
Distributed Systems

Catch-up Lecture:

Consistency Model Implementations

Slides redundant with Lec 11,12

Slide acks: Jinyang Li, Robert Morris, Dave Andersen

1

Outline

● Last times: Consistency models
● Strict consistency

● Sequential consistency

● Causal consistency

● Eventual consistency

● How do you define them?

● Today: Basic ideas for implementing them
● Sequential consistency

● Eventual consistency

● // Causal consistency (Promiscuous covered that)

2

Outline

● How do you define these consistency models:

– Sequential consistency
• All memory/storage accesses appear executed in

a single order by all processes

– Eventual consistency
1. All replicas eventually become identical and no writes are lost

2. All replicas eventually apply all updates in a single order

● Implementation summary:

– Sequential consistency

• Serialize all requests through a master, invalidate caches, wait for

writes to complete → Ivy, a distributed shared mem system (DSM)

– Eventual consistency

• Perform reads/writes asynchronously, synch back with others later

and solve conflicts at that time → file synchronizers 3

Distributed Shared Memory (DSM)

• Two models for communication in distributed systems:

– message passing

– shared memory

• Shared memory is often thought more intuitive to write

parallel programs than message passing

– Each machine can access a common address space

4

M1 M2 M3

DSM

var varvar var

read/write

(load/store)

var

Example Application

• What’s the intuitive intent?

– M2 should execute f2() with results from M0 and M1

– waiting for M1 implies waiting for M0 5

M0 M1 M2

DSM

M0:

v0 = f0();

done0 = 1;

M1:

while (done0 == 0)

 ;

v1 = f1(v0);

done1 = 1;

M2:

while (done1 == 0)

 ;

v2 = f2(v0, v1);

v0 done0 v1 done1 v2

Naïve DSM System

• Each machine has a local copy of all of memory

• Operations:

– Read: from local memory

– Write: send update msg to each host (but don't wait)

• Fast: never waits for communication

Question: Does this DSM work well for our application?
6

M1 M2 M3

DSM

write

read

local mem

Problem 1 with Naïve DSM

• M0's v0=… and done0=… may be interchanged by

network, leaving v0 unset but done0=1

7

v0=f0()

done0=1

v0

done0

v1=f1(v0)  whoops!

M0 M1

Problem 2 with Naïve DSM

• M2 sees M1's writes before M0's writes

– I.e. M2 and M1 disagree on order of M0 and M1 writes

8

v0=f0()

done0=1

v0

done0
whoops!

M0 M1 M2

v1=f1(v0)

v0

done1=1
v1

done1
v2=f2(v0,v1)

Naïve DSM Properties

● Naïve DSM is fast but has unexpected behavior

• Clearly, it's not sequentially consistent

– So, how do we make it so, and what do we lose in

performance because of that?

9

Sequential Consistency

• Rules: There exists a total ordering of ops s.t.

– Rule 1: Each machine’s own ops appear in order

– Rule 2: All machines see results according to total order

(i.e. reads see most recent writes)

• We say that any runtime ordering of operations (also

called a history) can be “explained” by a sequential

ordering of operations that follows the above two rules

10

Does Seq. Consistency Avoid Problems?

• There is a total ordering of events s.t.:

– Rule 1: Each machine’s own ops appear in order

– Rule 2: All machines see results according to total order

• Problem 1: Can M1 ever see v0 unset but done0=1?

– M0's execution order was v0=… done0=…

– M1 saw done0=… v0=…

– Each machine's operations must appear in execution

order so cannot happen w/ sequential consistency

• Problem 2: Can M1 and M2 disagree on ops’ order?

