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Abstract

DNA hybridization arrays simultaneously measure the expression level for thousands of genes. These mea-
surements provide a “snapshot” of transcription levels within the cell. A major challenge in computational biology
is to uncover, from such measurements, gene/protein interactions and key biological features of cellular systems.

In this paper, we propose a new framework for discovering interactions between genes based on multiple
expression measurements. This framework builds on the use of Bayesian networks for representing statistical
dependencies. A Bayesian network is a graph-based model of joint multivariate probability distributions that
captures properties of conditional independence between variables. Such models are attractive for their ability
to describe complex stochastic processes, and since they provide clear methodologies for learning from (noisy)
observations.

We start by showing how Bayesian networks can describe interactions between genes. We then describe a
method for recovering gene interactions from microarray data using tools for learning Bayesian networks. Finally,
we demonstrate this method on the S. cerevisiae cell-cycle measurements of Spellman et al. (1998).

�A preliminary version of this work appeared in Proceedings of the Fourth Annual International Conference on Computational Molecular
Biology, 2000. This work was supported through the generosity of the Michael Sacher Trust and Israeli Science Foundation equipment grant.
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1 Introduction

A central goal of molecular biology is to understand the regulation of protein synthesis and its reactions to exter-
nal and internal signals. All the cells in an organism carry the same genomic data, yet their protein makeup can
be drastically different both temporally and spatially, due to regulation. Protein synthesis is regulated by many
mechanisms at its different stages. These include mechanisms for controlling transcription initiation, RNA splicing,
mRNA transport, translation initiation, post-translational modifications, and degradation of mRNA/protein. One of
the main junctions at which regulation occurs is mRNA transcription. A major role in this machinery is played by
proteins themselves, that bind to regulatory regions along the DNA, greatly affecting the transcription of the genes
they regulate.

In recent years, technical breakthroughs in spotting hybridization probes and advances in genome sequencing
efforts lead to development of DNA microarrays, which consist of many species of probes, either oligonucleotides
or cDNA, that are immobilized in a predefined organization to a solid phase. By using DNA microarrays researchers
are now able to measure the abundance of thousands of mRNA targets simultaneously (DeRisi. et al. 1997, Lockhart
et al. 1996, Wen et al. 1998). Unlike classical experiments, where the expression levels of only a few genes were
reported, DNA microarray experiments can measure all the genes of an organism, providing a “genomic” viewpoint
on gene expression. As a consequence, this technology facilitates new experimental approaches for understanding
gene expression and regulation (Iyer et al. 1999, Spellman et al. 1998).

Early microarray experiments examined few samples, and mainly focused on differential display across tissues
or conditions of interest. The design of recent experiments focuses on performing a larger number of microarray
assays ranging in size from a dozen to a few hundreds of samples. In the near future, data sets containing thousands
of samples will become available. Such experiments collect enormous amounts of data, which clearly reflect many
aspects of the underlying biological processes. An important challenge is to develop methodologies that are both
statistically sound and computationally tractable for analyzing such data sets and inferring biological interactions
from them.

Most of the analysis tools currently used are based on clustering algorithms. These algorithms attempt to locate
groups of genes that have similar expression patterns over a set of experiments (Alon et al. 1999, Ben-Dor et al. 1999,
Eisen et al. 1998, Michaels et al. 1998, Spellman et al. 1998). Such analysis has proven to be useful in discovering
genes that are co-regulated and/or have similar function. A more ambitious goal for analysis is revealing the structure
of the transcriptional regulation process (Akutsu et al. 1998, Chen et al. 1999, Somogyi et al. 1996, Weaver et al.
1999). This is clearly a hard problem. The current data is extremely noisy. Moreover, mRNA expression data alone
only gives a partial picture that does not reflect key events such as translation and protein (in)activation. Finally, the
amount of samples, even in the largest experiments in the foreseeable future, does not provide enough information
to construct a full detailed model with high statistical significance.

In this paper, we introduce a new approach for analyzing gene expression patterns, that uncovers properties of
the transcriptional program by examining statistical properties of dependence and conditional independence in the
data. We base our approach on the well-studied statistical tool of Bayesian networks (Pearl 1988). These networks
represent the dependence structure between multiple interacting quantities (e.g., expression levels of different genes).
Our approach, probabilistic in nature, is capable of handling noise and estimating the confidence in the different
features of the network. We are therefore able to focus on interactions whose signal in the data is strong.

Bayesian networks are a promising tool for analyzing gene expression patterns. First, they are particularly useful
for describing processes composed of locally interacting components; that is, the value of each component directly
depends on the values of a relatively small number of components. Second, statistical foundations for learning
Bayesian networks from observations, and computational algorithms to do so are well understood and have been
used successfully in many applications. Finally, Bayesian networks provide models of causal influence: Although
Bayesian networks are mathematically defined strictly in terms of probabilities and conditional independence state-
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Figure 1: An example of a simple Bayesian network structure.

This network structure implies several conditional independence state-
ments:
������, ����� � ����, ��������� � ��, ��������� � ��, and
��������.

The network structure also implies that the joint distribution has the
product form

� ����������� � � ���� �������� ������ ������ ���

ments, a connection can be made between this characterization and the notion of direct causal influence. (Heckerman
et al. 1999, Pearl & Verma 1991, Spirtes et al. 1993). Although this connection depends on several assumptions that
do not necessarily hold in gene expression data, the conclusions of Bayesian network analysis might be indicative
about some causal connections in the data.

The remainder of this paper is organized as follows. In Section 2, we review key concepts of Bayesian networks,
learning them from observations, and using them to infer causality. In Section 3, we describe how Bayesian networks
can be applied to model interactions among genes and discuss the technical issues that are posed by this type of data.
In Section 4, we apply our approach to the gene-expression data of Spellman et al. (1998), analyzing the statistical
significance of the results and their biological plausibility. Finally, in Section 5, we conclude with a discussion of
related approaches and future work.

2 Bayesian Networks

2.1 Representing Distributions with Bayesian Networks

Consider a finite set � � �	�� 
 
 
 �	�� of random variables where each variable 	� may take on a value �� from
the domain Val�	��. In this paper, we use capital letters, such as 	���
 , for variable names and lowercase letters
�� �� � to denote specific values taken by those variables. Sets of variables are denoted by boldface capital letters
��� �� , and assignments of values to the variables in these sets are denoted by boldface lowercase letters x� y� z.
We denote ����� � �� to mean � is independent of � conditioned on �.

A Bayesian network is a representation of a joint probability distribution. This representation consists of two
components. The first component, �, is a directed acyclic graph (DAG) whose vertices correspond to the random
variables 	�� 
 
 
 �	�. The second component, � describes a conditional distribution for each variable, given its
parents in �. Together, these two components specify a unique distribution on 	�� 
 
 
 �	�.

