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TV family of causal  
fairness measures
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Section 4



Gedankenexperiment (NDE)
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• For an individual assigned to male ( ) by intervention, how 
would his salary (Y) change had he been assigned female ( ), 
while keeping the age, nationality, education and employment 
status unchanged (at the natural level )?

X = x0
X = x1

X = x0

W

X = x0 Y

Z

Yx1,Wx0
Yx0,Wx0

W

X = x0 Y

Z

X = x1

NDEx0,x1(y) = P(yx1,Wx0
) − P(yx0,Wx0

)

• (perceived as) 



Gedankenexperiment (NIE)
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W

X = x1 Y

Z

W

X = x0 Y

Z

X = x1

Yx1,Wx0
Yx1,Wx1

NIEx1,x0(y) = P(yx1,Wx0
) − P(yx1,Wx1

)

• For an individual assigned to be female ( ) by intervention, 
how would her salary (Y) change had she been assigned to be male 
( ), while keeping gender unchanged along the direct causal 
pathway (at the natural level )?

X = x1

X = x0
X = x1



Gedankenexperiment (Exp-SE)
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• How would an individuals salary (Y) change if their gender is set to 
male (or female) by intervention, compared to observing their salary 
as male (female)?

Exp-SEx(y) = P(yx) − P(y ∣ x)

W

Y

Z

X = x

Yx Y ∣ X = x
W

Y

Z

X = x
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NDEx0,x1(y)−NIEx1,x0(y)
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Y ∣ X = x1
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Z

X = x1

Yx1

Yx0

W

Y

Z

X = x0

W

Y

Z

X = x0

Yx0 Y ∣ X = x0

W

Y

Z

X = x0

W

Y

Z

X = x1

Yx1

TVx0,x1(Y )

−Exp-SEx1
(y)

Exp-SEx0
(y)

W

Y

Z

X = x1X = x0

Yx1,Wx0

W

Y

Z

X = x1X = x0

Yx1,Wx0

NDEx0,x1(y)−NIEx1,x0(y)

Lemma. The total variation measure can be decomposed 
into its direct, indirect, and spurious variations: 

TVx0,x1(y) = NDEx0,x1(y) − NIEx1,x0(y) − (Exp-SEx1
(y) − Exp-SEx0

(y)) .
TV Decomposition I



Relation to Structural Fairness

8

Corollary. The criteria based on NDE, NIE, and Exp-SE measures 
are admissible with respect to structural direct, indirect, and 
spurious fairness. Formally, these facts are written as: 

In practice, for example, by computing the NDE,  
we can test for the presence of structural direct effect.

S-DE ⟹ NDE-fair
S-IE ⟹ NIE-fair

S-SE ⟹ Exp-SE-fair

admissibility w.r.t. 
structural



Testing Structural  
Fairness in Practice

• Our previous corollary shows that 
                                 


• By taking this statement’s contrapositive, we can see that 
                         


• Therefore, in practice, one may use the following hypothesis 
testing procedure for testing structural direct effect, 
                                 

S-DE ⟹ NDE-fair .

NDEx0,x1(y) ≠ 0 ⟹ ¬S-DE .

H0 : NDEx0,x1(y) = 0.

9

A similar approach can be used 
for the NIE and Exp-SE since  

 S-IE ⟹ NIE-fair
S-SE ⟹ Exp-SE-fair

This will be used to 
connect with the 

disparate treatment and 
impact doctrines later on.



Fairness Map (prelim version)
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• The map is constructed based on the Corollary in the previous page

• We have found fairness measures that are (i) computable from the 

data; (ii) admissible with respect to structural fairness; (iii) satisfy 
decomposability with respect to TV;

Does that mean we are done with 
Causal Fairness Analysis?

Section 4.2 
Figure 4.2
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Example (Limitation of NDE). A new startup company is currently in 
hiring season. The hiring decision ( indicating whether the 
candidate is hired) is based on gender ( , female and male, 
respectively), age ( , younger and older than 40 years, 
respectively), and education level (  which indicates whether 
the applicant has a Ph.D. degree). Following the legal guidelines, the 
startup is in this case obliged to avoid disparate treatment in hiring.

