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Outline

● Last times: Consistency models
● Strict consistency

● Sequential consistency

● Causal consistency

● Eventual consistency

● How do you define them?

● Today: Basic ideas for implementing them
● Sequential consistency

● Eventual consistency

● // Causal consistency (Promiscuous covered that)
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Outline

● How do you define these consistency models:

– Sequential consistency
• All memory/storage accesses appear executed in

a single order by all processes

– Eventual consistency 
1. All replicas eventually become identical and no writes are lost

2. All replicas eventually apply all updates in a single order

● Implementation summary:

– Sequential consistency

• Serialize all requests through a master, invalidate caches, wait for 

writes to complete  → Ivy, a distributed shared mem system (DSM)

– Eventual consistency

• Perform reads/writes asynchronously, synch back with others later 

and solve conflicts at that time → file synchronizers 3



Distributed Shared Memory (DSM)

• Two models for communication in distributed systems:

– message passing

– shared memory

• Shared memory is often thought more intuitive to write 

parallel programs than message passing

– Each machine can access a common address space
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Example Application

• What’s the intuitive intent?

– M2 should execute f2() with results from M0 and M1 

– waiting for M1 implies waiting for M0 5

M0 M1 M2

DSM

M0:

v0 = f0();

done0 = 1;

M1:

while (done0 == 0) 

     ;

v1 = f1(v0);

done1 = 1;

M2:

while (done1 == 0) 

     ;

v2 = f2(v0, v1);

v0 done0 v1 done1 v2



Naïve DSM System

• Each machine has a local copy of all of memory

• Operations:

– Read: from local memory

– Write: send update msg to each host (but don't wait)

• Fast: never waits for communication

Question: Does this DSM work well for our application?
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Problem 1 with Naïve DSM

• M0's v0=… and done0=… may be interchanged by 

network, leaving v0 unset but done0=1
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v0=f0()

done0=1

v0

done0

v1=f1(v0)  whoops!

M0 M1



Problem 2 with Naïve DSM

• M2 sees M1's writes before M0's writes

– I.e. M2 and M1 disagree on order of M0 and M1 writes
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v0=f0()

done0=1

v0

done0
whoops!

M0 M1 M2

v1=f1(v0)

v0

done1=1
v1

done1
v2=f2(v0,v1)



Naïve DSM Properties

●   Naïve DSM is fast but has unexpected behavior

• Clearly, it's not sequentially consistent

– So, how do we make it so, and what do we lose in 

performance because of that?
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Sequential Consistency

• Rules: There exists a total ordering of ops s.t.

– Rule 1: Each machine’s own ops appear in order

– Rule 2: All machines see results according to total order 

(i.e. reads see most recent writes)

• We say that any runtime ordering of operations (also 

called a history) can be “explained” by a sequential 

ordering of operations that follows the above two rules
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Does Seq. Consistency Avoid Problems?

• There is a total ordering of events s.t.:

– Rule 1: Each machine’s own ops appear in order

– Rule 2: All machines see results according to total order

• Problem 1: Can M1 ever see v0 unset but done0=1?

– M0's execution order was v0=… done0=…

– M1 saw done0=… v0=…

– Each machine's operations must appear in execution 

order so cannot happen w/ sequential consistency

• Problem 2: Can M1 and M2 disagree on ops’ order?

– M1 saw v0=… done0=… done1=…

– M2 saw done1=… v0=…

– This cannot occur given a single total ordering 11



Seq. Consistency Implementation 

Requirements

1. Each processor issues requests in the order 
specified by the program

● Do not issue the next request unless the previous one 
has finished

2.    Requests to an individual memory location 

      are served from a single FIFO queue
● Writes occur in a single order
● Once a read observes the effect of a write, it’s ordered 

behind that write
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Naive DSM violates R1,R2

W(x)1 W(y)1

R1: a processor issues read before waiting for write to complete

R2: 2 processors issue writes concurrently, no single order

R(y)0 R(x)0

• Read from local state

• Send writes to the other nodes, but do not wait



Case Study:

Ivy: Integrated shared virtual memory at Yale
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Ivy distributed shared memory

• What does Ivy do?