The graph � represents conditional independence assumptions that allow the joint distribution to be decomposed,
economizing on the number of parameters. The graph � encodes the Markov Assumption:

(*) Each variable 	� is independent of its non-descendants, given its parents in �.

By applying the chain rule of probabilities and properties of conditional independencies, any joint distribution
that satisfies (*) can be decomposed into the product form

� �	�� 
 
 
 �	�� �
��
���

� �	��Pa��	���� (1)
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where Pa��	�� is the set of parents of 	� in �. Figure 1 shows an example of a graph �, lists the Markov
independencies it encodes, and the product form they imply.

A graph � specifies a product form as in (1). To fully specify a joint distribution, we also need to specify each
of the conditional probabilities in the product form. The second part of the Bayesian network describes these condi-
tional distributions, � �	��Pa��	��� for each variable 	�. We denote the parameters that specify these distributions
by �.

In specifying these conditional distributions we can choose from several representations. In this paper we focus
on two of the most commonly used representations. For the following discussion, suppose that the parents of a
variable 	 are ���� 
 
 
 � ���. The choice of representation depends on the type of variables we are dealing with:

� Discrete variables. If each of 	 and ��� 
 
 
 � �� takes discrete values from a finite set, then we can represent
� �	 � ��� 
 
 
 � ��� as a table that specifies the probability of values for 	 for each joint assignment to
��� 
 
 
 � �� . Thus if, for example, all the variables are binary valued, the table will specify �� distributions.

This is a general representation which can describe any discrete conditional distribution. Thus, we do not loose
expressiveness by using this representation. This flexibility comes at a price: The number of free parameters
is exponential in the number of parents.

� Continuous variables. Unlike the case of discrete variables, when the variable 	 and its parents ��� 
 
 
 � ��

are real valued, there is no representation that can represent all possible densities. A natural choice for mul-
tivariate continuous distributions is the use of Gaussian distributions. These can be represented in a Bayesian
network by using linear Gaussian conditional densities. In this representation the conditional density of 	

given its parents is given by:

� �	 � ��� 
 
 
 � ��� � ���� �
�
�

�� � ��� �
��


That is, 	 is normally distributed around a mean that depends linearly on the values of its parents. The
variance of this normal distribution is independent of the parents’ values. If all the variables in a network have
linear Gaussian conditional distributions, then the joint distribution is a multivariate Gaussian (Lauritzen &
Wermuth 1989).

� Hybrid networks. When our network contains a mixture of discrete and continuous variables, we need to
consider how to represent a conditional distribution for a continuous variable with discrete parents, and for
a discrete variable with continuous parents. In this paper, we disallow the latter case. When a continuous
variable 	 has discrete parents, we use conditional Gaussian distributions (Lauritzen & Wermuth 1989) in
which for each joint assignment to the discrete parents of 	 , we represent a linear Gaussian distribution of 	

given its continuous parents.

Given a Bayesian network, we might want to answer many types of questions that involve the joint probability
(e.g., what is the probability of 	 � � given observation of some of the other variables?) or independencies in the
domain (e.g., are 	 and � independent once we observe 
?). The literature contains a suite of algorithms that can
answer such queries efficiently by exploiting the explicit representation of structure (Jensen 1996, Pearl 1988)).

2.2 Equivalence Classes of Bayesian Networks

A Bayesian network structure � implies a set of independence assumptions in addition to (*). Let Ind��� be the
set of independence statements (of the form 	 is independent of � given �) that hold in all distributions satisfying
these Markov assumptions.
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More than one graph can imply exactly the same set of independencies. For example, consider graphs over two
variables 	 and � . The graphs 	 � � and 	 	 � both imply the same set of independencies (i.e., Ind��� � 
�.
Two graphs � and �� are equivalent if Ind��� � Ind����. That is, both graphs are alternative ways of describing
the same set of independencies .

This notion of equivalence is crucial, since when we examine observations from a distribution, we cannot dis-
tinguish between equivalent graphs.1 Pearl and Verma (1991) show that we can characterize equivalence classes
of graphs using a simple representation. In particular, these results establish that equivalent graphs have the same
underlying undirected graph but might disagree on the direction of some of the arcs.

Theorem 2.1 (Pearl & Verma 1991) Two DAGs are equivalent if and only if they have the same underlying undi-
rected graph and the same v-structures (i.e. converging directed edges into the same node, such as � � � 	 �).

Moreover, an equivalence class of network structures can be uniquely represented by a partially directed graph
(PDAG), where a directed edge 	 � � denotes that all members of the equivalence class contain the arc 	 �
� ; an undirected edge 	—� denotes that some members of the class contain the arc 	 � � , while others
contain the arc � � 	 . Given a DAG �, the PDAG representation of its equivalence class can be constructed
efficiently (Chickering 1995).

2.3 Learning Bayesian Networks

The problem of learning a Bayesian network can be stated as follows. Given a training set � � �x�� 
 
 
 � x�� of
independent instances of � , find a network � � ����� that best matches �. More precisely, we search for an
equivalence class of networks that best matches �.

The theory of learning networks from data has been examined extensively over the last decade. We only briefly
describe the high-level details here. We refer the interested reader to (Heckerman 1998) for a recent tutorial on the
subject.

The common approach to this problem is to introduce a statistically motivated scoring function that evaluates
each network with respect to the training data, and to search for the optimal network according to this score. One
method for deriving a score is based on Bayesian considerations (see (Cooper & Herskovits 1992, Heckerman
et al. 1995) for complete description). In this score, we evaluate the posterior probability of a graph given the data:

S�� � �� � 	
�� �� � ��

� 	
�� �� � �� � 	
�� ��� � �

where � is a constant independent of � and

� �� � �� �

�
� �� � ����� �� � ����

is the marginal likelihood which averages the probability of the data over all possible parameter assignments to
�. The particular choice of priors � ��� and � �� � �� for each � determines the exact Bayesian score. Under
mild assumptions on the prior probabilities, this scoring rule is asymptotically consistent: Given a sufficiently large
number of samples, graph structures that exactly capture all dependencies in the distribution, will receive, with high
probability, a higher score than all other graphs (see for example (Friedman & Yakhini 1996)). This means, that

1To be more precise, under the common assumptions in learning networks, which we also make in this paper, one cannot distinguish
between equivalent graphs. If we make stronger assumptions, for example by restricting the form of the conditional probability distributions
we can learn, we might have a preference of one equivalent network over another.
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given a sufficiently large number of instances, learning procedures can pinpoint the exact network structure up to the
correct equivalence class.

In this work we use the priors described by Heckerman and Geiger (1995) for hybrid networks of multinomial
distributions and conditional Gaussian distributions. (This prior combines earlier works on priors for multinomial
networks (Buntine 1991, Cooper & Herskovits 1992, Heckerman et al. 1995) and for Gaussian networks (Geiger &
Heckerman 1994).) We refer the reader to (Heckerman & Geiger 1995) and (Heckerman 1998) for details on these
priors.