Y ∈ {0,1}
X ∈ {0,1}

Z ∈ {0,1}
W ∈ {0,1}

(Truth-Unobserved)

SCM M*  
(unobserved) 

U ← N(0,1)
X ← Bernoulli(expit(U))
Z ← Bernoulli(expit(U))

W ← Bernoulli(0.3)

Y ← Bernoulli( 1
5 (X + Z − 2XZ) + 1

6 W )

NDEx0,x1(y) = P(yx1,Wx0
) − P(yx0

)
= P(Bernoulli( 1

5 (1 − Z ) + 1
6 W ) = 1)

−P(Bernoulli( 1
5 (Z ) + 1

6 W ) = 1)

= ∑
z∈{0,1}

∑
w∈{0,1}

P(w)[ 1
5 (1 − 2z) + 1

6 w − 1
6 w]

= ∑
z∈{0,1}

1
5 (1 − 2z) = 0. Section 4.2 

Example 4.1
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W

X Y

Z

Gender Job offer

PhD

Age

Example (Limitation of NDE). A new startup company is currently in 
hiring season. The hiring decision ( indicating whether the 
candidate is hired) is based on gender ( , female and male, 
respectively), age ( , younger and older than 40 years, 
respectively), and education level (  which indicates whether 
the applicant has a Ph.D. degree). Following the legal guidelines, the 
startup is in this case obliged to avoid disparate treatment in hiring.

Y ∈ {0,1}
X ∈ {0,1}

Z ∈ {0,1}
W ∈ {0,1}

(Truth-Unobserved)

SCM M*  
(unobserved) 

U ← N(0,1)
X ← Bernoulli(expit(U))
Z ← Bernoulli(expit(U))

W ← Bernoulli(0.3)

Y ← Bernoulli( 1
5 (X + Z − 2XZ) + 1

6 W )

NDEx0,x1(y) = P(yx1,Wx0
) − P(yx0

)
= P(Bernoulli( 1

5 (1 − Z ) + 1
6 W ) = 1)

−P(Bernoulli( 1
5 (Z ) + 1

6 W ) = 1)

= ∑
z∈{0,1}

∑
w∈{0,1}

P(w)[ 1
5 (1 − 2z) + 1

6 w − 1
6 w]

= ∑
z∈{0,1}

1
5 (1 − 2z) = 0. Section 4.2 

Example 4.1

NDE is admissible w.r.t. S-DE. 
However, here NDE = 0, and structural 

direct effect exists. 
Q: Is NDE powerful enough for detecting 

discrimination?



Gedankenexperiment (Ctf-DE)
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• For a male person , how would his salary change (Y) had he 
been a female ( ), while keeping the age, nationality, education 
and employment status unchanged (at the level of )?

X = x0
X = x1

X = x0

W

X = x0 Y

Z

W

X = x0 Y

Z

X = x1

Yx1,Wx0
|X = x0 Yx0,Wx0

|X = x0

Ctf-DEx0,x1(y) = P(yx1,Wx0
∣ x0) − P(yx0,Wx0

∣ x0)
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Ctf-DEx0,x1(y ∣ x0) = P(yx1,Wx0
∣ x0) − P(yx0

∣ x0)SCM M 

U ← N(0,1)
X ← Bernoulli(expit(U))
Z ← Bernoulli(expit(U))

W ← Bernoulli(0.3)

Y ← Bernoulli( 1
5 (X + Z − 2XZ) + 1

6 W )

= P(Bernoulli( 1
5 (1 − Z ) + 1

6 W ) = 1 ∣ x0)

−P(Bernoulli( 1
5 (Z ) + 1

6 W ) = 1 ∣ x0)

= ∑
z∈{0,1}

∑
w∈{0,1}

P(w)P(z ∣ x0)[ 1
5 (1 − 2z) + 1

6 w − 1
6 w]

= ∑
z∈{0,1}

1
5 (1 − 2z)P(z ∣ x0) = 0.036.

Example (Limitation of NDE). A new startup company is currently in 
hiring season. The hiring decision ( indicating whether the 
candidate is hired) is based on gender ( , female and male, 
respectively), age ( , younger and older than 40 years, 
respectively), and education level (  which indicates whether 
the applicant has a Ph.D. degree). Following the legal guidelines, the 
startup is in this case obliged to avoid disparate treatment in hiring.

Y ∈ {0,1}
X ∈ {0,1}

Z ∈ {0,1}
W ∈ {0,1}

Section 4.2 
Example 4.2
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Ctf-DEx0,x1(y ∣ x0) = P(yx1,Wx0
∣ x0) − P(yx0

∣ x0)SCM M 

U ← N(0,1)
X ← Bernoulli(expit(U))
Z ← Bernoulli(expit(U))

W ← Bernoulli(0.3)

Y ← Bernoulli( 1
5 (X + Z − 2XZ) + 1

6 W )

= P(Bernoulli( 1
5 (1 − Z ) + 1

6 W ) = 1 ∣ x0)

−P(Bernoulli( 1
5 (Z ) + 1

6 W ) = 1 ∣ x0)

= ∑
z∈{0,1}

∑
w∈{0,1}

P(w)P(z ∣ x0)[ 1
5 (1 − 2z) + 1

6 w − 1
6 w]

= ∑
z∈{0,1}

1
5 (1 − 2z)P(z ∣ x0) = 0.036.

