
Distributed Systems

Lec 14: Multi-operation consistency:

Transactions

Slide acks: Dave Andersen
(http://www.cs.cmu.edu/~dga/15-440/F10/lectures/Concurrency-Control.pdf)

1

http://www.cs.cmu.edu/~dga/15-440/F10/lectures/Concurrency-Control.pdf

Last Times

• Consistency models

– Strict consistency

– Sequential consistency

– Causal consistency

– Eventual consistency

• How do you define them?

• What are the basic ideas to implementing them?

– Sequential consistency

– Eventual consistency

2

Reminders

• How do you define these consistency models:

– Sequential consistency
• All memory/storage accesses appear executed in a single order by

all processes

– Eventual consistency
1. All replicas eventually become identical and no writes are lost

2. All replicas eventually apply all updates in a single order

• How does one implement these consistency models:

– Sequential consistency

• Serialize all requests through a master, invalidate caches, wait for

writes to complete (see Ivy)

– Eventual consistency

• Perform reads/writes asynchronously, synch back with others later

and solve conflicts at that time (see File Synchronizer)
3

Topics

• Last week: Consistency of single read/write operations with

concurrency, caching, and replication

– We assumed each operation atomic, no faults

• Today: Consistency across operations with concurrency,

replication, and failures

4

x x,y x,y y

write x

DSM / DFS / DHT, …

read x

Application processes (a.k.a. clients)

write x

x x,y x,y y

write x

DSM / DFS / DHT, …

read x

write y

Application processes (a.k.a. clients)

write y

Last time Today

Today’s Topics

• Local transactions

– What a transaction means

– Two-phase locking

• Distributed transactions

– Two-phase commit

5

Transactions

• Fundamental abstraction to group operations into a

single unit of work

– begin: begins the transaction

– commit: attempts to complete the transaction

– rollback / abort: aborts the transaction

• Examples:

– Transferring money between two bank accounts

• Account1_balance -= sum

• Account2_balance += sum

– Making a set of trip reservations (flights + hotel)

6

Transaction Properties: ACID

• Atomicity: all or nothing

– Either all ops in the transaction succeed or none of them

does and the database(s) are left intact

• Consistency: guarantee basic properties

– Any transaction will bring the database into a valid state

given various constraints, triggers, etc.

• Isolation: each transaction runs as if alone

– Concurrent execution of transactions is equivalent to

some serial ordering of these transactions

• Durability: cannot be undone

– Once committed, updates cannot be lost despite failures
7

Next time – fault tolerance

Today

DB course

Today

Transaction Properties: ACID

• Atomicity: all or nothing

– Either all ops in the transaction succeed or none of them

does and the database(s) are left intact

• Consistency: guarantee basic properties

– Any transaction will bring the database into a valid state

given various constraints, triggers, etc.

• Isolation: each transaction runs as if alone

– Concurrent execution of transactions is equivalent to

some serial ordering of these transactions

• Durability: cannot be undone

– Once committed, updates cannot be lost despite failures
8

The classic debit/credit example

bool

xfer(Account

src, Account dest, long x) {

if (src.getBalance() >= x) {

src.setBalance(src.getBalance() –

x);

dest.setBalance(dest.getBalance() + x);

return TRUE;

}

return FALSE;

}

�

If not isolated and atomic:

–

might overdraw the src

account

–

might “create” or “destroy” money

The classic debit/credit example

bool

xfer(Account

src, Account dest, long x) {

Transaction t = begin();

if (src.getBalance() >= x) {

src.setBalance(src.getBalance() –

x);

dest.setBalance(dest.getBalance() + x);

return t.commit();

}

t.abort();

return FALSE;

}

�

Note: the system is allowed to unilaterally

abort the transaction itself, when you try to

commit!

Problems to avoid

�

Lost updates

–

Another transaction overwrites your change

based on a previous value of some data

�

Inconsistent retrievals

–

You read data that can never occur in a

consistent state

�

partial writes by other transactions

�

writes by a transaction that later aborts

A poor solution: a global lock

�

Only let one transaction run at a time

–

isolated from all other transactions

–

make changes permanent on commit or undo

changes on abort, if necessary

bool

xfer(Account

src, Account dest, long x) {

lock();

if (src.getBalance() >= x) {

src.setBalance(src.getBalance() –

x);

dest.setBalance(dest.getBalance() + x);

unlock();

return TRUE;

}

unlock();

return FALSE;

}

Better: lock objects independently

�

E.g., one lock for the src

account, one lock

for the dest

account

–

Other transactions can execute concurrently,

as long as they don’t read or write the src

or

dest

accounts

–

Easy to implement with the tools we have

�

e.g., can use a hash table of lockable objects ->

locks

Locks alone are insufficient

�

(You need to use the locks correctly)

bool

xfer(Account

src, Account dest, long x) {

lock(src);

if (src.getBalance() >= x) {

src.setBalance(src.getBalance() –

x);

unlock(src);

lock(dest);

dest.setBalance(dest.getBalance() + x);

unlock(dest);

return TRUE;

}

unlock(src);

return FALSE;

}
Allows other transactions to read
src before we write dest

and thus
see our partially-written state

2-phase locking (2PL)

�

Phase 1: acquire locks

�

Phase 2: release locks

–

You may not get any more locks after you

release any locks

–

Typically implemented by not allowing explicit
unlock

calls

�

Locks automatically released on commit/abort

Debit/credit with 2PL
bool

xfer(Account

src, Account dest, long x) {

Transaction t = begin();

t.lock(src);

if (src.getBalance() >= x) {

src.setBalance(src.getBalance() –

x);

t.lock(dest);

dest.setBalance(dest.getBalance() + x);

return t.commit();

