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Last Times

• Consistency models

– Strict consistency

– Sequential consistency

– Causal consistency

– Eventual consistency

• How do you define them?

• What are the basic ideas to implementing them?

– Sequential consistency

– Eventual consistency
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Reminders

• How do you define these consistency models:

– Sequential consistency
•  All memory/storage accesses appear executed in a single order by 

all processes

– Eventual consistency 
1. All replicas eventually become identical and no writes are lost

2. All replicas eventually apply all updates in a single order

• How does one implement these consistency models:

– Sequential consistency

• Serialize all requests through a master, invalidate caches, wait for 

writes to complete (see Ivy)

– Eventual consistency

• Perform reads/writes asynchronously, synch back with others later 

and solve conflicts at that time (see File Synchronizer)
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Topics

• Last week: Consistency of single read/write operations with 

concurrency, caching, and replication

– We assumed each operation atomic, no faults

• Today: Consistency across operations with concurrency, 

replication, and failures
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Today’s Topics

• Local transactions

– What a transaction means

– Two-phase locking

• Distributed transactions

– Two-phase commit
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Transactions

• Fundamental abstraction to group operations into a 

single unit of work

– begin: begins the transaction

– commit: attempts to complete the transaction

– rollback / abort: aborts the transaction

• Examples:

– Transferring money between two bank accounts

• Account1_balance -= sum

• Account2_balance += sum

– Making a set of trip reservations (flights + hotel)
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Transaction Properties: ACID

• Atomicity: all or nothing

– Either all ops in the transaction succeed or none of them 

does and the database(s) are left intact

• Consistency: guarantee basic properties

– Any transaction will bring the database into a valid state 

given various constraints, triggers, etc.

• Isolation: each transaction runs as if alone

– Concurrent execution of transactions is equivalent to 

some serial ordering of these transactions

• Durability: cannot be undone

– Once committed, updates cannot be lost despite failures
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Next time – fault tolerance

Today

DB course

Today

Transaction Properties: ACID

• Atomicity: all or nothing

– Either all ops in the transaction succeed or none of them 

does and the database(s) are left intact

• Consistency: guarantee basic properties

– Any transaction will bring the database into a valid state 

given various constraints, triggers, etc.

• Isolation: each transaction runs as if alone

– Concurrent execution of transactions is equivalent to 

some serial ordering of these transactions

• Durability: cannot be undone

– Once committed, updates cannot be lost despite failures
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The classic debit/credit example

bool

 

xfer(Account

 

src, Account dest, long x) {

if (src.getBalance() >= x) {

src.setBalance(src.getBalance() –

 

x);

dest.setBalance(dest.getBalance() + x);

return TRUE;

}

return FALSE;

}

�
 

If not isolated and atomic:

–

 

might overdraw the src

 

account

–

 

might “create” or “destroy” money



The classic debit/credit example

bool

 

xfer(Account

 

src, Account dest, long x) {

Transaction t = begin();

if (src.getBalance() >= x) {

src.setBalance(src.getBalance() –

 

x);

dest.setBalance(dest.getBalance() + x);

return t.commit();

}

t.abort();

return FALSE;

}

�
 

Note:  the system is allowed to unilaterally 

abort the transaction itself, when you try to 

commit!



Problems to avoid

�
 

Lost updates

–

 

Another transaction overwrites your change 

based on a previous value of some data

�
 

Inconsistent retrievals

–

 

You read data that can never occur in a 

consistent state

�

 

partial writes by other transactions

�

 

writes by a transaction that later aborts



A poor solution:  a global lock

�
 

Only let one transaction run at a time

–

 

isolated from all other transactions

–

 

make changes permanent on commit or undo 

changes on abort, if necessary

bool

 

xfer(Account

 

src, Account dest, long x) {

lock();

if (src.getBalance() >= x) {

src.setBalance(src.getBalance() –

 

x);

dest.setBalance(dest.getBalance() + x);

unlock();

return TRUE;

}

unlock();

return FALSE;

}



Better:  lock objects independently

�
 

E.g., one lock for the src
 

account, one lock 

for the dest
 

account

–

 

Other transactions can execute concurrently, 

as long as they don’t read or write the src

 

or 

dest

 

accounts

–

 

Easy to implement with the tools we have

�

 

e.g., can use a hash table of lockable objects -> 

locks



Locks alone are insufficient

�
 

(You need to use the locks correctly)

bool

 

xfer(Account

 

src, Account dest, long x) {

lock(src);

if (src.getBalance() >= x) {

src.setBalance(src.getBalance() –

 

x);

unlock(src);

lock(dest);

dest.setBalance(dest.getBalance() + x);

unlock(dest);

return TRUE;

}

unlock(src);

return FALSE;

}
Allows other transactions to read 
src before we write dest

 

and thus 
see our partially-written state



2-phase locking (2PL)

�
 

Phase 1:  acquire locks

�
 

Phase 2:  release locks

–

 

You may not get any more locks after you 

release any locks

–

 

Typically implemented by not allowing explicit 
unlock

 

calls

�

 