Example (Limitation of NDE). A new startup company is currently in 
hiring season. The hiring decision ( indicating whether the 
candidate is hired) is based on gender ( , female and male, 
respectively), age ( , younger and older than 40 years, 
respectively), and education level (  which indicates whether 
the applicant has a Ph.D. degree). Following the legal guidelines, the 
startup is in this case obliged to avoid disparate treatment in hiring.

Y ∈ {0,1}
X ∈ {0,1}

Z ∈ {0,1}
W ∈ {0,1}

Key properties of Ctf-DE:  
1. Ctf-DE is admissible. 

2. Ctf-DE is more powerful than NDE.

Section 4.2 
Example 4.2



Gedankenexperiment (Ctf-IE)
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W

X = x0 Y

Z

W

X = x0

Y

Z

X = x1

Yx0,Wx1
|X = x0 Yx0,Wx0

|X = x0

Ctf-IEx0,x1(y) = P(yx0,Wx1
∣ x0) − P(yx0,Wx0

∣ x0)

• For a male person , how would his salary (Y) change had his 
education and employment status been at the level of a female 
person , while keeping the age, nationality and gender 
unchanged (at the level of )?

X = x0

X = x1
X = x0



Gedankenexperiment (Ctf-SE)
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W

X = x0 Y

Z

W

X = x1 Y

Z

X = x0

Yx0
|X = x1 Yx0

|X = x0

Ctf-SEx0,x1(y) = P(yx0
∣ x1) − P(yx0

∣ x0)

• For a male person  and a female person ( ), how would 
their salary (Y) differ had they both been male persons ?

X = x0 X = x1
X = x0
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W

Y

Z

X = x1

Y ∣ X = x1

Y ∣ X = x0

W

Y

Z

X = x0

W

Y

Z

X = x1

X = x0

Yx1
∣ x0

TVx0,x1(Y )

−Ctf-SEx1,x0(y)

Ctf-DEx0,x1(y ∣ x0)

−Ctf-IEx1,x0(y ∣ x0)
W

Y

Z

X = x1

X = x0

Yx1
∣ x0

W

Y

Z

X = x1

X = x0

Yx1
∣ x0

W

Y

Z

X = x1

X = x0

Yx1
∣ x0

Lemma. The total variation measure can be decomposed 
into its direct, indirect, and spurious variations: 

TVx0,x1(y) = Ctf-DEx0,x1(y ∣ x0)
direct

− Ctf-IEx1,x0(y ∣ x0)
indirect

− Ctf-SEx1,x0(y)
spurious

.
TV Decomposition II 

(Causal Explanation Formula, ZB18)
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∣ x0
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Lemma. The total variation measure can be decomposed 
into its direct, indirect, and spurious variations: 

TVx0,x1(y) = Ctf-DEx0,x1(y ∣ x0)
direct

− Ctf-IEx1,x0(y ∣ x0)
indirect

− Ctf-SEx1,x0(y)
spurious

.



-specific measuresx
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Definition. The effect of treatment on the treated and counterfactual 
direct, indirect, and spurious effects are defined as 

                     

ETTx0,x1(y ∣ x) = P(yx1
∣ x) − P(yx0

∣ x)
Ctf-DEx0,x1(y ∣ x) = P(yx1,Wx0

∣ x) − P(yx0
∣ x)

Ctf-IEx1,x0(y ∣ x) = P(yx1,Wx0
∣ x) − P(yx1

∣ x)
Ctf-SEx0,x1(y) = P(yx0

∣ x1) − P(yx0
∣ x0) .

