
Distributed Systems Fundamentals
[Fall 2013]

Lec 1: Course Introduction

1

Know your staff

• Instructor: Prof. Roxana Geambasu (me)
– Office hour: Thursday 1-2pm (CSB 461)

– roxana@cs.columbia.edu

– http://www.cs.columbia.edu/~roxana/

• Teaching assistants:
– Peter Du (peter@cs.columbia.edu)
– Yu Qiao (yq2145@columbia.edu)
– Their office hours on the website

2

mailto:roxana@cs.columbia.edu
http://www.cs.columbia.edu/~roxana/

Important addresses

• Website: https://www.cs.columbia.edu/~du/ds/
– Check regularly for schedules and deadlines!

• Discussions: Piazza
– Please sign up ASAP

• Staff contact:
– distributed-systems-class@lists.cs.columbia.edu
– If you have a homework-related question, post it on

Piazza, as it might help others
– If you need to communicate something more privately, use

the above mailing list or our email addresses
3

This class will teach you …

1. Core concepts of distributed systems
– Abstractions, algorithms, implementation techniques

2. Popular distributed systems and tools used by big
 companies today

– E.g.: Google's protobuf/Bigtable/Spanner/MapReduce,
Sun's NFS, Yahoo's Hadoop, Amazon's Dynamo, etc.

3. How to build a real distributed system yourself
– Via a series of coding assignments, you will build your

very own distributed file system

4

Relationship with other CU classes

• Multiple “cloud computing” classes are offered @CU
– Those classes teach you how to use various popular

distributed systems (particularly Hadoop)
– This class will teach you the how those and other systems

are built, so you can build and use them better in the future

• Similar to the OS class, but for the distributed environment
– And in the “cloud” era, everything is distributed!

• If you want to do data mining you need to build a DS
• If you want to do mobile apps, you need to build a DS

• Class has distinctive focus on state-of-the-art systems
 being used today by big companies

– Concepts classes followed by real-world practice classes

Prerequisites: C/C++!
• Pre-requisites:

– You must have a solid working experience in C

– Some knowledge of C++

– Columbia courses (or equivalents):
• COMS W3137 Data Structures and Algorithms
• COMS W3157 Advanced Programming
• COMS W3827 Fundamentals of Computer Systems
• Optional, but very useful: COMS 4118 Operating Systems

• If you lack these prerequisites, do not take the class
– Heavy coding accounts for a large portion of the grade!
– Use first assignment to figure out if you have sufficient

experience
6

Course readings

• Official textbook:
– Distributed Systems (Tanenbaum and Steen)
– Fairly outdated (compared to the modern focus of

this class), but great for understanding core issues

• Very useful references:
– The C++ Programming Language (Bjarne Stroustrup)
– Principles of Computer System Design (Saltzer and Kaashoek)
– Advanced Programming in the UNIX environment (Stevens)
– UNIX Network Programming (Stevens)
– Google's C++ Coding Style Guide

7

Course structure

• Lectures
– Read assigned chapters from Tanenbaum before class
– Participate in class (ask and answer questions)

• Assignments
– Six graded assignments (HW2-7) plus one pass/fail

assignment (HW1)
– Each assignment has two parts: writing and coding
– Coding component is a.k.a. a “lab”

8

Assignments

• Homework 1 is a “sample” homework to help you figure out if
you should take course
– It will be graded pass/fail and will not count to final grade

• Pass means we welcome you to the course
• Fail means drop this course and take a prerequisite

– Assigned today and due Sept 11, 2013

• Homeworks 2-7 build a networked file system with
detailed guidance

• All homeworks have written and coding parts
– Written parts: loosely follow the coding portions and

course concepts, and help you understand those better
– Coding parts: heavy coding, need lots of time!
– Start with written part then do coding part 99

Grading

• Grading formula
– 70%: six graded homeworks

– 15%: final exam

– 15%: class participation

• Grading policies
– No deadline extensions: late submissions will get a 0!

– Can discuss, but *not* look at others' code or answers

– For coding: be as clean as you can possibly be

• Test thoroughly, comment your code, and adhere to
a strict coding style (we recommend one on website)

– More policies on website, read them in detail
10

Acknowledgements

• Course builds on several other distributed systems
courses:
– MIT‘s 6.824 (Robert Morris and Frans Kaashoek)
– NYU's G22.3033 (Jinyang Li)
– CMU's 15-440 (David Andersen)

• Lab assignments are taken from MIT, NYU courses

• Lectures are adapted from all three courses
• Website structure is adapted from NYU course
• This lecture is adapted from MIT and NYU lectures 1

11

Questions?

12

What are distributed systems?

• Examples? Counter-examples?

Multiple
hosts

A network cloud

Hosts cooperate to
provide a unified
service

13

Example: Gmail

• What do you think happens when you click on “Inbox”?

14

(screenshot found through google images)

Example: Gmail

15

• What do you think happens when you click on “Inbox”?

• Lots of components accessed: load balancer, auth
service, mem cache, gmail front end, storage service,
ads service, batch computations to build profile, etc.

• Distributed systems raise the level of abstraction

• Hide many complexities and make it easier to build
applications

Distributed systems vs. networks

16

Networking Stack

TCP, UDP, HTTP, … (low-level comm. interfaces)

Distributed
file system
(GFS, HDFS,

NFS)

files,dirs

Distributed
locking system

(Chubby,
Zookeeper)

acquire, release

Distributed
computing
(MapReduce,

Hadoop)

tasks

Message
queues
(Amazon

SQS)

enq,deq

Key/value
store

(S3, Dynamo,
Cassandra)

put,get

Applications
(Gmail, Facebook, mobile apps..,)

Why distributed systems?
for location transparency

• Examples:
– Your browser doesn’t need to know which Google

servers are serving Gmail right now
– Your Amazon EC2-based mobile app doesn’t need to

know which servers in S3 are storing its data

• Why is location transparency important?

