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Reminder: Distributed File Systems

• We discussed about three: NFS, AFS, GFS

• Each has its own design, which is oriented toward a 

particular workload and requirements

• Each trades a form of consistency for performance 

and scale

– Remember consistency properties for NFS/AFS/GFS?

– Remember some mechanisms by which they achieve 

these?
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Reminder: Distributed File Systems

• We discussed about three: NFS, AFS, GFS

• Each has its own design, which is oriented toward a 

particular workload and requirements

• Each trades a form of consistency for performance 

and scale

– AFS: close-to-open semantic

– NFS: periodic refreshes, close-to-open semantic

– GFS: atomic-at-least-once record appends

But how do these compare? What’s “right”?

What do these mean for applications/users?

We need some baselines to judge… 3
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Example: GFS Consistency

• GFS provides:
– Hardly any guarantees for normal writes
– At-least-once atomic appends

• Record Appends:

– The client specifies only the data, not the file offset

– If record fits in chunk, primary chooses the offset and 
communicates it to all replicas  offset is arbitrary

– If record doesn’t fit in chunk, the chunk is padded  file 
may have blank spaces

– If a record append fails at any replica, the client retries 
the operation  file may contain record duplicates
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Implications for Applications

• GFS’ consistency is not completely intuitive or 
generally applicable

• Applications must adapt to its weak semantics – how?
– Rely on appends rather on overwrites
– Write self-validating records

• Checksums to detect and remove padding

– Write self-identifying records
• Unique Identifiers to identify and discard duplicates

• Hence, programmers need be very careful!
– And applications need be amenable for weak semantics
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Today: Consistency Models

• We’ll look at “standard” consistency models

– Properties we wish we’d have, or that are generally 

applicable and well understood

• Today: strong consistency models

– Strict consistency, sequential consistency

• Next time: weaker consistency models

– Causal consistency, eventual consistency

• We’ll relate NFS/AFS/GFS’ models to those “baseline” 

models
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What Is Consistency?

• Consistency = meaning of concurrent reads and writes 

on shared, possibly replicated, state 

• As you’ve seen, it’s a huge factor in many designs

• Choice trades off performance/scalability vs. 

programmer-friendliness

• Today we’ll look at one case study: distributed shared 

memory

– Concepts are similar to those in distributed storage 

systems, though
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Distributed Shared Memory (DSM)

• Two models for communication in distributed systems:

– message passing

– shared memory

• Shared memory is often thought more intuitive to write 

parallel programs than message passing

– Each machine can access a common address space
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Example Application

• What’s the intuitive intent?

– M2 should execute f2() with results from M0 and M1 

– waiting for M1 implies waiting for M0 9

M0 M1 M2

DSM

M0:

v0 = f0();

done0 = 1;

M1:

while (done0 == 0) 

     ;

v1 = f1(v0);

done1 = 1;

M2:

while (done1 == 0) 

     ;

v2 = f2(v0, v1);

v0 done0 v1 done1 v2



Naïve DSM System

• Each machine has a local copy of all of memory

• Operations:

– Read: from local memory

– Write: send update msg to each host (but don't wait)

• Fast: never waits for communication

Question: Does this DSM work well for our application?
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Problem 1 with Naïve DSM

• M0's v0=… and done0=… may be interchanged by 

network, leaving v0 unset but done0=1
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v0=f0()

done0=1

v0

done0

v1=f1(v0)  whoops!
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Problem 2 with Naïve DSM

• M2 sees M1's writes before M0's writes

– I.e. M2 and M1 disagree on order of M0 and M1 writes
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v0=f0()

done0=1

v0

done0
whoops!

M0 M1 M2

v1=f1(v0)

v0

done1=1
v1

done1
v2=f2(v0,v1)



Naïve DSM Properties

• Naive DSM is fast but has unexpected behavior

• Maybe DSM isn't “correct”

• Or maybe we should have never expected the 

example application to work as we did

– I.e., maybe we need to fix the app, not the DSM…
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Consistency Models

• Memory system promises to behave according to 

certain rules, which constitute the system’s 

“consistency model”

– We write programs assuming those rules

• The rules are a “contract” between memory system 

and programmer
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Challenges

• No right or wrong consistency models

– Tradeoff between ease of programmability and efficiency

– E.g. what’s the consistency model for web pages?

– What should it be for a shared memory system?

• Consistency is hard in (distributed) systems:

– Data replication (caching)

– Concurrency

– Failures
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Model 1:  Strict Consistency

• Each operation is stamped with a global wall-clock time

• Rules:

– Rule 1: Each read gets the latest written value

– Rule 2: All operations at one CPU are executed in order  

of their timestamps

16

M0 M1 M2

DSM



Does Strict Consistency Avoid Problems?

• Suppose we implement rules, can we still get problems?

– Rule 1: Each read gets the latest written value

– Rule 2: All operations at one CPU are executed in order     

of their timestamps

• Problem 1: Can M1 ever see v0 unset but done0=1?

• Problem 2: Can M1 and M2 disagree on order of M0  

and M1 writes?

• So, strict consistency has very intuitive behavior

– Essentially, the same semantic as on a uniprocessor!

• But how to implement it efficiently?