Structural Basis Expansion: 

Ctf-DEx0,x1(y ∣ x) = ∑
u

[yx1,Wx0
(u) − yx0

(u)]P(u ∣ x)

Ctf-IEx1,x0(y ∣ x) = ∑
u

[yx1,Wx0
(u) − yx1

(u)]P(u ∣ x)

Ctf-SEx0,x1(y) = ∑
u

yx0
(u)[P(u ∣ x1) − P(u ∣ x0)] .

remember where 
we are within %



-specific measuresx

17

Definition. The effect of treatment on the treated and counterfactual 
direct, indirect, and spurious effects are defined as 

                     

ETTx0,x1(y ∣ x) = P(yx1
∣ x) − P(yx0

∣ x)
Ctf-DEx0,x1(y ∣ x) = P(yx1,Wx0

∣ x) − P(yx0
∣ x)

Ctf-IEx1,x0(y ∣ x) = P(yx1,Wx0
∣ x) − P(yx1

∣ x)
Ctf-SEx0,x1(y) = P(yx0

∣ x1) − P(yx0
∣ x0) .

Structural Basis Expansion: 

Ctf-DEx0,x1(y ∣ x) = ∑
u

[yx1,Wx0
(u) − yx0

(u)]P(u ∣ x)

Ctf-IEx1,x0(y ∣ x) = ∑
u

[yx1,Wx0
(u) − yx1

(u)]P(u ∣ x)

Ctf-SEx0,x1(y) = ∑
u

yx0
(u)[P(u ∣ x1) − P(u ∣ x0)] .

remember where 
we are within '

TEx0,x1(y ∣ x) = P(yx1
) − P(yx0

)
NDEx0,x1(y) = P(yx1,Wx0

) − P(yx0
)

NIEx1,x0(y) = P(yx1,Wx0
) − P(yx1

)
Exp-SEx0,x1

(y) = P(yx) − P(yx ∣ x) .

where we came from

where we go next

x-specific
more powerful than

general



-specific measuresz
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Definition. The -specific total, direct, and indirect effects are defined as z

z-TEx0,x1(y ∣ z) = P(yx1
∣ z) − P(yx0

∣ z)
z-DEx0,x1(y ∣ z) = P(yx1,Wx0

∣ z) − P(yx0
∣ z)

z-IEx1,x0(y ∣ z) = P(yx1,Wx0
∣ z) − P(yx1

∣ z) .

Structural Basis Expansion: 

z-DEx0,x1(y ∣ z) = ∑
u

[yx1,Wx0
(u) − yx0

(u)]P(u ∣ z)

z-IEx1,x0(y ∣ z) = ∑
u

[yx1,Wx0
(u) − yx1

(u)]P(u ∣ z) .

remember where 
we are within ' where we go next

z-specific
more powerful than

x-specific
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z-DE(y ∣ Z = 0) = P(yx1,Wx0
∣ Z = 0) − P(yx0

∣ Z = 0)SCM M 

U ← N(0,1)
X ← Bernoulli(expit(U))
Z ← Bernoulli(expit(U))

W ← Bernoulli(0.3)

Y ← Bernoulli( 1
5 (X + Z − 2XZ) + 1

6 W )

= P(Bernoulli( 1
5 (1 − Z ) + 1

6 W ) = 1 ∣ Z = 0)

−P(Bernoulli( 1
5 (Z ) + 1

6 W ) = 1 ∣ Z = 0)

= ∑
w∈{0,1}

P(w)[ 1
5 + 1

6 w − 1
6 w] = 1

5 .

Example (Limitation of NDE). A new startup company is currently in 
hiring season. The hiring decision ( indicating whether the 
candidate is hired) is based on gender ( , female and male, 
respectively), age ( , younger and older than 40 years, 
respectively), and education level (  which indicates whether 
the applicant has a Ph.D. degree). Following the legal guidelines, the 
startup is in this case obliged to avoid disparate treatment in hiring.

Y ∈ {0,1}
X ∈ {0,1}

Z ∈ {0,1}
W ∈ {0,1}

Section 4.2 
Example 4.3
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z-DE(y ∣ Z = 0) = P(yx1,Wx0
∣ Z = 0) − P(yx0

∣ Z = 0)SCM M 

U ← N(0,1)
X ← Bernoulli(expit(U))
Z ← Bernoulli(expit(U))

W ← Bernoulli(0.3)

Y ← Bernoulli( 1
5 (X + Z − 2XZ) + 1

6 W )

= P(Bernoulli( 1
5 (1 − Z ) + 1

6 W ) = 1 ∣ Z = 0)

−P(Bernoulli( 1
5 (Z ) + 1

6 W ) = 1 ∣ Z = 0)

= ∑
w∈{0,1}

P(w)[ 1
5 + 1

6 w − 1
6 w] = 1

5 .

Key properties of -DE:  
1. -DE is admissible. 

