
Distributed Systems

Lec 11: Consistency Models

Slide acks: Jinyang Li, Robert Morris

(http://pdos.csail.mit.edu/6.824/notes/l06.txt,
http://www.news.cs.nyu.edu/~jinyang/fa09/notes/ds-consistency.pdf)

1

http://pdos.csail.mit.edu/6.824/notes/l06.txt
http://www.news.cs.nyu.edu/~jinyang/fa09/notes/ds-consistency.pdf

Reminder: Distributed File Systems

• We discussed about three: NFS, AFS, GFS

• Each has its own design, which is oriented toward a

particular workload and requirements

• Each trades a form of consistency for performance

and scale

– Remember consistency properties for NFS/AFS/GFS?

– Remember some mechanisms by which they achieve

these?

2

Reminder: Distributed File Systems

• We discussed about three: NFS, AFS, GFS

• Each has its own design, which is oriented toward a

particular workload and requirements

• Each trades a form of consistency for performance

and scale

– AFS: close-to-open semantic

– NFS: periodic refreshes, close-to-open semantic

– GFS: atomic-at-least-once record appends

But how do these compare? What’s “right”?

What do these mean for applications/users?

We need some baselines to judge… 3

today

Example: GFS Consistency

• GFS provides:
– Hardly any guarantees for normal writes
– At-least-once atomic appends

• Record Appends:

– The client specifies only the data, not the file offset

– If record fits in chunk, primary chooses the offset and
communicates it to all replicas  offset is arbitrary

– If record doesn’t fit in chunk, the chunk is padded  file
may have blank spaces

– If a record append fails at any replica, the client retries
the operation  file may contain record duplicates

4

Implications for Applications

• GFS’ consistency is not completely intuitive or
generally applicable

• Applications must adapt to its weak semantics – how?
– Rely on appends rather on overwrites
– Write self-validating records

• Checksums to detect and remove padding

– Write self-identifying records
• Unique Identifiers to identify and discard duplicates

• Hence, programmers need be very careful!
– And applications need be amenable for weak semantics

5

Today: Consistency Models

• We’ll look at “standard” consistency models

– Properties we wish we’d have, or that are generally

applicable and well understood

• Today: strong consistency models

– Strict consistency, sequential consistency

• Next time: weaker consistency models

– Causal consistency, eventual consistency

• We’ll relate NFS/AFS/GFS’ models to those “baseline”

models

6

What Is Consistency?

• Consistency = meaning of concurrent reads and writes

on shared, possibly replicated, state

• As you’ve seen, it’s a huge factor in many designs

• Choice trades off performance/scalability vs.

programmer-friendliness

• Today we’ll look at one case study: distributed shared

memory

– Concepts are similar to those in distributed storage

systems, though

7

Distributed Shared Memory (DSM)

• Two models for communication in distributed systems:

– message passing

– shared memory

• Shared memory is often thought more intuitive to write

parallel programs than message passing

– Each machine can access a common address space

8

M1 M2 M3

DSM

var varvar var

read/write

(load/store)

var

Example Application

• What’s the intuitive intent?

– M2 should execute f2() with results from M0 and M1

– waiting for M1 implies waiting for M0 9

M0 M1 M2

DSM

M0:

v0 = f0();

done0 = 1;

M1:

while (done0 == 0)

 ;

v1 = f1(v0);

done1 = 1;

M2:

while (done1 == 0)

 ;

v2 = f2(v0, v1);

v0 done0 v1 done1 v2

Naïve DSM System

• Each machine has a local copy of all of memory

• Operations:

– Read: from local memory

– Write: send update msg to each host (but don't wait)

• Fast: never waits for communication

Question: Does this DSM work well for our application?
10

M1 M2 M3

DSM

write

read

local mem

Problem 1 with Naïve DSM

• M0's v0=… and done0=… may be interchanged by

network, leaving v0 unset but done0=1

11

v0=f0()

done0=1

v0

done0

v1=f1(v0)  whoops!

M0 M1

Problem 2 with Naïve DSM

• M2 sees M1's writes before M0's writes

– I.e. M2 and M1 disagree on order of M0 and M1 writes

12

v0=f0()

done0=1

v0

done0
whoops!

M0 M1 M2

v1=f1(v0)

v0

done1=1
v1

done1
v2=f2(v0,v1)

Naïve DSM Properties

• Naive DSM is fast but has unexpected behavior

• Maybe DSM isn't “correct”

• Or maybe we should have never expected the

example application to work as we did

– I.e., maybe we need to fix the app, not the DSM…

13

Consistency Models

• Memory system promises to behave according to

certain rules, which constitute the system’s

“consistency model”

– We write programs assuming those rules

• The rules are a “contract” between memory system

and programmer

14

Challenges

• No right or wrong consistency models

– Tradeoff between ease of programmability and efficiency

– E.g. what’s the consistency model for web pages?

– What should it be for a shared memory system?

• Consistency is hard in (distributed) systems:

– Data replication (caching)

– Concurrency

– Failures

15

Model 1: Strict Consistency

• Each operation is stamped with a global wall-clock time

• Rules:

– Rule 1: Each read gets the latest written value

– Rule 2: All operations at one CPU are executed in order

of their timestamps

16

M0 M1 M2

DSM

Does Strict Consistency Avoid Problems?

• Suppose we implement rules, can we still get problems?

– Rule 1: Each read gets the latest written value

– Rule 2: All operations at one CPU are executed in order

of their timestamps

• Problem 1: Can M1 ever see v0 unset but done0=1?

• Problem 2: Can M1 and M2 disagree on order of M0

and M1 writes?