– M1 saw v0=… done0=… done1=…

– M2 saw done1=… v0=…

– This cannot occur given a single total ordering 11

Seq. Consistency Implementation

Requirements

1. Each processor issues requests in the order
specified by the program

● Do not issue the next request unless the previous one
has finished

2. Requests to an individual memory location

 are served from a single FIFO queue
● Writes occur in a single order
● Once a read observes the effect of a write, it’s ordered

behind that write

12

13

Naive DSM violates R1,R2

W(x)1 W(y)1

R1: a processor issues read before waiting for write to complete

R2: 2 processors issue writes concurrently, no single order

R(y)0 R(x)0

• Read from local state

• Send writes to the other nodes, but do not wait

Case Study:

Ivy: Integrated shared virtual memory at Yale

14

Ivy distributed shared memory

• What does Ivy do?

– Provide a shared memory system across a

group of workstations

• Why shared memory?

– Easier to write parallel programs with than

using message passing

– We’ll come back to this choice of interface in

later lectures

Ivy architecture

• Each node caches read pages
– Why?

• Can a node directly write cached pages?

Each processor’s

local memory keeps

a subset of all pages

If page not found in

local memory, request

from remote node

Ivy aims to provide sequential

consistency

• How?

– Always read a fresh copy of data

• Must invalidate all cached pages before writing

a page.

• This simulates the FIFO queue for a page

because once a page is written, all future reads

must see the latest value

– Only one processor (owner) can write a

page at a time

Ivy implementation

• The ownership of a page moves across nodes

– Latest writer becomes the owner

– Why?

• Challenge:

– how to find the owner of a page?

– how to ensure one owner per page?

– How to ensure all cached pages are invalidated?

Ivy: centralized manager

manager

Page#, copy_set, owner

 p1, {..}, {A}

Page#, access

 p1, read

A B C

Ivy: read

Manager

Page#, copy_set, owner

 p1, {}, {A}

A B C

1. Page fault for p1 on C

2. C sends RQ(read request) to

M

3. M sends RF(read forward) to

A, M adds C to copy_set

4. A sends p1 to C, C marks p1

as read-only

5. C sends RC(read confirmation)

to M

2:RQ
5:RC

3:RF

 p1, {C}, {A}

Page#, access

 p1, read

4:p1

Page#, access

 p1, read

Ivy: write

Manager

Page#, copy_set, owner

 p1, {C}, {A}

A B C

1. Page fault for p1 on B

2. B sends WQ(write request) to

M

3. M sends IV(invalidate) to

copy_set = {C}

4. C sends IC(invalidate confirm)

to M

5. M clears copy_set, sends

WF(write forward) to A

6. A sends p1 to B, clears access

7. B sends WC(write confirmation)

to M
Page#, access

 p1, write

Page#, access

 p1, read

2:WQ
3:IV

4:IC

 p1, nil

Page#, access

 p1, write p1, nil

6:p1

7:WC

5:WF

 p1, {}, {B}

30

Ivy invariants?

• Every page has exactly one current

owner

• Current owner has a copy of the page

• If mapped r/w by owner, no other copies

• If mapped r/o by owner, identical to

other copies

• Manager knows about all copies

Is Ivy Sequentially Consistent?

• Well, yes, but we’re not gonna prove it…

• Proof sketch:

– Proof by contradiction that there is a schedule that

cannot be explained by any sequential ordering that

satisfies the two rules

– This means that there are operations in the schedule

that break one of the two rules

– Reach contradiction on each of the two rules by using

definition of reads/writes in Ivy

• For simplicity, let’s look instead at why Ivy doesn’t

have the two problems we’ve identified for naïve DSM

31

Eventual Consistency (Overview)

• Allow stale reads, but ensure that reads will eventually

reflect previously written values

– Even after very long times

• Doesn’t order concurrent writes as they are executed,

which might create conflicts later: which write was first?

• Used in Amazon’s Dynamo, a key/value store

– Plus a lot of academic systems

– Plus file synchronization  familiar example, we’ll use this

18

Why Eventual Consistency?

