
Distributed Systems

Lec 12: Consistency Models –

Sequential, Causal, and Eventual Consistency

Slide acks: Jinyang Li
(http://www.news.cs.nyu.edu/~jinyang/fa10/notes/ds-eventual.ppt)

1

Consistency (Reminder)

• What is consistency?

– What processes can expect when RD/WR shared data

concurrently

• When do consistency concerns arise?

– With replication and caching

• Why are replication and caching needed?

– For performance, scalability, fault tolerance, disconnection

• Let’s focus on replication – here’s an example:

2

x x,y x,y y

write x

DSM / DFS / DHT, …

read x

Application processes (a.k.a. clients)

write x

Consistency (Reminder)

• What is a consistency model?

– Contract between a distributed data system (e.g., DFS, DSM) and

processes constituting its applications

– E.g.: “If a process reads a certain piece of data, I (the DFS/DSM)

pledge to return the value of the last write”

• What are some consistency models?

– Strict consistency

– Sequential consistency

– Causal consistency

– Eventual consistency

• Variations boil down to:

– The allowable staleness of reads

– The ordering of writes across all replicas 3

- Less intuitive, harder to program

- More feasible, scalable, efficient

 (traditionally)

Example

• Consistency model defines what values reads are

admissible by the DFS/DSM

4

x x x

w(x)a r(x)?

x=nil initially across all

replicas

P1 P2 P3

R1 R2 R3

P4

w(x)b

P1: w(x)a

P2: w(x)b

P3: r(x)? r(x)?

P4: r(x)? r(x)?

wall-clock time

r(x)?

DFS/DSM

May differ from

the time at

which the op

request gets to

relevant replica!

Time at

which client

process

issues op

Strict Consistency (Last Time)

• Any execution is the same as if all read/write ops were

executed in order of wall-clock time at which they were issued

• Therefore:

– Reads are never stale

– All replicas enforce wall-clock ordering for all writes

• If DSM were strictly consistent, what can these reads return?

5

P1: w(x)a

P2: w(x)b

P3: r(x)? r(x)?

P4: r(x)? r(x)?

wall-clock time

Strict Consistency (Last Time)

• Any execution is the same as if all read/write ops were

executed in order of wall-clock time at which they were issued

• Therefore:

– Reads are never stale

– All replicas enforce wall-clock ordering for all writes

• If DSM were strictly consistent, what can these reads return?

6

P1: w(x)a

P2: w(x)b

P3: r(x)b r(x)b

P4: r(x)b r(x)b

wall-clock time

P1: w(x)a

P2: w(x)b

P3: r(x)a r(x)b

P4: r(x)b r(x)b

wall-clock time

Sequential Consistency (Last Time)

• Any execution is the same as if all read/write ops were

executed in some global ordering, and the ops of each client

process appear in the order specified by its program

• Therefore:

– Reads may be stale in terms of real time, but not in logical time

– Writes are totally ordered according to logical time across all replicas

• If DSM were seq. consistent, what can these reads return?

7

P1: w(x)a

P2: w(x)b

P3: r(x)? r(x)?

P4: r(x)? r(x)?

wall-clock time

Sequential Consistency (Last Time)

• Any execution is the same as if all read/write ops were

executed in some global ordering, and the ops of each client

process appear in the order specified by its program

8

P1: w(x)a

P2: w(x)b

P3: r(x)b r(x)b

P4: r(x)b r(x)b

wall-clock time

P1: w(x)a

P2: w(x)b

P3: r(x)a r(x)b

P4: r(x)b r(x)b

wall-clock time

What’s a global sequential order

that can explain these results?

What’s a global sequential order

that can explain these results?

w(x)a, r(x)a, w(x)b, r(x)b, …wall-clock ordering

This was also strictly

consistent

This wasn’t strictly

consistent

Sequential Consistency (Last Time)

• Any execution is the same as if all read/write ops were

executed in some global ordering, and the ops of each client

process appear in the order specified by its program

P1: w(x)a

P2: w(x)b

P3: r(x)b r(x)a

P4: r(x)a r(x)b

wall-clock time

P1: w(x)a w(x)c

P2: w(x)b

P3: r(x)c r(x)a

P4: r(x)a r(x)b

wall-clock time

No global sequential global ordering

can explain these results…
No global ordering can explain

these results…

 => not seq. consistent E.g.: the following global ordering

doesn’t preserve P1’s ordering

w(x)c, r(x)c, w(x)a, r(x)a, w(x)b, …

Today

• Causal consistency

• Eventual consistency

• Implementing eventual consistency

10

Causal Consistency

• Remember causality notion from Lamport (logical) clocks?