2. -DE is more powerful than Ctf-DE.

z
z

z

Example (Limitation of NDE). A new startup company is currently in 
hiring season. The hiring decision ( indicating whether the 
candidate is hired) is based on gender ( , female and male, 
respectively), age ( , younger and older than 40 years, 
respectively), and education level (  which indicates whether 
the applicant has a Ph.D. degree). Following the legal guidelines, the 
startup is in this case obliged to avoid disparate treatment in hiring.

Y ∈ {0,1}
X ∈ {0,1}

Z ∈ {0,1}
W ∈ {0,1}

Section 4.2 
Example 4.3



-specific measuresv′ 
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Definition. The -specific total, direct, and indirect effects are defined as v′ 

v′ -TEx0,x1(y ∣ v′ ) = P(yx1
∣ v′ ) − P(yx0

∣ v′ )
v′ -DEx0,x1(y ∣ v′ ) = P(yx1,Wx0

∣ v′ ) − P(yx0
∣ v′ )

v′ -IEx1,x0(y ∣ v′ ) = P(yx1,Wx0
∣ v′ ) − P(yx1

∣ v′ ) .

Structural Basis Expansion: 

v′ -DEx0,x1(y ∣ v′ ) = ∑
u

[yx1,Wx0
(u) − yx0

(u)]P(u ∣ v′ )

v′ -IEx1,x0(y ∣ v′ ) = ∑
u

[yx1,Wx0
(u) − yx1

(u)]P(u ∣ v′ ) .

remember where 
we are within '

v-specific
more powerful than

z-specific



Example — Probabilities of 
Causation (Ch. 9, Pearl, 2000)

21

Probability of 
sufficiency!

Probability of 
necessity!

By picking  and the total effect, the measure -TE becomes





Similarly, -TE for the event  equals


v′ = {x0, y0} v′ 

(x, y)-TEx0,x1(y ∣ x0, y0) = P(yx1
∣ x0, y0) − P(yx0

∣ x0, y0)
= P(yx1

∣ x0, y0) .

v′ {x1, y1}
(x, y)-TEx0,x1(y ∣ x1, y1) = P(yx1

∣ x1, y1) − P(yx0
∣ x1, y1)

= 1 − P(yx0
∣ x1, y1)

= P(yx0
= 0 ∣ x1, y1) .



Unit-level measures
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Remember where 
we are within .'

Definition. Given a unit , the unit-level total, direct, and indirect 
effects are given by 

U = u

unit-TEx0,x1(y(u)) = yx1
(u) − yx0

(u)
unit-DEx0,x1(y(u)) = yx1,Wx0

(u) − yx0
(u)

unit-IEx1,x0(y(u)) = yx1,Wx0
(u) − yx1

(u) .

These quantities are 
the structural basis.

We reached the final, 
unit-level measures!



TV family measures as contrasts
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Lemma. Under the Standard fairness model, all the measures within the TV 
family can be written as contrasts  , following he 
constructions indicated below. 

P(yC1
∣ E1) − P(yC0

∣ E0)

Direct

Indirect

Spurious

units

mechanisms
unitmechanism



TV family measures as contrasts
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Lemma. Under the Standard fairness model, all the measures within the TV 
family can be written as contrasts  , following he 
constructions indicated below. 

P(yC1
∣ E1) − P(yC0

∣ E0)

Direct

Indirect

Spurious

units

mechanisms
unitmechanism



TV family measures as contrasts
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Lemma. Under the Standard fairness model, all the measures within the TV 
family can be written as contrasts  , following he 
constructions indicated below. 

P(yC1
∣ E1) − P(yC0

∣ E0)

Direct

Indirect

Spurious

Causal

units

mechanisms
unitmechanism



TV family measures as contrasts
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Lemma. Under the Standard fairness model, all the measures within the TV 
family can be written as contrasts  , following he 
constructions indicated below. 

P(yC1
∣ E1) − P(yC0

∣ E0)

Direct

Indirect

Causal

units

mechanisms
unitmechanism

Spurious

TV



Fairness Map
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Fairness Map
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Fairness Map

28

structural to  
unit



Fairness Map
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unit to  
-specificv′ 



Fairness Map
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-specific to 
-specific

v′ 

z



Fairness Map
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-specific to 
-specific

z
x



Fairness Map
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-specific to 
general

x



Fairness Map
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Fairness Map

29

Mediation  
formula 

(Pearl, 2012)



Fairness Map
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Extended 
Mediation  
Formula



Fairness Map
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Extended 
Mediation  
Formula



Fairness Map

29

TV decomposition I



Fairness Map
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TV decomposition II (ZB18)



Fairness Map
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Fairness Map
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Section 4.3 
Theorem 4.9