In the analysis of gene expression data, we a small number of samples, therefore care should be taken in choosing
the prior. Without going into details, the a prior from the family of priors described by Heckerman and Geiger can
be specified by two parameters. The first is a prior network, which reflects our prior belief on the joint distribution
of the variables in the domain, and a an effective sample size parameter, which reflects how strong is our belief in
the prior network. Intuitively, setting the effective sample size to � , is equivalent to having seen � samples from
the distribution defined by the prior network. In our experiments, we choose the prior network to be one where all
the random variables are independent of each other. In the prior network discrete random variables are uniformly
distributed, while continuous random variables have an a priori normal distribution. We set equivalent sample size
5 in a rather arbitrary manner. The choice of the prior network is to ensure that we are not (explicitly) biasing
the learning procedure to any particular form of edges. In addition, as we show below, the results are reasonably
insensitive to this exact magnitude of the equivalent sample size.

In this work we assume complete data, that is, a data set in which each instance contains the values of all the
variables in the network. When the data is complete and the prior satisfies the conditions specified by Heckerman
and Geiger, then the posterior score satisfies several properties. First, the score is structure equivalent, i.e., if � and
�� are equivalent graphs they are guaranteed to have the same posterior score. Second, the score is decomposable.
That is, the score can be rewritten as the sum

S�� � �� �
�
�

ScoreContribution�	�� Pa��	�� � ���

where the contribution of every variable 	� to the total network score depends only on the values of 	� and Pa��	��

in the training instances. Finally, these local contributions for each variable can be computed using a closed form
equation (again, see (Heckerman & Geiger 1995) for details).

Once the prior is specified and the data is given, learning amounts to finding the structure � that maximizes the
score. This problem is known to be NP-hard (Chickering 1996), thus we resort to heuristic search. The decompo-
sition of the score is crucial for this optimization problem. A local search procedure that changes one arc at each
move can efficiently evaluate the gains made by adding, removing or reversing a single arc. An example of such a
procedure is a greedy hill-climbing algorithm that at each step performs the local change that results in the maxi-
mal gain, until it reaches a local maximum. Although this procedure does not necessarily find a global maximum,
it does perform well in practice. Examples of other search methods that advance using one-arc changes include
beam-search, stochastic hill-climbing, and simulated annealing.

2.4 Learning Causal Patterns

Recall, a Bayesian network is a model of dependencies between multiple measurements. However, we are also
interested in modeling the mechanism that generated these dependencies. Thus, we want to model the flow of
causality in the system of interest (e.g., gene transcription in the gene expression domain). A causal network is a
model of such causal processes. Having a causal interpretation facilitates predicting the effect of an intervention
in the domain: setting the value of a variable in such a way that the manipulation itself does not affect the other
variables.
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While at first glance there seems to be no direct connection between probability distributions and causality, causal
interpretations for Bayesian Networks have been proposed (Pearl & Verma 1991, Pearl 2000). A causal network is
mathematically represented similarly to a Bayesian network, a DAG where each node represents a random variable
along with a local probability model for each node. However, causal networks have a stricter interpretation of the
meaning of edges: the parents of a variable are its immediate causes.

A causal network models not only the distribution of the observations, but also the effects of interventions. If 	

causes � , then manipulating the value of 	 affects the value of � . On the other hand, if � is a cause of 	 , then
manipulating 	 will not affect � . Thus, although 	 � � and 	 	 � are equivalent Bayesian networks, they are
not equivalent causal networks.

A causal network can be interpreted as a Bayesian network when we are willing to make the Causal Markov
Assumption: given the values of a variable’s immediate causes, it is independent of its earlier causes. When the casual
Markov assumption holds, the causal network satisfies the Markov independencies of the corresponding Bayesian
network. For example, this assumption is a natural one in models of genetic pedigrees: once we know the genetic
makeup of the individual’s parents, the genetic makeup of her ancestors is not informative about her own genetic
makeup.

The central issue is: When can we learn a causal network from observations? This issue received a thorough
treatment in the literature (Heckerman et al. 1999, Pearl & Verma 1991, Spirtes et al. 1993, Spirtes et al. 1999). We
briefly review the relevant results for our needs here. For a more detailed treatment of the topic, we refer the reader
to (Pearl 2000, Cooper & Glymour 1999).

First it is important to distinguish between an observation: a passive measurement of our domain (i.e., a sample
from � ) and an intervention: setting the values of some variables using forces outside the causal model (e.g., gene
knockout or over-expression). It is well known that interventions are an important tool for inferring causality. What
is surprising is that some causal relations can be inferred from observations alone.

To learn about causality we need to make several assumptions. The first assumption is a modeling assumption:
we assume that the (unknown) causal structure of the domain satisfies the Causal Markov Assumption. Thus, we
assume that causal networks can provide a reasonable model of the domain. Some of the results in the literature
require a stronger version of this assumption, namely that causal networks can provide a perfect description of the
domain (that is an independence property holds in the domain if and only if it is implied by the model). The second
assumption is that there are no latent or hidden variables that effect several of the observable variables. We discuss
relaxations of this assumption below.

If we make these two assumptions, then we essentially assume that one of the possible DAGs over the domain
variables is the “true” causal network. However, as discussed above, from observations alone, we cannot distinguish
between causal networks that specify the same independence properties, i.e., belong to the same equivalence class
(see section 2.2). Thus, at best we can hope to learn a description of the equivalence class that contains the true
model. In other words, we will learn a PDAG description of this equivalence class.

Once we identify such a PDAG, we are still uncertain about the true causal structure in the domain. However,
we can draw some causal conclusions. For example, if there is a directed path from 	 to � in the PDAG, then 	 is
a causal ancestor of � in all the networks that could have generated this PDAG including the “true” causal model.
Thus, in this situation we can recover some of the causal directions. Moreover, by using Theorem 2.1, we can predict
what aspects of a proposed model would be detectable based on observations alone.

When data is sparse, we cannot identify a unique PDAG as a model of the data. In such a situation, we can
use the posterior over PDAGs to represent posterior probabilities over causal statements. In a sense the posterior
probability of “	 causes � ” is the sum of the posterior of all PDAGs in which this statement holds. (See (Heckerman
et al. 1999) for more details on this Bayesian approach.) The situation is somewhat more complex when we have a
combination of observations and results of different interventions. From such data we might be able to distinguish
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between equivalent structures. Cooper and Yoo (1999) show how to extend the Bayesian approach of Heckerman et
al. (1999) for learning from such mixed data.