17

Why distributed systems?
for scalable capacity

• Aggregate resources of many computers
– CPU: MapReduce, Dryad, Hadoop

– Disk: NFS, the Google file system, Hadoop HDFS

– Memory: memcached

– Bandwidth: Akamai CDN

• What scales are we talking about?
– Typical datacenters have 100-200K machines!

– Each service runs on more like 20K machines, though

18

Why distributed systems?
for availability

• Build a reliable system out of unreliable parts
– Hardware can fail: power outage, disk failures, memory

corruption, network switch failures…
– Software can fail: bugs, mis-configuration, upgrade …

– To achieve 0.9999 availability, replicate data/computation
on many hosts with automatic failover

19

Why distributed systems?
for modular functionality

• Your application is split into many simpler parts, which
may already exist or are easier to implement
– Authentication service

– Indexing service

– Locking service

• This is called the service-oriented architecture (SOA)
and much of the Web is built this way
– E.g.: one request on Amazon’s website touches tens of

services, each with thousands of machines (e.g., pricing
service, product rating service, inventory service, shopping
cart service, user preferences service, etc…)

20

Challenges

• Achieving location transparency, scalability, availability,
and modularity in distributed systems is really hard!

• System design challenges
– What is the right interface or abstraction?

• Achieving scalability is challenging
– How to partition functions for scalability?

• Consistency challenges
– How do machines coordinate to achieve the task?

21

Challenges (Continued)

• Security challenges
– How to authenticate clients or servers?
– How to defend against misbehaving servers?

• Fault tolerance challenges
– How to keep system available despite machine or

network failures?

• Implementation challenges
– How to maximize concurrency?
– What’s the bottleneck?
– How to reduce load on the bottleneck resource?

22

A word of warning

23

“A distributed system is a system in which I
can’t do my work because some computer that
I’ve never even heard of has failed.”

-- Leslie Lamport

Topics in this course

24

Case Study:
Distributed file system

- Single shared file system, so users can cooperate
– Lots of client computers
– One or more servers

- Examples: NFS (single server), GFS (multi-server)
25

Client 1 Client 2 Client 3

Server(s)Server(s)Server(s)
$ echo “test” > f2
$ ls /dfs
f1 f2

$ ls /dfs
f1 f2
$ cat f2
test

Topic: System Design

• What is the right interface?
– File interface: relay FS requests to server (NFS, GFS)

– Block interface: expose disk blocks from server(s) and
have FS logic in clients (Storage Area Networks)

– Key/value: expose put/get interface (Amazon S3)
– Database: expose a DB interface from the server

(Google’s Bigtable, distributed RDBMS)

• There is no right answer
– There are always tradeoffs: performance, ease of

programming, scalability
– Choice depends on the application
– This will be a theme in this course 26

Topic: Scalability

• How to scale the distributed file system?
– Lots of users with lots of data (e.g., all CU students/faculty)

• Ideally: having N servers supports Nx as many users as
having one server

• Idea: Partition data across servers
– By user
– By file name

• But you rarely get the ideal… Why?
– Load imbalance: one very active user, one very popular file

– One server gets 99.9% of requests; N-1 servers mostly idle
27

C1 C2 C3

Server 1
(half of data)

Server 2
(other half)

Topic: Consistency

• When C1 moves file f1 from /d1 to /d2, do other
clients see intermediate results?
– f1 in both directories, f1 in neither

• What if both C1 and C2 want to move f1 to different
places?

28C1 C2 C3

Server 1
(half of data)

Server 2
(other half)

/d1 /d2

f
1

Topic: Fault Tolerance

• Can I use my files if server / network fails?
• Idea: replicate data at multiple servers

• But how to maintain consistency despite faults?
– S1 misses updates while it reboots, so S2 must update it
– If network’s down, S1 can’t get updates – should it

resume execution?

• In general, consistency is tough and expensive
– Hence, many applications opt for “weak consistency” 29

S1
(Part 1)

S3
(Part 2)

S2
(Part 1)

S4
(Part 2)

Topic: Security

• Adversary can manipulate or sniff messages to
corrupt or access files
– How to authenticate?

• Adversary may compromise machines
– Can the FS remain correct despite a few

compromised nodes?

30

S1
(Part 1)

S3
(Part 2)

S2
(Part 1)

S4
(Part 2)

Topic: Implementation

• How do clients/servers communicate?
– Direct network communication is painful
– Want to hide network stuff from application logic

(e.g., RPC, RMI)

• The file server should serve multiple clients
concurrently
– Keep (multiple) CPU(s) and network busy while

waiting for disk
– But concurrency is hard to get right (e.g., race

conditions, live locks, deadlocks)

31

Overview of Homework 1:
C++ Warm-up

(Yu Qiao)

32

About Homework 1

• A warm up exercise.

• Determine whether you are
comfortable with this class.

• Will be graded pass/fall. Will NOT be
counted towards final grade.

• Read the submission instructions
very carefully. It may be
complicated.

• Always post your question at Piazza,
as it may benefit others.

Next Time

• TODO for you: Homework 1

• We'll do a couple of case studies to understand
what distributed systems really are:
– Web architectures
– A short history of cloud computing

34

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

