
Distributed Systems

Lec 15: Crashes and Recovery:

Write-ahead Logging

Slide acks: Dave Andersen
(http://www.cs.cmu.edu/~dga/15-440/F10/lectures/Write-ahead-Logging.pdf)

http://www.cs.cmu.edu/~dga/15-440/F10/lectures/Write-ahead-Logging.pdf

Last Few Times (Reminder)

• Single-operation consistency

– Strict, sequential, causal, and eventual consistency

• Multi-operation transactions

– ACID properties: atomicity, consistency, isolation, durability

• Isolation: two-phase locking (2PL)

– Grab locks for all touched objects, then release all locks

– Detect or avoid deadlocks by timing out and reverting

• Atomicity: two-phase commit (2PC)
– Two phases: prepare and commit

Two-Phase Commit (Reminder)

TP not allowed to Abort after it’s agreed to Commit

Transaction

Coordinator (TC)

-- just one --

Transaction

Participant (TP)

-- one or more --

Example

Bank A Bank B

transfer (X@bank A, Y@bank B, $20)

Suppose initially: X.bal = $100

 Y.bal = $3

• Clients desire:
1. Atomicity: transfer either happens or not at all

2. Concurrency control: maintain serializability

client

Example

transfer (X@bank A, Y@bank B, $20)

Suppose initially: X.bal = $100

 Y.bal = $3

int transfer(src, dst, amt) {

 transaction = begin();

 if (src.bal > amt) {

 src.bal -= amt;

 dst.bal += amt;

 return transaction.commit();

 } else {

 transaction.abort();

 return ABORT;

 }

}

int transfer(src, dst, amt) {

 transaction = begin();

 src.bal -= amt;

 dst.bal += amt;

 return transaction.commit();

}

For simplicity, assume the client

code looks like this:

The banks can unilaterally

decide to COMMIT or ABORT

transaction

TC

 (client or 3rd-party)

TP-A TP-B

transaction.commit()

prepare

prepare

rB

rA

outcome

outcome

If rA==yes && rB==yes

 outcome = “commit”

else

 outcome = “abort”

B commits upon

receiving “commit”,

unlocking Y

B checks if transaction

can be committed, if so,

lock item Y, vote “yes”

(use 2PL for this).

A does similarly (but

locks X).
return outcome

blocks

Example

Failure Modes

• Network can fail or be very slow

– B times out waiting for the outcome

– TC times out waiting for A/B’s votes

– How are they supposed to proceed?

• Machines can crash

– Assume: disks cannot fail

– Assume: failures are not hard (reboot fixes them)

– Example crashes: software bug, power loss cause reboot

Today: Fault Recovery

• Goal: Recover state after crash / network failures

• Two requirements for recovery:

– Correctness:
• Committed transactions are not lost (durability)

• Non-committed transactions either continued or aborted

– Performance:
• Low overheads

• Remember that disks are slow (particularly random writes)

• Our plan:

– Consider first recovery of local system
• I.e., assume a local transaction (TC=A=B)

– Then consider recovery in distributed 2PC setting

Local Recovery:

Write-Ahead Logging (a.k.a. Journaling)

Write-Ahead Logging

• In addition to evolving the state in RAM and on disk,

keep a separate, on-disk log of all operations

– Transaction begin, commit, abort

– All updates (e.g., X = X- $20; Y = Y + $20)

• A transaction’s operations are provisional until

“commit” outcome is logged to disk

– The result of these operations will not be revealed to

other clients in meantime (i.e., new value of X will only

be revealed after transaction is committed)

• Observation:

– Disk writes of single pages/blocks are atomic, but disk

writes across pages may not be

begin/commit/abort

records

�

Log Sequence Number (LSN)

–

Usually implicit, the address of the first-byte of

the log entry

�

LSN of previous record for transaction

–

Linked list of log records for each transaction

�

Transaction ID

�

Operation type

update

records

�

Need all information to undo and redo the

update

–

prevLSN

+ xID

+ opType

as before

–

The update itself, e.g.:

�

the update location (usually pageID, offset, length)

�

old-value

�

new-value

xId

= begin(); // suppose xId

<-

42

src.bal

-= 20;

dest.bal

+= 20;

commit(xId);

Disk: Page cache:

Log:

Transaction table:

Dirty page table:

src.bal: 100

11
10

dest.bal: 3

14

xId

= begin(); // suppose xId

<-

42

src.bal

-= 20;

dest.bal

+= 20;

commit(xId);

Disk: Page cache:

Log:

Transaction table:

Dirty page table:

src.bal: 100

11
10

dest.bal: 3

14

42: prevLSN

= 780

prevLSN: 0

xId: 42

type: begin

780

xId

= begin(); // suppose xId

<-

42

src.bal

-= 20;

dest.bal

+= 20;

commit(xId);

Disk: Page cache:

Log:

Transaction table:

Dirty page table:

src.bal: 100

11
10

dest.bal: 3

14

42: prevLSN

= 860

prevLSN: 0

xId: 42

type: begin

780

src.bal: 80

11

11: firstLSN

= 860, lastLSN

= 860

prevLSN: 780

xId: 42

type: update

page:

11

offset:

10

length:

4

old-val:

100

new-val:

80

860

…

src.bal

xId

= begin(); // suppose xId

<-

42

src.bal

-= 20;

dest.bal

+= 20;

commit(xId);

Disk: Page cache:

Log:

Transaction table:

Dirty page table:

src.bal: 100

11
10

dest.bal: 3

14

42: prevLSN

= 902

prevLSN: 0

xId: 42

type: begin

780

src.bal: 80

11

11: firstLSN

= 860, lastLSN

= 860

14: firstLSN

= 902, lastLSN

= 902

prevLSN: 780

xId: 42

type: update

page:

11

offset:

10

length:

4

old-val:

100

new-val:

80

860

…

src.bal

…

prevLSN: 860

xId: 42

type: update

page:

14

offset:

10

length:

4

old-val:

3

new-val:

23

902

dest.bal

dest.bal: 23

14

xId

= begin(); // suppose xId

<-

42

src.bal

-= 20;

dest.bal

+= 20;

commit(xId);

Disk: Page cache:

Log:

Transaction table:

Dirty page table:

src.bal: 100

11
10

dest.bal: 3

14

prevLSN: 0

xId: 42

type: begin

780

src.bal: 80

11

11: firstLSN

= 860, lastLSN

= 860

14: firstLSN

= 902, lastLSN

= 902

prevLSN: 780

xId: 42

type: update

page:

11

offset:

10

length:

4

old-val:

100

new-val:

80

860

…

src.bal

…

prevLSN: 860

xId: 42

type: update

page:

14

offset:

10

length:

4

old-val:

3

new-val:

23

902

dest.bal

dest.bal: 23

14

prevLSN: 902

xId: 42

type: commit

960m
u
s
t
fl
u
s
h
 t
h
e
 l
o
g
 t
o
 d

is
k
!

n
o
n
-l
o
g
 p

a
g
e
s

m
a
y

re
m

a
in

 in
 m

e
m

o
ry

The tail of the log

�

The tail of the log can be kept in memory

until a transaction commits

–

…or a buffer page is flushed to disk

Recovering from simple failures

�

e.g., system crash

–

For now, assume we can read the log

�

“Analyze” the log

�

Redo all (usually) transactions (forward)

–

Repeating history!

–

Use new-value in byte-level update records

�

Undo uncommitted transactions
(backward)

–

Use old-value in byte-level update records

Why redo all operations?

�

(Even the loser transactions)

�

Interaction with concurrency control

–

Bring system back to a former state

�

Generalizes to logical operations

–

Any operation with undo and redo operations

–

Can be much faster than byte-level logging

The performance of WAL

�

Problems:

–

Must write disk twice?