• More concurrency opportunities than strict,

sequential, or causal consistency

• Sequential consistency requires highly available

connections

– Lots of chatter between clients/servers

• Sequential consistency many be unsuitable for

certain scenarios:

– Disconnected clients (e.g. your laptop goes offline, but you

still want to edit your shared document)

– Network partitioning across datacenters

– Apps might prefer potential inconsistency to loss of

availability

Case-in-Point:

Realizing Sequential Consistency

w
(x

)1

w(x)2

Cache

or

replica

Cache

Or

replica

w(y)3r(y
), I

nvalid
ate

• All reads/writes to address X must be ordered by one

memory/storage module responsible for X (see Ivy, Lec10)
• If you write data that others have, you must let them know
• Thus, everyone must be online all the time

Why (Not) Eventual Consistency?

 Support disconnected operations or network partitions

– Better to read a stale value than nothing

– Better to save writes somewhere than nothing

 Support for increased parallelism

– But that’s not what people have typically used this for

Potentially anomalous application behavior

– Stale reads and conflicting writes…

Sequential vs. Eventual Consistency

• Sequential: pessimistic concurrency handling

– Decide on update order as they are executed

• Eventual: optimistic concurrency handling

– Let updates happen, worry about deciding their order

later

– May raise conflicts

• Think about when you code offline for a while – you may need

to resolve conflicts with other teammembers when you commit

• Resolving conflicts is not that difficult with code, but it’s really

hard in general (e.g., think about resolving conflicts when

you’ve updated an image)

Example Usage: File Synchronizer

• One user, many gadgets, common files (e.g., contacts)

• Goal of file synchronization

1. All replica contents eventually become identical

2. No lost updates

– Do not replace new version with old ones

Operating w/o Total Connectivity

replica replica

Client writes to its

local replica

W(A)1 W(A)2

Sync w/ server resolves

non-conflicting changes,

reports conflicting ones

to user

No sync between clients

Pair-wise Synchronization

replica replica

replica

W(A)1 W(A)2

W(B)3Pair-wise sync resolves

non-conflicting changes,

reports conflicting ones

to users

Prevent lost updates

• Detect if updates were sequential

– If so, replace old version with new one

– If not, detect conflict

How to Prevent Lost Updates?

• Strawman: use mtime to decide which version should

replace the other

• Problems?
1. If clocks are unsynchronized: new data might have older

timestamp than old data

2. Does not detect conflicts => may lose some contacts…

H1

H2

W(f)a

mtime: 15648

W(f)c

23657

f

W(f)b

16679f

12354f 15648

Strawman Fix

• Carry the entire modification history (a log)

• If history X is a prefix of Y, Y is newer

• If it’s not, then detect and potentially solve conflicts

H1

W(f)a W(f)b

W(f)c

H1:15648

H1:15648

H1:15648

H1:16679

H1:15648

H2:23657

Compress Version History

H1

W(f)a W(f)b

W(f)c

H1:1

H1:1

H1:1

H1:2

H1:1

H1:2

H2:1

H1:1

H1:2

H1:2 implies H1:1,

so we only need one

number per host

H1:1 H1:2

H1:1 H1:2 H1:2

H2:1

H2

How to Deal w/ Conflicts?

• Easy: mailboxes w/ two different set of messages

• Medium: changes to different lines of a C source file

• Hard: changes to same line of a C source file

• After conflict resolution, add a new item to the history?

So, What’s Used Where?

• Sequential consistency

– A number of both academic and industrial systems provide (at least)

sequential consistency (some a bit stronger – linearizability)

– Examples: Yale’s IVY DSM, Microsoft’s Niobe DFS, Cornell’s chain

replication, …

• Causal consistency – Promiscuous, many other DB replication

systems

• Eventual consistency

– Very popular for a while both in industry and in academia

– Examples: file synchronizers, Amazon’s Dynamo, Bayou

31

Many Other Consistency Models Exist

• Other standard consistency models

– Linearizability

– Serializability

– Monotonic reads

– Monotonic writes

– … read Tanenbaum 7.3 if interested (these are not required for

exam)

• In-house consistency models:

– AFS’s close-to-open

– GFS’s atomic at-most-once appends

32

	Slide 1
	Last Times
	Reminders
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