– Provide a shared memory system across a

group of workstations

• Why shared memory?

– Easier to write parallel programs with than

using message passing

– We’ll come back to this choice of interface in

later lectures



Ivy architecture

• Each node caches read pages
– Why?

• Can a node directly write cached pages?

Each processor’s

local memory keeps

a subset of all pages 

If page not found in 

local memory, request 

from remote node



Ivy aims to provide sequential

consistency

• How?

– Always read a fresh copy of data

• Must invalidate all cached pages before writing

a page.

• This simulates the FIFO queue for a page

because once a page is written, all future reads

must see the latest value

– Only one processor (owner) can write a

page at a time



Ivy implementation

• The ownership of a page moves across nodes

– Latest writer becomes the owner

– Why?

• Challenge:

– how to find the owner of a page?

– how to ensure one owner per page?

– How to ensure all cached pages are invalidated?



Ivy: centralized manager

manager

Page#, copy_set, owner

    p1,   {..},     {A}

Page#, access

    p1,   read     

A B C



Ivy: read

Manager

Page#, copy_set, owner

    p1,   {},     {A}

A B C

1. Page fault for p1 on C

2. C sends RQ(read request) to

M

3. M sends RF(read forward) to

A, M adds C to copy_set

4. A sends p1 to C, C marks p1

as read-only

5. C sends RC(read confirmation)

to M

2:RQ
5:RC

3:RF

    p1,   {C},     {A}

Page#, access

    p1,   read     

4:p1

Page#, access

    p1,   read     



Ivy: write

Manager

Page#, copy_set, owner

    p1,   {C},     {A}

A B C

1. Page fault for p1 on B

2. B sends WQ(write request) to

M

3. M sends IV(invalidate) to

copy_set = {C}

4. C sends IC(invalidate confirm)

to M

5. M clears copy_set, sends

WF(write forward) to A

6. A sends p1 to B, clears access

7. B sends WC(write confirmation)

to M
Page#, access

    p1,   write     

Page#, access

    p1,   read     

2:WQ
3:IV

4:IC

    p1,   nil     

Page#, access

    p1,   write         p1,   nil     

6:p1

7:WC

5:WF

    p1,   {},     {B}
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Ivy invariants?

• Every page has exactly one current 

owner

• Current owner has a copy of the page

• If mapped r/w by owner, no other copies

• If mapped r/o by owner, identical to 

other copies

• Manager knows about all copies



Is Ivy Sequentially Consistent?

• Well, yes, but we’re not gonna prove it…

• Proof sketch:

– Proof by contradiction that there is a schedule that 

cannot be explained by any sequential ordering that 

satisfies the two rules

– This means that there are operations in the schedule 

that break one of the two rules

– Reach contradiction on each of the two rules by using 

definition of reads/writes in Ivy

• For simplicity, let’s look instead at why Ivy doesn’t 

have the two problems we’ve identified for naïve DSM
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Eventual Consistency (Overview)

• Allow stale reads, but ensure that reads will eventually 

reflect previously written values

– Even after very long times

• Doesn’t order concurrent writes as they are executed, 

which might create conflicts later: which write was first?

• Used in Amazon’s Dynamo, a key/value store

– Plus a lot of academic systems

– Plus file synchronization  familiar example, we’ll use this
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Why Eventual Consistency?