�

Not always

–

For byte-level update logging, must know old

value for the update record

�

Writing the log is sequential

–

Might actually improve performance

�

Can acknowledge a write/commit as soon as the

log is written

Improvements to this WAL

�

Store LSN of last write on each data page

–

Can avoid unnecessary redoes

�

Log checkpoint records

–

Flush buffer cache? Record which pages are
in memory?

�

Log recovery actions (CLR)

–

Speeds up recovery from repeated failures

�

Ordered / metadata-only logging

–

Avoids needing to save old-value of files

Checkpoint records

�

Can start analysis with last checkpoint

�

Records:

–

Table of active transactions

–

Table of dirty pages in memory

�

And the earliest LSN that might have affected them

last checkpoint

earliest LSN of dirty page

earliest LSN of active transaction

Distributed Recovery:

Recovery in Two-Phase Commit

Recovery in Two-Phase Commit

• Easy: just log the state-changes

– Participants: prepared, uncertain, committed/aborted

– Coordinator: prepared, committed/aborted, done

– The messages are idempotent!

• In recovery, resend whatever message was next

• If coordinator and uncommitted: abort

• Two cases:

– Recovery after crashes and reboots

– Recovery after timeouts

Handling Crash and Reboot

• Nodes cannot back out if commit is decided

• TC crashes just after deciding “commit”

– Cannot forget about its decision after reboot

• A/B crashes after sending “yes”

– Cannot forget about their response after reboot

Handling Crash and Reboot

• All nodes must log protocol progress

• What and when does TC log to disk?

• What and when does A/B log to disk?

Recovery Upon Reboot

• If TC finds no “commit” on disk, abort

• If TC finds “commit”, commit

• If A/B finds no “yes” on disk, abort

• If A/B finds “yes”, run termination protocol to decide

Handling Timeouts

• Examples:

– TC times out waiting for A’s response

– A times out waiting for TC’s outcome message

• Btw, timeouts aren’t necessarily due to network

problems

– They could due to slow, overloaded hosts

Handling Timeouts on A/B

• TC times out waiting for A (or B)’s “yes/no” response

• Can TC unilaterally decide to commit?

• Can TC unilaterally decide to abort?

Handling timeout on TC

• If B responded with “no” …

– Can it unilaterally abort?

• If B responded with “yes” …

– Can it unilaterally abort?

– Can it unilaterally commit?

Possible termination protocol

• Execute termination protocol if B times out on

TC and has voted “yes”

• B sends “status” message to A

– If A has received “commit”/”abort” from TC …

– If A has not responded to TC, …

– If A has responded with “no”, …

– If A has responded with “yes”, …

Resolves most failure cases except

sometimes when TC fails

What about other failures?

• What if the log fails?

• What if the machine room is flooded?

• Solution: replication of the log or the data

• But handling replication with strong semantic is tough

• Next time: replicated state machines, consensus, and

Paxos

	Distributed Systems [Fall 2012]
	Last Few Times (Reminder)
	Two-Phase Commit (Reminder)
	Example
	Slide 5
	Slide 6
	Failure Modes
	Today: Fault Recovery
	PowerPoint Presentation
	Write-Ahead Logging
	Crashes and Recovery
	Announcements
	Last time
	2-phase commit
	Failure model
	Today: Crashes and recovery
	Write-ahead logging / Journaling
	begin/commit/abort records
	update records
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	The tail of the log
	Recovering from simple failures
	Why redo all operations?
	The performance of WAL
	Improvements to this WAL
	Checkpoint records
	Recovering 2-phase commit
	What about other failures?
	End-to-end solutions?
	Slide 12
	Recovery in Two-Phase Commit
	Handling Crash and Reboot
	Slide 15
	Recovery Upon Reboot
	Handling Timeouts
	Handling Timeouts on A/B
	Handling timeout on TC
	Possible termination protocol
	What about other failures?