• So, strict consistency has very intuitive behavior

– Essentially, the same semantic as on a uniprocessor!

• But how to implement it efficiently?

– Without reducing distributed system to a uniprocessor…17

Implementing Strict Consistency

• To achieve, one would need to ensure:

– Each read must be aware of, and wait for, each write

• RD@2 aware of WR@1; WR@4 must know how long to wait…

– Real-time clocks are strictly synchronized…

• Unfortunately:

– Time between instructions << speed-of-light…

– Real-clock synchronization is tough (pre-2012 )

• So, strict consistency is tough to implement efficiently 18

time
1 2 3

4M0: WR WR

M1: RD RD

Model 2: Sequential Consistency

• Slightly weaker model than strict consistency

– Most important difference: doesn’t assume real time

• Rules: There exists a total ordering of ops s.t.

– Rule 1: Each machine’s own ops appear in order

– Rule 2: All machines see results according to total order

(i.e. reads see most recent writes)

• We say that any runtime ordering of operations (also

called a history) can be “explained” by a sequential

ordering of operations that follows the above two rules

19

Does Seq. Consistency Avoid Problems?

• There is a total ordering of events s.t.:

– Rule 1: Each machine’s own ops appear in order

– Rule 2: All machines see results according to total order

• Problem 1: Can M1 ever see v0 unset but done0=1?

– M0's execution order was v0=… done0=…

– M1 saw done0=… v0=…

– Each machine's operations must appear in execution

order so cannot happen w/ sequential consistency

• Problem 2: Can M1 and M2 disagree on ops’ order?

– M1 saw v0=… done0=… done1=…

– M2 saw done1=… v0=…

– This cannot occur given a single total ordering 20

Seq. Consistency Is Easier To

Implement Efficiently

• No notion of real time

• System has some leeway in how it interleaves different

machines' ops

– Not forced to order by op start time, as in strict

consistency

• Performance is still not great

– Once a machine's write completes, other machines' reads

must see new data

– Thus communication cannot be omitted or much delayed

– Thus either reads or writes (or both) will be expensive

21

Sequential Consistency Requirements

1. Each processor issues requests in the order
specified by the program

– Do not issue the next request unless the previous one
has finished

1. Requests to an individual memory location
(storage object) are served from a single FIFO
queue.

– Writes occur in a single order

– Once a read observes the effect of a write, it’s ordered
behind that write

22

23

Naive DSM violates R1,R2

W(x)1 W(y)1

R1: a processor issues read before waiting for write to complete

R2: 2 processors issue writes concurrently, no single order

R(y)0 R(x)0

• Read from local state

• Send writes to the other node, but do not wait

Case Study:

Ivy: Integrated shared Virtual memory at Yale

24

Ivy distributed shared memory

• What does Ivy do?

– Provide a shared memory system across a

group of workstations

• Why shared memory?

– Easier to write parallel programs with than

using message passing

– We’ll come back to this choice of interface in

later lectures

Ivy architecture

• Each node caches read pages
– Why?

• Can a node directly write cached pages?

Each processor’s

local memory keeps

a subset of all pages

If page not found in

local memory, request

from remote node

Ivy aims to provide sequential

consistency

• How?

– Always read a fresh copy of data

• Must invalidate all cached pages before writing

a page.

• This simulates the FIFO queue for a page

because once a page is written, all future reads

must see the latest value

– Only one processor (owner) can write a

page at a time

Ivy implementation

• The ownership of a page moves across nodes

– Latest writer becomes the owner

– Why?

• Challenge:

– how to find the owner of a page?

– how to ensure one owner per page?

– How to ensure all cached pages are invalidated?

Ivy: centralized manager

manager

Page#, copy_set, owner

 p1, {..}, {A}

Page#, access

 p1, read

A B C

Ivy: read

Manager

Page#, copy_set, owner

 p1, {}, {A}

A B C

1. Page fault for p1 on C

2. C sends RQ(read request) to

M

3. M sends RF(read forward) to

A, M adds C to copy_set

4. A sends p1 to C, C marks p1

as read-only

5. C sends RC(read confirmation)

to M

2:RQ
5:RC

3:RF

 p1, {C}, {A}

Page#, access

 p1, read

4:p1

Page#, access

 p1, read

Ivy: write

Manager

Page#, copy_set, owner

 p1, {C}, {A}

A B C

1. Page fault for p1 on B

2. B sends WQ(write request) to

M

3. M sends IV(invalidate) to

copy_set = {C}

4. C sends IC(invalidate confirm)

to M

5. M clears copy_set, sends

WF(write forward) to A

6. A sends p1 to B, clears access

7. B sends WC(write confirmation)

to M
Page#, access

 p1, write

Page#, access

 p1, read

2:WQ
3:IV

4:IC

 p1, nil

Page#, access

 p1, write p1, nil

6:p1

7:WC

5:WF

 p1, {}, {B}

30

Ivy invariants?

• Every page has exactly one current

owner

• Current owner has a copy of the page

• If mapped r/w by owner, no other copies

• If mapped r/o by owner, identical to

other copies

• Manager knows about all copies

Is Ivy Sequentially Consistent?

• Well, yes, but we’re not gonna prove it…

• Proof sketch:

– Proof by contradiction that there is a schedule that

cannot be explained by any sequential ordering that

satisfies the two rules

– This means that there are operations in the schedule

that break one of the two rules

– Reach contradiction on each of the two rules by using

definition of reads/writes in Ivy

• For simplicity, let’s look instead at why Ivy doesn’t

have the two problems we’ve identified for naïve DSM

31

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Slide 27