A possible pitfall in learning causal structure is the presence of latent variables. In such a situation the obser-
vations that 	 and � depend on each other probabilistically might be explained by the existence of an unobserved
common cause. When we consider only two variables we cannot distinguish this hypothesis from the hypotheses
“	 causes � ” or “� causes 	”. However, a more careful analysis shows that one can characterize all networks
with latent variables that can result in the same set of independencies over the observed variables. Such equivalence
classes of networks can be represented by a structure called partial ancestral graph (PAGs) (Spirtes et al. 1999). As
can be expected, the set of causal conclusions we can make when we allow latent variables is smaller than the set of
causal conclusions when we do not allow them. Nonetheless, in many cases causal relations can be recovered even
in this case.

The situation is more complicated when we do not have enough data to identify a single PAGs. As in the case
of PDAGs, we might want to compute posterior scores for PAGs. However, unlike PDAGs the question of scoring a
PAG (which consists of many models with different number of latent variables) remains an open question.

3 Analyzing Expression Data

In this section we describe our approach to analyzing gene expression data using Bayesian network learning tech-
niques.

We start with our modeling assumptions and the type of conclusions we expect to find. Our aim is to understand
a particular system (a cell or an organism and its environment). At each point in time, the system is in some state.
For example, the state of a cell can be defined in terms of the concentration of proteins and metabolites in the various
compartments, the amount of external ligands that bind to receptors on the cell’s membrane, the concentration of
different mRNA molecules in the cytoplasm, etc.

The cell (or other biological systems) consists of many interacting components that effect each other in some
consistent fashion. Thus, if we consider random sampling of the system some states are more probable. The
likelihood of a state can be specified by the joint probability distribution on each of the cells components.

Our aim is to estimate such a probability distribution and understand its structural features. Of course, a state
of a system can be infinitely complex. Thus, we resort to a partial view and focus on some of the components.
Measurements of attributes from these components are random variables that represent some aspect of the system’s
state. In this paper, we are mainly dealing with random variables that denote the mRNA expression level of specific
genes. However, we can also consider other random variables that denote other aspects of the system state, such
as the phase of the system in the the cell-cycle process. Other examples include measurements of experimental
conditions, temporal indicators (i.e., the time/stage that the sample was taken from), background variables (e.g.,
which clinical procedure was used to get a biopsy sample), and exogenous cellular conditions.

Our aim is to model the system as a joint distribution over a collection of random variables that describe system
states. If we had such a model, we could answer a wide range of queries about the system. For example, does the
expression level of a particular gene depend on the experimental condition? Is this dependence direct, or indirect?
If it is indirect, which genes mediate the dependency? Not having a model at hand, we want to learn one from the
available data and use it to answer questions about the system.

In order to learn such a model from expression data, we need to deal with several important issues that arise
when learning in the gene expression domain. These involve statistical aspects of interpreting the results, algorithmic
complexity issues in learning from the data, and the choice of local probability models.

Most of the difficulties in learning from expression data revolve around the following central point: Contrary to
most situations where one attempts to learn models (and in particular Bayesian networks), expression data involves
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transcript levels of thousands of genes while current data sets contain at most a few dozen samples. This raises
problems in both computational complexity and the statistical significance of the resulting networks. On the positive
side, genetic regulation networks are believed to be sparse, i.e., given a gene, it is assumed that no more than a
few dozen genes directly affect its transcription. Bayesian networks are especially suited for learning in such sparse
domains.

3.1 Representing Partial Models

When learning models with many variables, small data sets are not sufficiently informative to significantly deter-
mine that a single model is the “right” one. Instead, many different networks should be considered as reasonable
explanations of the given data. From a Bayesian perspective, we say that the posterior probability over models is not
dominated by a single model (or equivalence class of models).2

One potential approach to deal with this problem is to find all the networks that receive high posterior score.
Such an approach is outlined by Madigan and Raftery (1994). Unfortunately, due to the combinatoric aspect of
networks the set of “high posterior” networks can be huge (i.e., exponential in the number of variables). Thus, in
a domain such gene expression with many variables and diffused posterior we cannot hope to explicitly list all the
networks that are plausible given the data.

Our solution is as follows. We attempt to identify properties of network that might be of interest. For example,
are 	 and � “close” neighbors in the network. We call such properties features. We then try to estimate the
posterior probability of features given the data. More precisely, a feature � is an indicator function that receives a
network structure � as an argument and returns � if the structure (or the associated PDAG) satisfies the feature and

 otherwise. The posterior probability of a feature is

� ����� � �� �
�
�

����� �� � ��
 (2)

Of course, exact computation of such a posterior probability is as hard as processing all networks with high
posterior. However, as we shall see below, we can estimate these posteriors by finding representative networks.
Since each feature is a binary attribute, this estimation is fairly robust even from a small set of networks (assuming
that they are an unbiased sample from the posterior).

Before we examine the issue of estimating the posterior in such features, we briefly discuss two classes of
features involving pairs of variables. While at this point we handle only pairwise features, it is clear that this type of
analysis is not restricted to them, and in the future we are planning on examining more complex features.

The first type of feature is Markov relations: Is � in the Markov blanket of 	? The Markov blanket of 	 is
the minimal set of variables that shield 	 from the rest of the variables in the model. More precisely, 	 given its
Markov blanket is independent from the remaining variables in the network. It is easy to check that this relation is
symmetric: � is in 	’s Markov blanket if and only if there is either an edge between them, or both are parents of
another variable (Pearl 1988). In the context of gene expression analysis, a Markov relation indicates that the two
genes are related in some joint biological interaction or process. Note that two variables in a Markov relation are
directly linked in the sense that no variable in the model mediates the dependence between them. It remains possible
that an unobserved variable (e.g., protein activation) is an intermediate in their interaction.

The second type of features is order relations: Is 	 an ancestor of � in all the networks of a given equivalence
class? That is, does the given PDAG contain a path from 	 to � in which all the edges are directed? This type
of feature does not involve only a close neighborhood, but rather captures a global property. Recall that under

2This observation is not unique to Bayesian network models. It equally well applies to other models that are learned from gene expression
data, such as clustering models.
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the assumptions discussed Section 2.4, learning that 	 is an ancestor of � would imply that 	 is a cause of � .
However, as these assumptions are quite strong (in particular the assumption of no latent common causes) and thus
do not necessarily hold in the context of expression data. Thus, we view such a relation as an indication, rather than
evidence, that 	 might be a causal ancestor of � .

3.2 Estimating Statistical Confidence in Features

We now face the following problem: To what extent does the data support a given feature? More precisely, we
want to estimate the posterior of features as defined in (2). Ideally, we would like to sample networks from the
posterior and use the sampled networks to estimate this quantity. Unfortunately sampling from the posterior is
hard problem. The general approach to this problem is to build a Markov Chain Monte Carlo (MCMC) sampling
procedure (Madigan & York 1995) (see (Gilks et al. 1996) to a general introduction to MCMC sampling). However,
it is not clear how these methods scale up for large domain.