– That’s what causal consistency enforces

• Causal consistency: Any execution is the same as if all

causally-related read/write ops were executed in an order

that reflects their causality

– All concurrent ops may be seen in different orders

• Therefore:

– Reads are fresh only w.r.t. the writes that they are causally

dependent on

– Only causally-related writes are ordered by all replicas in the

same way, but concurrent writes may be committed in different

orders by different replicas, and hence read in different orders

by different applications 11

P1: w(x)a w(x)c

P2: w(x)b

P3: r(x)c r(x)a

P4: r(x)a r(x)b

wall-clock time

Causal Consistency: (Counter)Examples

• Any execution is the same as if all causally-related read/write

ops were executed in an order that reflects their causality

– All concurrent ops may be seen in different orders

12

P1: w(x)a

P2: w(x)b

P3: r(x)b r(x)a

P4: r(x)a r(x)b

wall-clock time

Having read c (r(x)c), P3 must

continue to read c or some newer

value (perhaps b), but can’t go back

to a, b/c w(x)c was conditional upon

w(x)a having finished

Only per-process ordering restrictions:

w(x)b < r(x)b; r(x)b < r(x)a; …

w(x)a || w(x)b, hence they can be seen

in ≠ orders by ≠ processes

This wasn’t sequentially

consistent.

• Any execution is the same as if all causally-related read/write

ops were executed in an order that reflects their causality

– All concurrent ops may be seen in different orders

P1: w(x)a

P2: r(x)a w(x)b

P3: r(x)b r(x)a

P4: r(x)a r(x)b

wall-clock time

Causal Consistency: (Counter)Examples

13

P1: w(x)a

P2: w(x)b

P3: r(x)b r(x)a

P4: r(x)a r(x)b

wall-clock time

w(x)b is causally-related on r(x)a,

which is causally-related on w(x)a.

Therefore, system must enforce

w(x)a < w(x)b ordering.

But P3 violates that ordering, b/c it

reads a after reading b.

Why Causal Consistency?

• Causal consistency is strictly weaker than sequential

consistency and can give weird results, as you’ve seen

– If system is sequentially consistent => it is also causally consistent

• BUT: it also offers more possibilities for concurrency

– Concurrent operations (which are not causally-dependent) can be

executed in different orders by different people

– In contrast, with sequential consistency, you need to enforce a

global ordering of all operations

– Hence, one can get better performance than sequential

• From what I know, not very popular in industry

– So, we’re not gonna focus on it any more

14

Eventual Consistency (Overview)

• Allow stale reads, but ensure that reads will eventually

reflect previously written values

– Even after very long times

• Doesn’t order concurrent writes as they are executed,

which might create conflicts later: which write was first?

• Used in Amazon’s Dynamo, a key/value store

– Plus a lot of academic systems

– Plus file synchronization  familiar example, we’ll use this

15

Why Eventual Consistency?

• More concurrency opportunities than strict,

sequential, or causal consistency

• Sequential consistency requires highly available

connections

– Lots of chatter between clients/servers

• Sequential consistency many be unsuitable for

certain scenarios:

– Disconnected clients (e.g. your laptop goes offline, but you

still want to edit your shared document)

– Network partitioning across datacenters

– Apps might prefer potential inconsistency to loss of

availability

Case-in-Point:

Realizing Sequential Consistency

w
(x

)1

w(x)2

Cache

or

replica

Cache

Or

replica

w(y)3r(y
), I

nvalidate

• All reads/writes to address X must be ordered by one

memory/storage module responsible for X (see Ivy, Lec10)
• If you write data that others have, you must let them know
• Thus, everyone must be online all the time

Why (Not) Eventual Consistency?