Locks automatically released on commit/abort



Debit/credit with 2PL
bool

 

xfer(Account

 

src, Account dest, long x) {

Transaction t = begin();

t.lock(src);

if (src.getBalance() >= x) {

src.setBalance(src.getBalance() –

 

x);

t.lock(dest);

dest.setBalance(dest.getBalance() + x);

return t.commit();

 

// unlocks src

 

and dest

}

t.abort();                // unlocks src

return FALSE;

}



2PL might suffer deadlocks

t1.lock(foo);                  t2.lock(bar);

t1.lock(bar);                  t2.lock(foo);

�

 

t1

 

might get the lock for foo, then t2

 

gets the 

lock for bar, then both transactions wait while 

trying to get the other lock



Preventing deadlock

�
 

Each transaction can get all its locks at 

once

�
 

Each transaction can get all its locks in a 

predefined order

–

 

Both of these strategies are impractical:

�

 

Transactions often do not know which locks they 

will need in the future



Detecting deadlock

�
 

Construct a “waits-for” graph

–

 

Each vertex in the graph represents a 

transaction

–

 

T1 → T2 if T1 is waiting for a lock T2 holds

�
 

There is a deadlock iff
 

the waits-for graph 

contains a cycle



“Ignoring” deadlock

�
 

Automatically abort all long-running 

transactions

–

 

Not a bad strategy, if you expect transactions 

to be short

�

 

A long-running “short” transaction is probably 

deadlocked



Distributed transactions

�
 

Data stored at distributed locations

�
 

Failure model:

–

 

messages might be delayed or lost

–

 

servers might crash, but can recover saved 

persistent storage



The coordinator

�
 

Begins transaction

–

 

Assigns unique transaction ID

�
 

Responsible for commit/abort

�
 

Many systems allow any client to be the 

coordinator for its own transactions



The participants

�
 

The servers with the data used in the 

distributed transaction



Problems with simple commit

�
 

“One-phase commit”

–

 

Coordinator broadcasts “commit!” to 

participants until all reply

�
 

What happens if one participant fails? 

–

 

Can the other participants then undo what 

they have already committed?



Two-phase commit (2PC)

�
 

The commit-step itself is two phases

�
 

Phase 1:  Voting

–

 

Each participant prepares to commit, and 

votes on whether or not it can commit

�
 

Phase 2:  Committing

–

 

Each participant actually commits or aborts



Intuitive Example 

• You want to organize outing with 4 friends at 6pm Tuesday 

– Goal: go out only if all friends can make it 
 

• What do you do? 

– Call each of them and ask if can do 6pm on Tuesday (voting phase) 

– If all can do Tuesday, call each friend back to ACK (commit) 

– If one can’t do Tuesday, call other three to cancel (abort) 
 

• Critical details: 

– While you were calling everyone to ask, people who’ve promised 

they can do 6pm Tuesday must reserve that slot 

– You need to remember the decision and tell anyone whom you 

haven’t been able to reach during commit/abort phase 



Intuitive Example 

• You want to organize outing with 4 friends at 6pm Tuesday 

– Goal: go out only if all friends can make it 
 

• What do you do? 

– Call each of them and ask if can do 6pm on Tuesday (voting phase) 

– If all can do Tuesday, call each friend back to ACK (commit) 

– If one can’t do Tuesday, call other three to cancel (abort) 
 

• Critical details: 

– While you were calling everyone to ask, people who’ve promised 

they can do 6pm Tuesday must reserve that slot 

– You need to remember the decision and tell anyone whom you 

haven’t been able to reach during commit/abort phase 

That’s exactly how 2PC works 



2PC operations

�

 

canCommit?(T) -> yes/no
–

 

Coordinator asks a participant if it can commit

�

 

doCommit(T)
–

 

Coordinator tells a participant to actually commit

�

 

doAbort(T)
–

 

Coordinator tells a participant to abort

�

 

haveCommitted(participant,T)
–

 

Participant tells coordinator it actually committed

�

 

getDecision(T)

 

-> yes/no
–

 

Participant can ask coordinator if T should be 
committed or aborted



The voting phase

�

 

Coordinator asks each participant:  
canCommit?(T)

�

 

Participants must prepare to commit using 

permanent storage before answering yes

–

 

Objects are still locked

–

 

Once a participant votes “yes”, it is not allowed to 

cause an abort

�

 

Outcome of T

 

is uncertain until doCommit

 

or 

doAbort

–

 

Other participants might still cause an abort



The commit phase

�

 

The coordinator collects all votes

–

 

If unanimous “yes”, causes commit

–

 

If any participant voted “no”, causes abort

�

 

The fate of the transaction is decided atomically 

at the coordinator, once all participants vote

–

 

Coordinator records fate using permanent storage

–

 

Then broadcasts doCommit

 

or doAbort

 

to 

participants



2PC sequence of events

canCommit?

Yes

doCommit

haveCommitted

Coordinator Participant

participant not allowed to cause an abort after it replies “yes”

 

to canCommit

“committed”

(persistently)

“prepared”

“done”

“uncertain” 

(objects still 

locked)

“prepared” 

(persistently)

“committed”



2PL with 2-Phase Commit

�
 

Each participant uses 2PL for its objects, 

2PC for the commit process
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