Although recent developments in MCMC methods, such as (Friedman & Koller 2000), show promise for scaling
up, we choose here to use an alternative method as a “poor man’s” version of Bayesian analysis. An effective, and
relatively simple, approach for estimating confidence is the bootstrap method (Efron & Tibshirani 1993). The main
idea behind the bootstrap is simple. We generate “perturbed” versions of our original data set, and learn from them.
In this way we collect many networks, all of which are fairly reasonable models of the data. These networks reflect
the effect of small perturbations to the data on the learning process.

In our context, we use the bootstrap as follows:

� For � � � 
 
 
 �.

– Construct a dataset �� by sampling, with replacement, � instances from �.

– Apply the learning procedure on �� to induce a network structure ��.

� For each feature � of interest calculate

conf��� �
�

�

��
���

�����

where ���� is 1 if � is a feature in �, and 0 otherwise.

We refer the reader to (Friedman, Goldszmidt & Wyner 1999) for more details, as well as large-scale simulation
experiments with this method. These simulation experiments show that features induced with high confidence are
rarely false positives, even in cases where the data sets are small compared to the system being learned. This
bootstrap procedure appears especially robust for the Markov and order features described in section 3.1. In addi-
tion, simulation studies by Friedman and Koller (2000) show that although the confidence values computed by the
bootstrap are not equal to the Bayesian posterior, they correlate well with estimates of the Bayesian posterior for
features.

3.3 Efficient Learning Algorithms

In section 2.3, we formulated learning Bayesian network structure as an optimization problem in the space of directed
acyclic graphs. The number of such graphs is super-exponential in the number of variables. As we consider hundreds
of variables, we must deal with an extremely large search space. Therefore, we need to use (and develop) efficient
search algorithms.
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To facilitate efficient learning, we need to be able to focus the attention of the search procedure on relevant
regions of the search space, giving rise to the Sparse Candidate algorithm (Friedman, Nachman & Pe’er 1999). The
main idea of this technique is that we can identify a relatively small number of candidate parents for each gene based
on simple local statistics (such as correlation). We then restrict our search to networks in which only the candidate
parents of a variable can be its parents, resulting in a much smaller search space in which we can hope to find a good
structure quickly.

A possible pitfall of this approach is that early choices can result in an overly restricted search space. To avoid
this problem, we devised an iterative algorithm that adapts the candidate sets during search. At each iteration �,
for each variable 	�, the algorithm chooses the set ��

� � ���� 
 
 
 � ��� of variables which are the most promising
candidate parents for 	�. We then search for ��, a high scoring network in which Pa���	�� 
 ��

� . (Ideally, we
would like to find the highest scoring network given the constraints, but since we are using a heuristic search, we do
not have such a guarantee.) The network found is then used to guide the selection of better candidate sets for the next
iteration. We ensure that the score of �� monotonically improves in each iteration by requiring Pa�����	�� 
 ��

� .
The algorithm continues until there is no change in the candidate sets.

We briefly outline our method for choosing ��
� . We assign each variable 	� some score of relevance to 	�,

choosing variables with the highest score. The question is then how to measure the relevance of potential parent
	� to 	�. Friedman et al. (1999) examine several measures of relevance. Based on their experiments, one of the
most successful measures is simply the improvement in the score of 	� if we add 	� as an additional parent. More
precisely, we calculate

ScoreContribution�	�� Pa�����	�� � �	�� � ��� ScoreContribution�	�� Pa�����	�� � ��


This quantity measures how much the inclusion of an edge from 	� to 	� can improve the score associated with 	�.
We then choose the new candidate set to contain the previous parent set Pa�����	�� and the variables that seem to
be more informative given this set of parents.

We refer the reader to (Friedman, Nachman & Pe’er 1999) for more details on the algorithm and its complexity,
as well as empirical results comparing its performance to traditional search techniques.

3.4 Local Probability Models

In order to specify a Bayesian network model, we still need to choose the type of the local probability models we
learn. In the current work, we consider two approaches:

� Multinomial model. In this model we treat each variable as discrete and learn a multinomial distribution that
describes the probability of each possible state of the child variable given the state of its parents.

� Linear Gaussian model. In this model we learn a linear regression model for the child variable given its
parents.

These models were chosen since their posterior can be efficiently calculated in closed form.
To apply the multinomial model we need to discretize the gene expression values. We choose to discretize these

values into three categories: under-expressed (��), normal (
), and over-expressed �, depending on whether the
expression rate is significantly lower than, similar to, or greater than control, respectively. The control expression
level of a gene can be either determined experimentally (as in the methods of (DeRisi. et al. 1997)), or it can be
set as the average expression level of the gene across experiments. We discretize by setting a threshold to the ratio
between measured expression and control. In our experiments we choose a threshold value of 

� in logarithmic
(base �) scale. Thus, values with ratio to control lower than ����� are considered under-expressed, and values higher
than ���� are considered over-expressed.
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Each of these two models has benefits and drawbacks. On one hand, it is clear that by discretizing the measured
expression levels we are loosing information. The linear-Gaussian model does not suffer from the information loss
caused by discretization. On the other hand, the linear-Gaussian model can only detect dependencies that are close
to linear. In particular, it is not likely to discover combinatorial effects (e.g., a gene is over expressed only if several
genes are jointly over expressed, but not if at least one of them is not over expressed). The multinomial model is
more flexible and can capture such dependencies.

4 Application to Cell Cycle Expression Patterns

We applied our approach to the data of Spellman et al. (Spellman et al. 1998). This data set contains 76 gene ex-
pression measurements of the mRNA levels of 6177 S. cerevisiae ORFs. These experiments measure six time series
under different cell cycle synchronization methods. Spellman et al. (1998) identified 800 genes whose expression
varied over the different cell-cycle stages.

In learning from this data, we treat each measurement as an independent sample from a distribution, and do not
take into account the temporal aspect of the measurement. Since it is clear that the cell cycle process is of temporal
nature, we compensate by introducing an additional variable denoting the cell cycle phase. This variable is forced
to be a root in all the networks learned. Its presence allows to model dependency of expression levels on the current
cell cycle phase.3

We used the Sparse Candidate algorithm with a 200-fold bootstrap in the learning process. We performed two
experiments, one with the discrete multinomial distribution, the other with the linear Gaussian distribution. The
learned features show that we can recover intricate structure even from such small data sets. It is important to
note that our learning algorithm uses no prior biological knowledge nor constraints. All learned networks and
relations are based solely on the information conveyed in the measurements themselves. These results are available
at our WWW site: http://www.cs.huji.ac.il/labs/compbio/expression. Figure 2 illustrates the
graphical display of some results from this analysis.

4.1 Robustness Analysis

We performed a number of tests to analyze the statistical significance and robustness of our procedure. Some of
these tests were carried on a smaller data set with 250 genes for computational reasons.