 Support disconnected operations or network partitions

– Better to read a stale value than nothing

– Better to save writes somewhere than nothing

 Support for increased parallelism

– But that’s not what people have typically used this for

Potentially anomalous application behavior

– Stale reads and conflicting writes…

Sequential vs. Eventual Consistency

• Sequential: pessimistic concurrency handling

– Decide on update order as they are executed

• Eventual: optimistic concurrency handling

– Let updates happen, worry about deciding their order

later

– May raise conflicts

• Think about when you code offline for a while – you may need

to resolve conflicts with other teammembers when you commit

• Resolving conflicts is not that difficult with code, but it’s really

hard in general (e.g., think about resolving conflicts when

you’ve updated an image)

Example Usage: File Synchronizer

• One user, many gadgets, common files (e.g., contacts)

• Goal of file synchronization

1. All replica contents eventually become identical

2. No lost updates

– Do not replace new version with old ones

Operating w/o Total Connectivity

replica replica

Client writes to its

local replica

W(A)1 W(A)2

Sync w/ server resolves

non-conflicting changes,

reports conflicting ones

to user

No sync between clients

Pair-wise Synchronization

replica replica

replica

W(A)1 W(A)2

W(B)3Pair-wise sync resolves

non-conflicting changes,

reports conflicting ones

to users

Prevent lost updates

• Detect if updates were sequential

– If so, replace old version with new one

– If not, detect conflict

How to Prevent Lost Updates?

• Strawman: use mtime to decide which version should
replace the other

• Problems?
1. If clocks are unsynchronized: new data might have older

timestamp than old data

2. Does not detect conflicts => may lose some contacts…

H1

H2

W(f)a

mtime: 15648

W(f)c

23657

f

W(f)b

16679f

12354f 15648

Strawman Fix

• Carry the entire modification history (a log)

• If history X is a prefix of Y, Y is newer

• If it’s not, then detect and potentially solve conflicts

H1

W(f)a W(f)b

W(f)c

H1:15648

H1:15648

H1:15648

H1:16679

H1:15648

H2:23657

Compress Version History

H1

W(f)a W(f)b

W(f)c

H1:1

H1:1

H1:1

H1:2

H1:1

H1:2

H2:1

H1:1

H1:2

H1:2 implies H1:1,

so we only need one

number per host

H1:1 H1:2

H1:1 H1:2 H1:2

H2:1

H2

How to Deal w/ Conflicts?

• Easy: mailboxes w/ two different set of messages

• Medium: changes to different lines of a C source file

• Hard: changes to same line of a C source file

• After conflict resolution, add a new item to the history?

So, What’s Used Where?

• Strict consistency

– Google’s just presented Spanner at last week’s OSDI ‘12 conference,

which looks similar to strict consistency (they call it “external

consistency”)

– EXCITING: thus far thought of as impossible

• Sequential consistency

– A number of both academic and industrial systems provide (at least)

sequential consistency (some a bit stronger – linearizability)

– Examples: Yale’s IVY DSM, Microsoft’s Niobe DFS, Cornell’s chain

replication, …

• Causal consistency – dunno

• Eventual consistency

– Very popular for a while both in industry and in academia

– Examples: file synchronizers, Amazon’s Dynamo, Bayou
28

Many Other Consistency Models Exist

• Other standard consistency models

– Linearizability

– Serializability

– Monotonic reads

– Monotonic writes

– … read Tanenbaum 7.3 if interested (these are not required for

exam)

• In-house consistency models:

– AFS’s close-to-open

– GFS’s atomic at-most-once appends

29

	Distributed Systems [Fall 2012]
	Consistency (Reminder)
	Slide 3
	Example
	Strict Consistency (Last Time)
	Slide 6
	Sequential Consistency (Last Time)
	Slide 8
	Slide 9
	Today
	Causal Consistency
	Causal Consistency: (Counter)Examples
	Slide 13
	Why Causal Consistency?
	Eventual Consistency (Overview)
	Why Eventual Consistency?
	Case-in-Point: Realizing Sequential Consistency
	Why (Not) Eventual Consistency?
	Sequential vs. Eventual Consistency
	Example Usage: File Synchronizer
	Operating w/o Total Connectivity
	Pair-wise Synchronization
	Prevent lost updates
	How to Prevent Lost Updates?
	Strawman Fix
	Compress Version History
	How to Deal w/ Conflicts?
	So, What’s Used Where?
	Many Other Consistency Models Exist

