example

transfer (X@bank A, Y@bank B, $20)

Suppose initially: X.bal = $100

                            Y.bal = $3

int transfer(src, dst, amt) {

    transaction = begin();

    if (src.bal > amt) {

        src.bal -= amt;

        dst.bal += amt;

        return transaction.commit();

    } else {

        transaction.abort();

        return ABORT;

    }

}

int transfer(src, dst, amt) {

    transaction = begin();

    src.bal -= amt;

    dst.bal += amt;

    return transaction.commit();

}

For simplicity, assume the client 

code looks like this:

The banks can unilaterally 

decide to COMMIT or ABORT 

transaction



TC

 (client or 3rd-party)

TP-A TP-B

transaction.commit()

prepare

prepare

rB

rA

outcome

outcome

If rA==yes && rB==yes

    outcome = “commit”

else

    outcome = “abort”

B commits upon

receiving “commit”, 

unlocking Y

B checks if transaction 

can be committed, if so,

lock item Y, vote “yes”

(use 2PL for this).

A does similarly (but 

locks X).
return outcome

blocks

Example



Failure Modes

• Network can fail or be very slow

– B times out waiting for the outcome

– TC times out waiting for A/B’s votes

– How are they supposed to proceed?

• Machines can crash

– Assume: disks cannot fail

– Assume: failures are not hard (reboot fixes them)

– Example crashes: software bug, power loss cause reboot



Today: Fault Recovery

• Goal: Recover state after crash / network failures

• Two requirements for recovery:

– Correctness:
• Committed transactions are not lost  (durability)

• Non-committed transactions either continued or aborted

– Performance:
• Low overheads

• Remember that disks are slow (particularly random writes)

• Our plan:

– Consider first recovery of local system
• I.e., assume a local transaction (TC=A=B)

– Then consider recovery in distributed 2PC setting



Local Recovery:

Write-Ahead Logging (a.k.a. Journaling)



Write-Ahead Logging

• In addition to evolving the state in RAM and on disk, 

keep a separate, on-disk log of all operations

– Transaction begin, commit, abort

– All updates (e.g., X = X- $20; Y = Y + $20)

• A transaction’s operations are provisional until 

“commit” outcome is logged to disk

– The result of these operations will not be revealed to 

other clients in meantime (i.e., new value of X will only 

be revealed after transaction is committed)

• Observation:

– Disk writes of single pages/blocks are atomic, but disk 

writes across pages may not be



begin/commit/abort
 

records

�
 

Log Sequence Number (LSN)

–

 

Usually implicit, the address of the first-byte of 

the log entry

�
 

LSN of previous record for transaction

–

 

Linked list of log records for each transaction

�
 

Transaction ID

�
 

Operation type



update
 

records

�
 

Need all information to undo and redo the 

update

–

 

prevLSN

 

+ xID

 

+ opType

 

as before

–

 

The update itself, e.g.:

�

 

the update location (usually pageID, offset, length)

�

 

old-value

�

 

new-value



xId

 

= begin();   // suppose xId

 

<-

 

42

src.bal

 

-= 20;

dest.bal

 

+= 20;

commit(xId);

Disk: Page cache:

Log:

Transaction table:

Dirty page table:

src.bal: 100

11
10

dest.bal: 3

14



xId

 

= begin();   // suppose xId

 

<-

 

42

src.bal

 

-= 20;

dest.bal

 

+= 20;

commit(xId);

Disk: Page cache:

Log:

Transaction table:

Dirty page table:

src.bal: 100

11
10

dest.bal: 3

14

42:  prevLSN

 

= 780

prevLSN: 0

xId:  42

type: begin

780



xId

 

= begin();   // suppose xId

 

<-

 

42

src.bal

 

-= 20;

dest.bal

 

+= 20;

commit(xId);

Disk: Page cache:

Log:

Transaction table:

Dirty page table:

src.bal: 100

11
10

dest.bal: 3

14

42:  prevLSN

 

= 860

prevLSN: 0

xId:  42

type: begin

780

src.bal: 80

11

11:  firstLSN

 

= 860, lastLSN

 

= 860

prevLSN: 780

xId:  42

type: update

page:

 

11

offset:

 

10

length:

 

4

old-val:

 

100

new-val:

 

80

860

…

src.bal



xId

 

= begin();   // suppose xId

 

<-

 

42

src.bal

 

-= 20;

dest.bal

 

+= 20;

commit(xId);

Disk: Page cache:

Log:

Transaction table:

Dirty page table:

src.bal: 100

11
10

dest.bal: 3

14

42:  prevLSN

 

= 902

prevLSN: 0

xId:  42

type: begin

780

src.bal: 80

11

11:  firstLSN

 

= 860, lastLSN

 

= 860

14:  firstLSN

 

= 902, lastLSN

 

= 902

prevLSN: 780

xId:  42

type: update

page:

 

11

offset:

 

10

length:

 

4

old-val:

 

100

new-val:

 