To test the credibility of our confidence assessment, we created a random data set by randomly permuting the
order of the experiments independently for each gene. Thus for each gene the order was random, but the composition
of the series remained unchanged. In such a data set, genes are independent of each other, and thus we do not expect
to find “real” features. As expected, both order and Markov relations in the random data set have significantly lower
confidence. We compare the distribution of confidence estimates between the original data set and the randomized
set in Figure 3. Clearly, the distribution of confidence estimates in the original data set have a longer and heavier tail
in the high confidence region. In the linear-Gaussian model we see that random data does not generate any feature
with confidence above 0.3. The multinomial model is more expressive, and thus susceptible to over-fitting. For this
model, we see a smaller gap between the two distributions. Nonetheless, randomized data does not generate any
feature with confidence above 0.8, which leads us to believe that most features that are learned in the original data
set with such confidence are not an artifact of the bootstrap estimation.

To test the robustness of our procedure for extracting dominant genes we performed a simulation study. We
created a data set by sampling 80 samples from one of the networks learned from the original data. We then applied

3We note that we can learn temporal models using a Bayesian network that includes gene expression values in two (or more) consecutive
time points (Friedman et al. 1998). This raises the number of variables in the model. We are currently perusing this issue.
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the bootstrap procedure on this data set. We counted the number of descendents of each node in the synthetic
network and ordered the variables according to this count. Of the 10 top dominant genes learned from the bootstrap
experiment, 9 where among the top 30 in the real ordering.

Since the analysis was not performed on the whole S. cerevisiae genome, we also tested the robustness of our
analysis to the addition of more genes, comparing the confidence of the learned features between the 800 gene
dataset and a smaller 250 gene data set that contains genes appearing in eight major clusters described by Spellman
et al. Figure 4 compares feature confidence in the analysis of the two datasets for the multinomial model. As we can
see, there is a strong correlation between confidence levels of the features between the two data sets. The comparison
for the linear-Gaussian model gives similar results.

A crucial choice for the multinomial experiment is the threshold level used for discretization of the expression
levels. It is clear that by setting a different threshold, we would get different discrete expression patterns. Thus,
it is important to test the robustness and sensitivity of the high confidence features to the choice of this threshold.
This was tested by repeating the experiments using different thresholds. The comparison in how the change of
threshold affects the confidence of features show a definite linear tendency in the confidence estimates of features
between the different discretization thresholds (graphs not shown). Obviously, this linear correlation gets weaker for
larger threshold differences. We also note that order relations are much more robust to changes in the threshold than
Markov relations.

A valid criticism of our discretization method is that it penalizes genes whose natural range of variation is small:
since we use a fixed threshold, we would not detect changes in such genes. A possible way to avoid this problem
is to normalize the expression of genes in the data. That is, we rescale the expression level of each gene, so that
the relative expression level has the same mean and variance for all genes. We note that analysis methods that use
Pearson correlation to compare genes, such as (Ben-Dor et al. 1999, Eisen et al. 1998), implicitly perform such
a normalization.4 When we discretize a normalized dataset, we are essentially rescaling the discretization factor
differently for each gene, depending on its variance in the data. We tried this approach with several discretization
levels, and got results comparable to our original discretization method. The 20 top Markov relations highlighted
by this method were a bit different, but interesting and biologically sensible in their own right. The order relations
were again more robust to the change of methods and discretization thresholds. A possible reason is that order
relations depend on the network structure in a global manner, and thus can remain intact even after many local
changes to the structure. The Markov relation, being a local one, is more easily disrupted. Since the graphs learned
are extremely sparse, each discretization method “highlights” different signals in the data, which are reflected in the
Markov relations learned.

A similar picture arises when we compare the results of the multinomial experiment to those of the linear-
Gaussian experiment (Figure 5). In this case there is virtually no correlation between the Markov relations found
by the two methods, while the order relations show some correlation. This supports our assumption that the two
methods highlight different types of connections between genes.

Finally, we consider the effect of the choice of prior on the learned features. It is important to ensure that the
learned features are not simply artifacts of the chosen prior. To test this, we repeated the multinomial experiment
with different values of � , the effective sample size, and compared the learned confidence levels to those learned
with the default value used for � , which was 5. This was done using the 250 gene data set and discretization level
of 0.5. The results of these comparisons are shown in Figure 6. As can be seen, the confidence levels obtained with
� value of 1 correlate very well with those obtained with the default � , while when setting � to 20 the correlation

4An undesired effect of such a normalization is the amplification of measurement noise. If a gene has fixed expression levels across
samples, we expect the variance in measured expression levels to be noise either in the experimental conditions or the measurements . When
we normalize the expression levels of genes, we loose the distinction between such noise and true (i.e., significant) changes in expression
levels. In the Spellman et al. dataset we can safely assume this effect will not be too grave, since we only focus on genes that display
significant changes across experiments.

12



Table 1: List of dominant genes in the ordering relations. Included are the top 10 dominant genes for each experi-
ments.

Score in Experiment
Gene/ORF Multinomial Gaussian Notes
MCD1 550 525 Mitotic Chromosome Determinant,null mutant is inviable
MSH6 292 508 Required for mismatch repair in mitosis and meiosis
CSI2 444 497 cell wall maintenance, chitin synthesis
CLN2 497 454 Role in cell cycle START, null mutant exhibits G1 arrest
YLR183C 551 448 Contains forkheaded associated domain, thus possibly nuclear
RFA2 456 423 Involved in nucleotide excision repair, null mutant is inviable
RSR1 352 395 GTP-binding protein of the RAS family involved in bud site selection
CDC45 - 394 Required for initiation of chromosomal replication, null mutant lethal
RAD53 60 383 Cell cycle control, checkpoint function, null mutant lethal
CDC5 209 353 Cell cycle control, required for exit from mitosis, null mutant lethal
POL30 376 321 Required for DNA replication and repair, null mutant is inviable
YOX1 400 291 Homeodomain protein
SRO4 463 239 Involved in cellular polarization during budding
CLN1 324 - Role in cell cycle START, null mutant exhibits G1 arrest
YBR089W 298 -

is weaker. This suggests that both 1 and 5 are low enough values compared to the data set size of 76, making the
prior’s affect on the results weak. An effective sample size of 20 is high enough to make the prior’s effect noticeable.
Another aspect of the prior is the prior network used. In all the experiments reported here we used the empty network
with uniform distribution parameters as the prior network. As our prior is non-informative, keeping down its effect
is desired. It is expected that once we use more informative priors (by incorporating biological knowledge, for
example) and stronger effective sample sizes, the obtained results will be more biased towards our prior beliefs.

In summary, although many of the results we report below (especially order relations) are stable across the
different experiments discussed in the previous paragraph, it is clear that our analysis is sensitive to the choice of
local model, and in the case of the multinomial model, to the discretization method. It is probably less sensitive
to the choice of prior, as long as the effective sample size is low compared to the data set size. In all the methods
we tried, our analysis found interesting relationships in the data. Thus, one challenge is to find alternative methods
that can recover all these relationships in one analysis. We are currently working on learning networks with semi-
parametric density models (Friedman & Nachman 2000, Hoffman & Tresp 1996) that would circumvent the need
for discretization on one hand, and allow nonlinear dependency relations on the other.