// unlocks src

and dest

}

t.abort(); // unlocks src

return FALSE;

}

2PL might suffer deadlocks

t1.lock(foo); t2.lock(bar);

t1.lock(bar); t2.lock(foo);

�

t1

might get the lock for foo, then t2

gets the

lock for bar, then both transactions wait while

trying to get the other lock

Preventing deadlock

�

Each transaction can get all its locks at

once

�

Each transaction can get all its locks in a

predefined order

–

Both of these strategies are impractical:

�

Transactions often do not know which locks they

will need in the future

Detecting deadlock

�

Construct a “waits-for” graph

–

Each vertex in the graph represents a

transaction

–

T1 → T2 if T1 is waiting for a lock T2 holds

�

There is a deadlock iff

the waits-for graph

contains a cycle

“Ignoring” deadlock

�

Automatically abort all long-running

transactions

–

Not a bad strategy, if you expect transactions

to be short

�

A long-running “short” transaction is probably

deadlocked

Distributed transactions

�

Data stored at distributed locations

�

Failure model:

–

messages might be delayed or lost

–

servers might crash, but can recover saved

persistent storage

The coordinator

�

Begins transaction

–

Assigns unique transaction ID

�

Responsible for commit/abort

�

Many systems allow any client to be the

coordinator for its own transactions

The participants

�

The servers with the data used in the

distributed transaction

Problems with simple commit

�

“One-phase commit”

–

Coordinator broadcasts “commit!” to

participants until all reply

�

What happens if one participant fails?

–

Can the other participants then undo what

they have already committed?

Two-phase commit (2PC)

�

The commit-step itself is two phases

�

Phase 1: Voting

–

Each participant prepares to commit, and

votes on whether or not it can commit

�

Phase 2: Committing

–

Each participant actually commits or aborts

Intuitive Example

• You want to organize outing with 4 friends at 6pm Tuesday

– Goal: go out only if all friends can make it

• What do you do?

– Call each of them and ask if can do 6pm on Tuesday (voting phase)

– If all can do Tuesday, call each friend back to ACK (commit)

– If one can’t do Tuesday, call other three to cancel (abort)

• Critical details:

– While you were calling everyone to ask, people who’ve promised

they can do 6pm Tuesday must reserve that slot

– You need to remember the decision and tell anyone whom you

haven’t been able to reach during commit/abort phase

Intuitive Example

• You want to organize outing with 4 friends at 6pm Tuesday

– Goal: go out only if all friends can make it

• What do you do?

– Call each of them and ask if can do 6pm on Tuesday (voting phase)

– If all can do Tuesday, call each friend back to ACK (commit)

– If one can’t do Tuesday, call other three to cancel (abort)

• Critical details:

– While you were calling everyone to ask, people who’ve promised

they can do 6pm Tuesday must reserve that slot

– You need to remember the decision and tell anyone whom you

haven’t been able to reach during commit/abort phase

That’s exactly how 2PC works

2PC operations

�

canCommit?(T) -> yes/no
–

Coordinator asks a participant if it can commit

�

doCommit(T)
–

Coordinator tells a participant to actually commit

�

doAbort(T)
–

Coordinator tells a participant to abort

�

haveCommitted(participant,T)
–

Participant tells coordinator it actually committed

�

getDecision(T)

-> yes/no
–

Participant can ask coordinator if T should be
committed or aborted

The voting phase

�

Coordinator asks each participant:
canCommit?(T)

�

Participants must prepare to commit using

permanent storage before answering yes

–

Objects are still locked

–

Once a participant votes “yes”, it is not allowed to

cause an abort

�

Outcome of T

is uncertain until doCommit

or

doAbort

–

Other participants might still cause an abort

The commit phase

�

The coordinator collects all votes

–

If unanimous “yes”, causes commit

–

If any participant voted “no”, causes abort

�

The fate of the transaction is decided atomically

at the coordinator, once all participants vote

–

Coordinator records fate using permanent storage

–

Then broadcasts doCommit

or doAbort

to

participants

2PC sequence of events

canCommit?

Yes

doCommit

haveCommitted

Coordinator Participant

participant not allowed to cause an abort after it replies “yes”

to canCommit

“committed”

(persistently)

“prepared”

“done”

“uncertain”

(objects still

locked)

“prepared”

(persistently)

“committed”

2PL with 2-Phase Commit

�

Each participant uses 2PL for its objects,

2PC for the commit process

	Distributed Systems [Fall 2012]
	Last Times
	Reminders
	Topics
	Today’s Topics
	Transactions
	Transaction Properties: ACID
	Slide 8
	Concurrency Control
	Announcements
	Last time: RAID
	Today: Concurrency control
	Transactions
	ACID properties
	The classic debit/credit example
	The classic debit/credit example
	Problems to avoid
	A poor solution: a global lock
	Better: lock objects independently
	Locks alone are insufficient
	2-phase locking (2PL)
	Debit/credit with 2PL
	2PL might suffer deadlocks
	Preventing deadlock
	Detecting deadlock
	“Ignoring” deadlock
	Distributed transactions
	The coordinator
	The participants
	Problems with simple commit
	Two-phase commit (2PC)
	2PC operations
	The voting phase
	The commit phase
	2PC sequence of events
	2PL with 2-Phase Commit
	Intuitive Example.pdf
	Intuitive Example

	Intuitive Example.pdf
	Intuitive Example
	Intuitive Example

	Intuitive Example.pdf
	Intuitive Example
	Intuitive Example

