
Distributed Systems Fundamentals 
[Fall 2013]

Lec 1: Course Introduction
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Know your staff

• Instructor: Prof. Roxana Geambasu (me)
– Office hour: Thursday 1-2pm (CSB 461)

– roxana@cs.columbia.edu

– http://www.cs.columbia.edu/~roxana/

• Teaching assistants:
– Peter Du (peter@cs.columbia.edu)
– Yu Qiao (yq2145@columbia.edu)
– Their office hours on the website
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Important addresses

• Website: https://www.cs.columbia.edu/~du/ds/
– Check regularly for schedules and deadlines!

• Discussions: Piazza
– Please sign up ASAP

• Staff contact:
– distributed-systems-class@lists.cs.columbia.edu
– If you have a homework-related question, post it on 

Piazza, as it might help others
– If you need to communicate something more privately, use 

the above mailing list or our email addresses
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This class will teach you …

1. Core concepts of distributed systems
– Abstractions, algorithms, implementation techniques

2. Popular distributed systems and tools used by big             
    companies today

– E.g.: Google's protobuf/Bigtable/Spanner/MapReduce, 
Sun's NFS, Yahoo's Hadoop, Amazon's Dynamo, etc.

3. How to build a real distributed system yourself
– Via a series of coding assignments, you will build your 

very own distributed file system
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Relationship with other CU classes

• Multiple “cloud computing” classes are offered @CU
– Those classes teach you how to use various popular 

distributed systems (particularly Hadoop)
– This class will teach you the how those and other systems 

are built, so you can build and use them better in the future

•  Similar to the OS class, but for the distributed environment
– And in the “cloud” era, everything is distributed!

• If you want to do data mining you need to build a DS
• If you want to do mobile apps, you need to build a DS

•  Class has distinctive focus on state-of-the-art systems               
   being used today by big companies

– Concepts classes followed by real-world practice classes



Prerequisites: C/C++!
• Pre-requisites:

– You must have a solid working experience in C

– Some knowledge of C++

– Columbia courses (or equivalents):
• COMS W3137 Data Structures and Algorithms
• COMS W3157 Advanced Programming
• COMS W3827 Fundamentals of Computer Systems
• Optional, but very useful: COMS 4118 Operating Systems

•  If you lack these prerequisites, do not take the class
– Heavy coding accounts for a large portion of the grade!
– Use first assignment to figure out if you have sufficient 

experience
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Course readings

• Official textbook:
– Distributed Systems (Tanenbaum and Steen)
– Fairly outdated (compared to the modern focus of 

this class), but great for understanding core issues

• Very useful references:
– The C++ Programming Language (Bjarne Stroustrup)
– Principles of Computer System Design (Saltzer and Kaashoek)
– Advanced Programming in the UNIX environment (Stevens)
– UNIX Network Programming (Stevens)
– Google's C++ Coding Style Guide
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Course structure

• Lectures 
– Read assigned chapters from Tanenbaum before class
– Participate in class (ask and answer questions)

• Assignments
– Six graded assignments (HW2-7) plus one pass/fail 

assignment (HW1)
– Each assignment has two parts: writing and coding
– Coding component is a.k.a. a “lab”
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Assignments

• Homework 1 is a “sample” homework to help you figure out if 
you should take course
– It will be graded pass/fail and will not count to final grade

• Pass means we welcome you to the course
• Fail means drop this course and take a prerequisite

– Assigned today and due Sept 11, 2013

• Homeworks 2-7 build a networked file system with      
detailed guidance

• All homeworks have written and coding parts
– Written parts: loosely follow the coding portions and 

course concepts, and help you understand those better 
– Coding parts: heavy coding, need lots of time!
– Start with written part then do coding part 99



Grading

• Grading formula
– 70%: six graded homeworks

– 15%: final exam

– 15%: class participation

• Grading policies
– No deadline extensions: late submissions will get a 0!

– Can discuss, but *not* look at others' code or answers

– For coding:  be as clean as you can possibly be

• Test thoroughly, comment your code, and adhere to  
a strict coding style (we recommend one on website)

– More policies on website, read them in detail
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Acknowledgements

• Course builds on several other distributed systems 
courses:
– MIT‘s 6.824 (Robert Morris and Frans Kaashoek)
– NYU's G22.3033 (Jinyang Li)
– CMU's 15-440 (David Andersen)

• Lab assignments are taken from MIT, NYU courses

• Lectures are adapted from all three courses
• Website structure is adapted from NYU course
• This lecture is adapted from MIT and NYU lectures 1
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Questions?
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What are distributed systems?

• Examples?                      Counter-examples?

Multiple 
hosts

A network cloud

Hosts cooperate to 
provide a unified 
service 
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Example: Gmail

• What do you think happens when you click on “Inbox”?
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(screenshot found through google images)



Example: Gmail
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• What do you think happens when you click on “Inbox”?

• Lots of components accessed: load balancer, auth 
service, mem cache, gmail front end, storage service, 
ads service, batch computations to build profile, etc.