4.2 Biological Analysis

We believe that the results of this analysis can be indicative of biological phenomena in the data. This is confirmed
by our ability to predict sensible relations between genes of known function. We now examine several consequences
that we have learned from the data. We consider, in turn, the order relations and Markov relations found by our
analysis.

4.2.1 Order Relations

The most striking feature of the high confidence order relations, is the existence of dominant genes. Out of all 800
genes only few seem to dominate the order (i.e., appear before many genes). The intuition is that these genes are
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Table 2: List of top Markov relations, multinomial experiment.

Confidence Gene 1 Gene 2 Notes
1.0 YKL163W-PIR3 YKL164C-PIR1 Close locality on chromosome
0.985 PRY2 YKR012C Close locality on chromosome
0.985 MCD1 MSH6 Both bind to DNA during mitosis
0.98 PHO11 PHO12 Both nearly identical acid phosphatases
0.975 HHT1 HTB1 Both are Histones
0.97 HTB2 HTA1 Both are Histones
0.94 YNL057W YNL058C Close locality on chromosome
0.94 YHR143W CTS1 Homolog to EGT2 cell wall control, both involved in Cy-

tokinesis
0.92 YOR263C YOR264W Close locality on chromosome
0.91 YGR086 SIC1 Homolog to mammalian nuclear ran protein, both involved

in nuclear function
0.9 FAR1 ASH1 Both part of a mating type switch, expression uncorre-

lated
0.89 CLN2 SVS1 Function of SVS1 unknown
0.88 YDR033W NCE2 Homolog to transmembrame proteins suggest both in-

volved in protein secretion
0.86 STE2 MFA2 A mating factor and receptor
0.85 HHF1 HHF2 Both are Histones
0.85 MET10 ECM17 Both are sulfite reductases
0.85 CDC9 RAD27 Both participate in Okazaki fragment processing

indicative of potential causal sources of the cell-cycle process. Let �	�	�� � denote the confidence in 	 being
ancestor of � . We define the dominance score of 	 as

�

����
�
 ��� �	�	�� ��� using the constant � for rewarding

high confidence features and the threshold  to discard low confidence ones. These dominant genes are extremely
robust to parameter selection for both  , �, the discretization cutoff of section 3.4 and the local probability model
used. A list of the highest scoring dominating genes for both experiments appears in table 1.

Inspection of the list of dominant genes reveals quite a few interesting features. Among them are genes directly
involved in initiation of the cell-cycle and its control. For example, CLN1, CLN2, CDC5 and RAD53 whose
functional relation has been established (Cvrckova & Nasmyth 1993, Drebot et al. 1993). The genes MCD1, RFA2,
CDC45, RAD53, CDC5 and POL30 were found to be essential (Guacci et al. 1997). These are clearly key genes in
essential cell functions. Some of them are components of pre-replication complexes(CDC45,POL30). Others (like
RFA2,POL30 and MSH6) are involved in DNA repair. It is known that DNA repair is associated with transcription
initiation, and DNA areas which are more active in transcription, are also repaired more frequently (McGregor 1999,
Tornaletti & Hanawalt 1999). Furthermore, a cell cycle control mechanism causes an abort when the DNA has been
improperly replicated (Eisen & Lucchesi 1998).

Most of the dominant genes encode nuclear proteins, and some of the unknown genes are also potentially nuclear:
(e.g., YLR183C contains a forkhead-associated domain which is found almost entirely among nuclear proteins). A
few non nuclear dominant genes are localized in the cytoplasm membrane (SRO4 and RSR1). These are involved
in the budding and sporulation process which have an important role in the cell-cycle. RSR1 belongs to the RAS
family of proteins, which are known as initiators of signal transduction cascades in the cell.
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Table 3: List of top Markov relations, Gaussian experiment. (The table skips over 5 additional pairs with which
close locality.)

Confidence Gene 1 Gene 2 Notes
1.0 YOR263C YOR264W Close locality on chromosome
1.0 CDC46 YOR066W YOR066W is totally unknown.
1.0 CDC45 SPH1 No suggestion for immediate link.
1.0 SHM2 GCV2 SHM2 interconverts glycine, GCV2 is regulated by

glycine
1.0 MET3 ECM17 MET3 required to convert sulfate to sulfide, ECM17 sul-

fite reductase
1.0 YJL194W-CDC6 YJL195C Close locality on chromosome
1.0 YGR151C YGR152C Close locality on chromosome
1.0 YGR151C YGR152C-RSR1 Close locality on chromosome
1.0 STE2 MFA2 A mating factor and receptor
1.0 YDL037C YDL039C Both homologs to mucin proteins
1.0 YCL040W-GLK1 WCL042C Close locality on chromosome
1.0 HTA1 HTA2 two physically linked histones
. . .
0.99 HHF2 HHT2 both histones
0.99 YHR143W CTS1 Homolog to EGT2 cell wall control, both involved in Cy-

tokinesis
0.99 ARO9 DIP5 DIP5 transports glutamate which regulates ARO9
0.975 SRO4 YOL007C Both proteins are involved in cell wall regulation at the

plasma membrane.

4.2.2 Markov Relations

We begin with an analysis of the Markov relations in the multinomial experiment. Inspection of the top Markov
relations reveals that most are functionally related. A list of the top scoring relations can be found in table 2.
Among these, all involving two known genes make sense biologically. When one of the ORFs is unknown careful
searches using Psi-Blast (Altschul et al. 1997), Pfam (Sonnhammer et al. 1998) and Protomap (Yona et al. 1998)
can reveal firm homologies to proteins functionally related to the other gene in the pair. For example YHR143W,
which is paired to the endochitinase CTS1, is related to EGT2 - a cell wall maintenance protein. Several of the
unknown pairs are physically adjacent on the chromosome, and thus presumably regulated by the same mechanism
(see (Blumenthal 1998)), although special care should be taken for pairs whose chromosomal location overlap on
complementary strands, since in these cases we might see an artifact resulting from cross-hybridization. Such an
analysis raises the number of biologically sensible pairs to nineteen out of the twenty top relations.