• More concurrency opportunities than strict, 

sequential, or causal consistency

• Sequential consistency requires highly available 

connections

– Lots of chatter between clients/servers

• Sequential consistency many be unsuitable for 

certain scenarios:

– Disconnected clients (e.g. your laptop goes offline, but you 

still want to edit your shared document)

– Network partitioning across datacenters

– Apps might prefer potential inconsistency to loss of 

availability



Case-in-Point:

Realizing Sequential Consistency

w
(x

)1

w(x)2

Cache

or

replica

Cache

Or

replica

w(y)3r(y
), I

nvalid
ate

• All reads/writes to address X must be ordered by one 

memory/storage module responsible for X (see Ivy, Lec10)
• If you write data that others have, you must let them know
• Thus, everyone must be online all the time



Why (Not) Eventual Consistency?

 Support disconnected operations or network partitions

– Better to read a stale value than nothing

– Better to save writes somewhere than nothing

 Support for increased parallelism

– But that’s not what people have typically used this for

Potentially anomalous application behavior

– Stale reads and conflicting writes…



Sequential vs. Eventual Consistency

• Sequential: pessimistic concurrency handling

– Decide on update order as they are executed

• Eventual: optimistic concurrency handling

– Let updates happen, worry about deciding their order 

later

– May raise conflicts

• Think about when you code offline for a while – you may need 

to resolve conflicts with other teammembers when you commit

• Resolving conflicts is not that difficult with code, but it’s really 

hard in general (e.g., think about resolving conflicts when 

you’ve updated an image)



Example Usage: File Synchronizer

• One user, many gadgets, common files (e.g., contacts)

• Goal of file synchronization

1. All replica contents eventually become identical

2. No lost updates

– Do not replace new version with old ones



Operating w/o Total Connectivity 

replica replica

Client writes to its 

local replica

W(A)1 W(A)2

Sync w/ server resolves 

non-conflicting changes,

reports conflicting ones 

to user

No sync between clients



Pair-wise Synchronization 

replica replica

replica

W(A)1 W(A)2

W(B)3Pair-wise sync resolves 

non-conflicting changes,

reports conflicting ones 

to users



Prevent lost updates

• Detect if updates were sequential

– If so, replace old version with new one

– If not, detect conflict



How to Prevent Lost Updates?

• Strawman: use mtime to decide which version should 

replace the other

• Problems?
1. If clocks are unsynchronized: new data might have older 

timestamp than old data 

2. Does not detect conflicts  => may lose some contacts…

H1

H2

W(f)a

mtime: 15648

W(f)c

23657

f

W(f)b

16679f

12354f 15648



Strawman Fix

• Carry the entire modification history (a log)

• If history X is a prefix of Y, Y is newer

• If it’s not, then detect and potentially solve conflicts

H1

W(f)a W(f)b

W(f)c

H1:15648

H1:15648

H1:15648

H1:16679

H1:15648

H2:23657



Compress Version History

H1

W(f)a W(f)b

W(f)c

H1:1

H1:1

H1:1

H1:2

H1:1

H1:2

H2:1

H1:1

H1:2

H1:2 implies H1:1,

so we only need one 

number per host

H1:1 H1:2

H1:1 H1:2 H1:2

H2:1

H2



How to Deal w/ Conflicts?

• Easy: mailboxes w/ two different set of messages

• Medium: changes to different lines of a C source file

• Hard: changes to same line of a C source file

• After conflict resolution, add a new item to the history?



So, What’s Used Where?

• Sequential consistency

– A number of both academic and industrial systems provide (at least) 

sequential consistency (some a bit stronger – linearizability)

– Examples: Yale’s IVY DSM, Microsoft’s Niobe DFS, Cornell’s chain 

replication, …

• Causal consistency – Promiscuous, many other DB replication 

systems

• Eventual consistency

– Very popular for a while both in industry and in academia

– Examples: file synchronizers, Amazon’s Dynamo, Bayou
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Many Other Consistency Models Exist

• Other standard consistency models

– Linearizability

– Serializability

– Monotonic reads

– Monotonic writes

– … read Tanenbaum 7.3 if interested (these are not required for 

exam)

• In-house consistency models:

– AFS’s close-to-open

– GFS’s atomic at-most-once appends
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