80

860

…

src.bal

…

prevLSN: 860

xId:  42

type: update

page:

 

14

offset:

 

10

length:

 

4

old-val:

 

3

new-val:

 

23

902

dest.bal

dest.bal: 23

14



xId

 

= begin();   // suppose xId

 

<-

 

42

src.bal

 

-= 20;

dest.bal

 

+= 20;

commit(xId);

Disk: Page cache:

Log:

Transaction table:

Dirty page table:

src.bal: 100

11
10

dest.bal: 3

14

prevLSN: 0

xId:  42

type: begin

780

src.bal: 80

11

11:  firstLSN

 

= 860, lastLSN

 

= 860

14:  firstLSN

 

= 902, lastLSN

 

= 902

prevLSN: 780

xId:  42

type: update

page:

 

11

offset:

 

10

length:

 

4

old-val:

 

100

new-val:

 

80

860

…

src.bal

…

prevLSN: 860

xId:  42

type: update

page:

 

14

offset:

 

10

length:

 

4

old-val:

 

3

new-val:

 

23

902

dest.bal

dest.bal: 23

14

prevLSN: 902

xId:  42

type: commit

960m
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The tail of the log

�
 

The tail of the log can be kept in memory 

until a transaction commits

–

 

…or a buffer page is flushed to disk



Recovering from simple failures

�
 

e.g., system crash

–

 

For now, assume we can read the log

�
 

“Analyze” the log 

�
 

Redo all (usually) transactions (forward)

–

 

Repeating history!

–

 

Use new-value in byte-level update records

�
 

Undo uncommitted transactions 
(backward)

–

 

Use old-value in byte-level update records



Why redo all operations?

�
 

(Even the loser transactions)

�
 

Interaction with concurrency control

–

 

Bring system back to a former state

�
 

Generalizes to logical operations

–

 

Any operation with undo and redo operations

–

 

Can be much faster than byte-level logging



The performance of WAL

�
 

Problems:

–

 

Must write disk twice?

�

 

Not always

–

 

For byte-level update logging, must know old 

value for the update record

�
 

Writing the log is sequential

–

 

Might actually improve performance

�

 

Can acknowledge a write/commit as soon as the 

log is written



Improvements to this WAL

�
 

Store LSN of last write on each data page

–

 

Can avoid unnecessary redoes

�
 

Log checkpoint records

–

 

Flush buffer cache?  Record which pages are 
in memory?

�
 

Log recovery actions (CLR)

–

 

Speeds up recovery from repeated failures

�
 

Ordered / metadata-only logging

–

 

Avoids needing to save old-value of files



Checkpoint records

�
 

Can start analysis with last checkpoint

�
 

Records:

–

 

Table of active transactions

–

 

Table of dirty pages in memory

�

 

And the earliest LSN that might have affected them

last checkpoint

earliest LSN of dirty page

earliest LSN of active transaction



Distributed Recovery:

Recovery in Two-Phase Commit



Recovery in Two-Phase Commit

• Easy: just log the state-changes

– Participants: prepared, uncertain, committed/aborted

– Coordinator: prepared, committed/aborted, done

– The messages are idempotent!

• In recovery, resend whatever message was next

• If coordinator and uncommitted: abort

• Two cases:

– Recovery after crashes and reboots

– Recovery after timeouts



Handling Crash and Reboot

• Nodes cannot back out if commit is decided

• TC crashes just after deciding “commit”

– Cannot forget about its decision after reboot

• A/B crashes after sending “yes”

– Cannot forget about their response after reboot



Handling Crash and Reboot

• All nodes must log protocol progress

• What and when does TC log to disk?

• What and when does A/B log to disk?



Recovery Upon Reboot

• If TC finds no “commit” on disk, abort

• If TC finds “commit”, commit

• If A/B finds no “yes” on disk, abort

• If A/B finds “yes”, run termination protocol to decide



Handling Timeouts

• Examples:

– TC times out waiting for A’s response

– A times out waiting for TC’s outcome message

• Btw, timeouts aren’t necessarily due to network 

problems

– They could due to slow, overloaded hosts



Handling Timeouts on A/B

• TC times out waiting for A (or B)’s “yes/no” response

• Can TC unilaterally decide to commit? 

• Can TC unilaterally decide to abort?



Handling timeout on TC

• If B responded with “no” …

– Can it unilaterally abort?

• If B responded with “yes” …

– Can it unilaterally abort?

– Can it unilaterally commit?



Possible termination protocol

• Execute termination protocol if B times out on 

TC and has voted “yes”

• B sends “status” message to A

– If A has received “commit”/”abort” from TC …

– If A has not responded to TC, …

– If A has responded with “no”, …

– If A has responded with “yes”, …

Resolves most failure cases except 

sometimes when TC fails



What about other failures?

• What if the log fails?

• What if the machine room is flooded?

• Solution: replication of the log or the data

• But handling replication with strong semantic is tough

• Next time: replicated state machines, consensus, and 

Paxos
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