– Without reducing distributed system to a uniprocessor…17



Implementing Strict Consistency

• To achieve, one would need to ensure:

– Each read must be aware of, and wait for, each write

• RD@2 aware of WR@1; WR@4 must know how long to wait…

– Real-time clocks are strictly synchronized…

• Unfortunately:

– Time between instructions << speed-of-light…

– Real-clock synchronization is tough (pre-2012 )

• So, strict consistency is tough to implement efficiently 18

time
1               2              3            

4M0:         WR                                                    WR

M1:                               RD             RD  



Model 2: Sequential Consistency

• Slightly weaker model than strict consistency

– Most important difference: doesn’t assume real time

• Rules: There exists a total ordering of ops s.t.

– Rule 1: Each machine’s own ops appear in order

– Rule 2: All machines see results according to total order 

(i.e. reads see most recent writes)

• We say that any runtime ordering of operations (also 

called a history) can be “explained” by a sequential 

ordering of operations that follows the above two rules
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Does Seq. Consistency Avoid Problems?

• There is a total ordering of events s.t.:

– Rule 1: Each machine’s own ops appear in order

– Rule 2: All machines see results according to total order

• Problem 1: Can M1 ever see v0 unset but done0=1?

– M0's execution order was v0=… done0=…

– M1 saw done0=… v0=…

– Each machine's operations must appear in execution 

order so cannot happen w/ sequential consistency

• Problem 2: Can M1 and M2 disagree on ops’ order?

– M1 saw v0=… done0=… done1=…

– M2 saw done1=… v0=…

– This cannot occur given a single total ordering 20



Seq. Consistency Is Easier To

Implement Efficiently

• No notion of real time

• System has some leeway in how it interleaves different 

machines' ops

– Not forced to order by op start time, as in strict 

consistency

• Performance is still not great

– Once a machine's write completes, other machines' reads 

must see new data

– Thus communication cannot be omitted or much delayed

– Thus either reads or writes (or both) will be expensive
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Sequential Consistency Requirements

1. Each processor issues requests in the order 
specified by the program

– Do not issue the next request unless the previous one 
has finished

1. Requests to an individual memory location 
(storage object) are served from a single FIFO 
queue.

– Writes occur in a single order

– Once a read observes the effect of a write, it’s ordered 
behind that write
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Naive DSM violates R1,R2

W(x)1 W(y)1

R1: a processor issues read before waiting for write to complete

R2: 2 processors issue writes concurrently, no single order

R(y)0 R(x)0

• Read from local state

• Send writes to the other node, but do not wait



Case Study:

Ivy: Integrated shared Virtual memory at Yale
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Ivy distributed shared memory

• What does Ivy do?

– Provide a shared memory system across a

group of workstations

• Why shared memory?

– Easier to write parallel programs with than

using message passing

– We’ll come back to this choice of interface in

later lectures



Ivy architecture

• Each node caches read pages
– Why?

• Can a node directly write cached pages?

Each processor’s

local memory keeps

a subset of all pages 

If page not found in 

local memory, request 

from remote node



Ivy aims to provide sequential

consistency

• How?

– Always read a fresh copy of data

• Must invalidate all cached pages before writing

a page.

• This simulates the FIFO queue for a page

because once a page is written, all future reads

must see the latest value

– Only one processor (owner) can write a

page at a time



Ivy implementation

• The ownership of a page moves across nodes

– Latest writer becomes the owner

– Why?

• Challenge:

– how to find the owner of a page?

– how to ensure one owner per page?

– How to ensure all cached pages are invalidated?



Ivy: centralized manager

manager

Page#, copy_set, owner

    p1,   {..},     {A}

Page#, access

    p1,   read     

A B C



Ivy: read

Manager

Page#, copy_set, owner

    p1,   {},     {A}

A B C

1. Page fault for p1 on C

2. C sends RQ(read request) to

M

3. M sends RF(read forward) to

A, M adds C to copy_set

4. A sends p1 to C, C marks p1

as read-only

5. C sends RC(read confirmation)

to M

2:RQ
5:RC

3:RF

    p1,   {C},     {A}

Page#, access

    p1,   read     

4:p1

Page#, access

    p1,   read     



Ivy: write

Manager

Page#, copy_set, owner

    p1,   {C},     {A}

A B C

1. Page fault for p1 on B

2. B sends WQ(write request) to

M

3. M sends IV(invalidate) to

copy_set = {C}

4. C sends IC(invalidate confirm)

to M

5. M clears copy_set, sends

WF(write forward) to A

6. A sends p1 to B, clears access

7. B sends WC(write confirmation)

to M
Page#, access

    p1,   write     

Page#, access

    p1,   read     

2:WQ
3:IV

4:IC

    p1,   nil     

Page#, access

    p1,   write         p1,   nil     

6:p1

7:WC

5:WF

    p1,   {},     {B}
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Ivy invariants?

• Every page has exactly one current 

owner

• Current owner has a copy of the page

• If mapped r/w by owner, no other copies

• If mapped r/o by owner, identical to 

other copies

• Manager knows about all copies



Is Ivy Sequentially Consistent?

• Well, yes, but we’re not gonna prove it…

• Proof sketch:

– Proof by contradiction that there is a schedule that 

cannot be explained by any sequential ordering that 

satisfies the two rules

– This means that there are operations in the schedule 

that break one of the two rules

– Reach contradiction on each of the two rules by using 

definition of reads/writes in Ivy

• For simplicity, let’s look instead at why Ivy doesn’t 

have the two problems we’ve identified for naïve DSM
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