• Distributed systems raise the level of abstraction

• Hide many complexities and make it easier to build 
applications

Distributed systems vs. networks
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Networking Stack

TCP, UDP, HTTP, …  (low-level comm. interfaces)

Distributed 
file system
(GFS, HDFS, 

NFS)

files,dirs

Distributed 
locking system

(Chubby, 
Zookeeper)

acquire, release

Distributed 
computing
(MapReduce, 

Hadoop)

tasks

Message 
queues
(Amazon 

SQS)

enq,deq

Key/value 
store

(S3, Dynamo, 
Cassandra)

put,get

Applications 
(Gmail, Facebook, mobile apps..,)



Why distributed systems?
for location transparency

• Examples:
– Your browser doesn’t need to know which Google 

servers are serving Gmail right now
– Your Amazon EC2-based mobile app doesn’t need to 

know which servers in S3 are storing its data

• Why is location transparency important?
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Why distributed systems?
for scalable capacity

• Aggregate resources of many computers
– CPU: MapReduce, Dryad, Hadoop

– Disk: NFS, the Google file system, Hadoop HDFS

– Memory: memcached

– Bandwidth: Akamai CDN

• What scales are we talking about?
– Typical datacenters have 100-200K machines!

– Each service runs on more like 20K machines, though
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Why distributed systems?
for availability

• Build a reliable system out of unreliable parts
– Hardware can fail: power outage, disk failures, memory 

corruption, network switch failures…
– Software can fail: bugs, mis-configuration, upgrade …

– To achieve 0.9999 availability, replicate data/computation 
on many hosts with automatic failover 
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Why distributed systems?
for modular functionality

• Your application is split into many simpler parts, which 
may already exist or are easier to implement
– Authentication service

– Indexing service

– Locking service

• This is called the service-oriented architecture (SOA) 
and much of the Web is built this way
– E.g.: one request on Amazon’s website touches tens of 

services, each with thousands of machines (e.g., pricing 
service, product rating service, inventory service, shopping 
cart service, user preferences service, etc…)
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Challenges

• Achieving location transparency, scalability, availability, 
and modularity in distributed systems is really hard!

• System design challenges
– What is the right interface or abstraction?

• Achieving scalability is challenging
– How to partition functions for scalability?

• Consistency challenges
– How do machines coordinate to achieve the task?
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Challenges (Continued)

• Security challenges
– How to authenticate clients or servers?
– How to defend against misbehaving servers?

• Fault tolerance challenges
– How to keep system available despite machine or 

network failures?

• Implementation challenges
– How to maximize concurrency?
– What’s the bottleneck?
– How to reduce load on the bottleneck resource?
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A word of warning
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“A distributed system is a system in which I 
can’t do my work because some computer that 
I’ve never even heard of has failed.”

-- Leslie Lamport



Topics in this course
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Case Study: 
Distributed file system

- Single shared file system, so users can cooperate
– Lots of client computers
– One or more servers

- Examples: NFS (single server), GFS (multi-server)
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Client 1 Client 2 Client 3

Server(s)Server(s)Server(s)
$ echo “test” > f2
$ ls /dfs
f1 f2

$ ls /dfs
f1 f2
$ cat f2
test



Topic: System Design

• What is the right interface?
– File interface: relay FS requests to server (NFS, GFS)

– Block interface: expose disk blocks from server(s) and 
have FS logic in clients (Storage Area Networks)

– Key/value: expose put/get interface (Amazon S3)
– Database: expose a DB interface from the server 

(Google’s Bigtable, distributed RDBMS)

• There is no right answer
– There are always tradeoffs: performance, ease of 

programming, scalability
– Choice depends on the application
– This will be a theme in this course 26



Topic: Scalability

• How to scale the distributed file system?
– Lots of users with lots of data (e.g., all CU students/faculty)

• Ideally: having N servers supports Nx as many users as 
having one server

• Idea: Partition data across servers
– By user
– By file name

• But you rarely get the ideal… Why?
– Load imbalance: one very active user, one very popular file

– One server gets 99.9% of requests; N-1 servers mostly idle
27

C1 C2 C3

Server 1
(half of data)

Server 2
(other half)



Topic: Consistency

• When C1 moves file f1 from /d1 to /d2, do other 
clients see intermediate results?
– f1 in both directories, f1 in neither

• What if both C1 and C2 want to move f1 to different 
places?

28C1 C2 C3

Server 1
(half of data)

Server 2
(other half)

/d1 /d2

f
1



Topic: Fault Tolerance

• Can I use my files if server / network fails?
• Idea: replicate data at multiple servers

• But how to maintain consistency despite faults?
– S1 misses updates while it reboots, so S2 must update it
– If network’s down, S1 can’t get updates – should it 

resume execution?

• In general, consistency is tough and expensive
– Hence, many applications opt for “weak consistency” 29

S1
(Part 1)

S3
(Part 2)

S2
(Part 1)

S4
(Part 2)



Topic: Security

• Adversary can manipulate or sniff messages to 
corrupt or access files
– How to authenticate?

• Adversary may compromise machines
– Can the FS remain correct despite a few 

compromised nodes?
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S1
(Part 1)

S3
(Part 2)

S2
(Part 1)

S4
(Part 2)



Topic: Implementation

• How do clients/servers communicate?
– Direct network communication is painful
– Want to hide network stuff from application logic     

(e.g., RPC, RMI)

• The file server should serve multiple clients 
concurrently
– Keep (multiple) CPU(s) and network busy while   

waiting for disk
– But concurrency is hard to get right (e.g., race 

conditions, live locks, deadlocks)
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Overview of Homework 1:
C++ Warm-up

(Yu Qiao)
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About Homework 1

• A warm up exercise.

• Determine whether you are 
comfortable with this class. 

• Will be graded pass/fall. Will NOT be 
counted towards final grade.

• Read the submission instructions 
very carefully. It may be 
complicated.

• Always post your question at Piazza, 
as it may benefit others.



Next Time

• TODO for you:  Homework 1

• We'll do a couple of case studies to understand 
what distributed systems really are:
– Web architectures
– A short history of cloud computing
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