There are some interesting Markov relations found that are beyond the limitations of clustering techniques.
Among the high confidence Markov relations, one can find examples of conditional independence, i.e., a group of
highly correlated genes whose correlation can be explained within our network structure. One such example involves
the genes CLN2,RNR3,SVS1,SRO4 and RAD51. Their expression is correlated, and in (Spellman et al. 1998) they
all appear in the same cluster. In our network CLN2 is with high confidence a parent of each of the other 4 genes,
while no links are found between them (see figure 2). This suits biological knowledge: CLN2 is a central and early
cell cycle control, while there is no clear biological relationship between the others. Some of the other Markov
relations are inter-cluster, pairing genes with low correlation in their expression. One such regulatory link is FAR1-
ASH1: both proteins are known to participate in a mating type switch. The correlation of their expression patterns
is low and (Spellman et al. 1998) cluster them into different clusters. When looking further down the list for

15



pairs whose Markov relation confidence is high relative to their correlation, interesting pairs surface. For example
SAG1 and MF-ALPHA-1, a match between the factor that induces the mating process and an essential protein that
participates in the mating process. Another match is LAC1 and YNL300W. LAC1 is a GPI transport protein and
YNL300W is most likely modified by GPI (based on sequence homology).

The Markov relations from the Gaussian experiment are summarized in table 3. Since the Gaussian model
focuses on highly correlated genes, most of the high scoring genes are tightly correlated. When we checked the
DNA sequence of pairs of physically adjacent genes at the top of Table 3, we found that there is significant overlap.
This suggests that these correlations are spurious and due to cross hybridization. Thus, we ignore the relations with
the highest score. However, in spite of this technical problem, few of the pairs with a confidence of ! 

� can be
discarded as biologically false.

Some of the relations are robust and also appear in the multinomial experiment (e.g. STE2-MFA2, CST1-
YHR143W). Most interesting are the genes linked through regulation. These include: SHM2 which converts glycine
that regulates GCV2 and DIP5 which transports glutamate which regulates ARO9. Some pairs participate in the same
metabolic process, such as: CTS1-YHR143 and SRO4-YOL007C all which participate in cell wall regulation. Other
interesting high confidence (! 

�) examples are: OLE1-FAA4 linked through fatty acid metabolism, STE2-AGA2
linked through the mating process and KIP3-MSB1, both playing a role in polarity establishment.

5 Discussion and Future Work

In this paper we presented a new approach for analyzing gene expression data that builds on the theory and algo-
rithms for learning Bayesian networks. We described how to apply these techniques to gene expression data. The
approach builds on two techniques that were motivated by the challenges posed by this domain: a novel search
algorithm (Friedman, Nachman & Pe’er 1999) and an approach for estimating statistical confidence (Friedman,
Goldszmidt & Wyner 1999). We applied our methods to real expression data of Spellman et al. (1998). Although,
we did not use any prior knowledge, we managed to extract many biologically plausible conclusions from this
analysis.

Our approach is quite different than the clustering approach used by (Alon et al. 1999, Ben-Dor et al. 1999,
Eisen et al. 1998, Michaels et al. 1998, Spellman et al. 1998), in that it attempts to learn a much richer structure
from the data. Our methods are capable of discovering causal relationships, interactions between genes other than
positive correlation, and finer intra-cluster structure. We are currently developing hybrid approaches that combine
our methods with clustering algorithms to learn models over “clustered” genes.

The biological motivation of our approach is similar to work on inducing genetic networks from data (Akutsu
et al. 1998, Chen et al. 1999, Somogyi et al. 1996, Weaver et al. 1999). There are two key differences: First, the
models we learn have probabilistic semantics. This better fits the stochastic nature of both the biological processes
and noisy experiments. Second, our focus is on extracting features that are pronounced in the data, in contrast to
current genetic network approaches that attempt to find a single model that explains the data.

We emphasize that the work described here represents preliminary step in a longer term project. As we have
seen above, there are several points that require accurate statistical tools and more efficient algorithms. Moreover,
the exact biological conclusions one can draw from this analysis are still not well understood. Nonetheless, we view
the results described in Section 4 as definitely encouraging.

We are currently working on improving methods for expression analysis by expanding the framework described
in this work. Promising directions for such extensions are: (a) Developing the theory for learning local probability
models that are suitable for the type of interactions that appear in expression data; (b) Improving the theory and
algorithms for estimating confidence levels; (c) Incorporating biological knowledge (such as possible regulatory
regions) as prior knowledge to the analysis; (d) Improving our search heuristics; (e) Learning temporal models, such
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as Dynamic Bayesian Networks (Friedman et al. 1998), from temporal expression data (f) Developing methods that
discover hidden variables (e.g protein activation).

Finally, one of the most exciting longer term prospects of this line of research is discovering causal patterns from
gene expression data. We plan to build on and extend the theory for learning causal relations from data and apply it
to gene expression. The theory of causal networks allows learning both from observational data and interventional
data, where the experiment intervenes with some causal mechanisms of the observed system. In gene expression
context, we can model knockout/over-expressed mutants as such interventions. Thus, we can design methods that
deal with mixed forms of data in a principled manner (See (Cooper & Yoo 1999) for a recent work in this direction).
In addition, this theory can provide tools for experimental design, that is, understanding which interventions are
deemed most informative to determining the causal structure in the underlying system.
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Figure 2: An example of the graphical display of Markov features. This graph shows a “local map” for the gene
SVS1. The width (and color) of edges corresponds to the computed confidence level. An edge is directed if there is a
sufficiently high confidence in the order between the genes connected by the edge. This local map shows that CLN2
separates SVS1 from several other genes. Although there is a strong connection between CLN2 to all these genes,
there are no other edges connecting them. This indicates that, with high confidence, these genes are conditionally
independent given the expression level of CLN2.
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Figure 3: Plots of abundance of features with different confidence levels for the cell cycle data set (solid line), and the
randomized data set (dotted line). The �-axis denotes the confidence threshold, and the �-axis denotes the number
of features with confidence equal or higher than the corresponding �-value. The graphs on the left column show
Markov features, and the ones on the right column show Order features. The top row describes features found using
the multinomial model, and the bottom row describes features found by the linear-Gaussian model. Inset in each
graph is plot of the tail of the distribution.
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Figure 4: Comparison of confidence levels obtained in two datasets differing in the number of genes, on the multino-
mial experiment. Each relation is shown as a point, with the �-coordinate being its confidence in the the 250 genes
data set and the �-coordinate the confidence in the 800 genes data set. The left figure shows order relation features,
and the right figure shows Markov relation features.
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Figure 5: Comparison of of confidence levels between the multinomial experiment and the linear-Gaussian experi-
ment. Each relation is shown as a point, with the �-coordinate being its confidence in the multinomial experiment,
and the �-coordinate its confidence in the linear-Gaussian experiment. The left figure shows order relation features,
and the right figure shows Markov relation features.
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Figure 6: Comparison of confidence levels between runs using different parameter priors. The difference in the priors
is in the effective sample size, � . Each relation is shown as a point, with the �-coordinate being its confidence in a
run with � � �, and the �-coordinate its confidence in a run with � � � (top row) and � � �
 (bottom row). The
left figure shows order relation features, and the right figure shows Markov relation features. All runs are on the 250
gene set, using discretization with threshold level 0.5.
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