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Latent Variable Modeling

Goal: Discover hidden effects from observed measurements

Topic Models

Observations: words. Hidden: topics.

Nursing Home Is Faulted Over Care After 

Storm

By MICHAEL POWELL and SHERI FINK

Amid the worst hurricane to hit New York City 

in nearly 80 years, officials have claimed that 

the Promenade Rehabilitation and Health 

Care Center failed to provide the most basic 

care to its patients.

In One Day, 11,000 Flee Syria as War and 

Hardship Worsen

By RICK GLADSTONE and NEIL 

MacFARQUHAR

The United Nations reported that 11,000 

Syrians fled on Friday, the vast majority of 

them clambering for safety over the Turkish 

border.

Obama to Insist on Tax Increase for the 

Wealthy

By HELENE COOPER and JONATHAN 

WEISMAN

Amid talk of compromise, President Obama 

and Speaker John A. Boehner both indicated 

unchanged stances on this issue, long a point 

of contention.

Hurricane Exposed Flaws in Protection of 

Tunnels

By ELISABETH ROSENTHAL

Nearly two weeks after Hurricane Sandy 

struck, the vital arteries that bring cars, trucks 

and subways into New York City’s 

transportation network have recovered, with 

one major exception: the Brooklyn-Battery 

Tunnel remains closed.

Behind New York Gas Lines, Warnings and 

Crossed Fingers

By DAVID W. CHEN, WINNIE HU and 

CLIFFORD KRAUSS

The return of 1970s-era gas lines to the five 

boroughs of New York City was not the result 

of a single miscalculation, but a combination 

of ignored warnings and indecisiveness.

Modeling communities in social networks, modeling gene regulation . . .
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Challenges in Learning Topic Models

Learning Topic Models Using Word Observations

Challenges in Identifiability

When can topics be identified?

Conditions on the model parameter, e.g. on topic-word matrix Φ and
on topic proportions distributions (h)?

Does identifiability also lead to tractable algorithms?

Challenges in Design of Learning Algorithms

Maximum likelihood learning of topic models NP-hard (Arora et. al.)

In practice, heuristics such as Gibbs sampling, variation Bayes etc.

Guaranteed learning with minimal assumptions? Efficient methods?
Low sample and computational complexities?

Moment-based approach: learning using low order observed moments



Probabilistic Topic Models

Useful abstraction for automatic categorization of documents

Observed: words. Hidden: topics.

Bag of words: order of words does not matter

Graphical model representation

l words in a document x1, . . . , xl.

h: proportions of topics in a document.

Word xi generated from topic yi.

Exchangeability: x1 ⊥⊥ x2 ⊥⊥ . . . |h

Φ(i, j) := P[xm = i|ym = j] :

topic-word matrix.
Words

Topics

Topic

Mixture

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

ΦΦΦΦΦ

h



Formulation as Linear Models

Distribution of the topic proportions vector h

If there are k topics, distribution over the simplex ∆k−1

∆k−1 := {h ∈ R
k, hi ∈ [0, 1],

∑

i

hi = 1}.

Distribution of the words x1, x2, . . .

Order n words in vocabulary. If x1 is jth word, assign ej ∈ R
n

Distribution of each xi: supported on vertices of ∆n−1.

Properties

Linear Model: E[xi|h] = Φh .

Multiview model: h is fixed and multiple words (xi) are generated.
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Geometric Picture for Topic Models

Topic proportions vector (h)

ΦΦΦ

x1

x2

x3
Word generation (x1, x2, . . .)

Moment-based estimation: co-occurrences of words in documents
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M2 := E[x1x
>
2 ] = E[E[x1x

>
2 |h]] = ΦE[hh>]Φ> =

k∑

r=1

λrφrφ
>
r

Similarly Triples Tensor M3

M3 := E(x1 ⊗ x2 ⊗ x3) =
∑

r

λrφr ⊗ φr ⊗ φr

Matrix and Tensor Forms: φr := rth column of Φ.

M2 =

k∑

r=1

λrφr ⊗ φr. M3 =

k∑

r=1

λrφr ⊗ φr ⊗ φr



Multi-linear Transformation

For a tensor T , define (for matrices Vi of appropriate dimensions)

[T (V1, V2, V3)]i1,i2,i3 :=
∑

j1,j2,j3

(T )j1,j2,j3
∏

m∈[3]

V1(jm, im)

For a matrix M2, M(V1, V2) := V >
1 M2V2 .

T =

k∑

r=1

λrφr ⊗ φr ⊗ φr

T (W,W,W ) =
∑

r∈[k]

λr(W
>φr)

⊗3

T (I, v, v) =
∑

r∈[k]

λr〈v, φr〉
2φr.

T (I, I, v) =
∑

r∈[k]

λr〈v, φr〉φrφ
>
r .
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Form of Moments for a general Topic Model

E[xi|h] = Φh.

Learn Φ, distribution of h

Form of moments?
x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

ΦΦΦΦΦ

h

Pairs Matrix M2

M2 := E[x1x
>
2 ] = E[E[x1x

>
2 |h]] = ΦE[hh>]Φ>

Similarly Triples Tensor M3

M3 := E(x1 ⊗ x2 ⊗ x3) =
∑

i,j,k

E[h⊗3]i,j,kφi ⊗ φj ⊗ φk = E[h⊗3](Φ,Φ,Φ)

Tucker Tensor Decomposition

Find decomposition M3 = E[h⊗3](Φ,Φ,Φ)

Key difference from CP: E[h⊗3] NOT a diagonal tensor

Lot more parameters to estimate.



Guaranteed Learning of Topic Models

Two Learning approaches

CP Tensor decomposition: Parametric topic distributions
(constraints on h) but general topic-word matrix Φ

Tucker Tensor decomposition: Constrain topic-word matrix Φ but
general (non-degenerate) distributions on h

Words

Topics

Topic

Mixture
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y1 y2 y3 y4 y5
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h1 h2 hk

x(1) x(2) x(n)

Φ

Learning using second-order moments

Linear model: E[xi|h] = Φh. and E[x1x
>
2 ] = ΦE[hh>]Φ>

Learning: recover Φ from ΦE[hh>]Φ>.

Ill-posed without further restrictions

When h is not degenerate: recover Φ from Col(Φ)

No other restrictions on h: arbitrary dependencies

Sparsity constraints on topic-word matrix Φ

Main constraint: columns of Φ are sparsest vectors in Col(Φ)
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Sufficient Conditions for Identifiability

columns of Φ are sparsest vectors in Col(Φ)

Sufficient conditions?

h1 h2 hk

x(1) x(2) x(n)

Φ

S

N (S)

Structural Condition: (Additive) Graph Expansion

|N (S)| > |S|+ dmax, for all S ⊂ [k]

Parametric Conditions: Generic Parameters

‖Φv‖0 > |NΦ(supp(v))| − | supp(v)|

A. Anandkumar, D. Hsu, A. Javanmard, and, S. M. Kakade. Learning Bayesian Networks with

Latent Variables. In Proc. of Intl. Conf. on Machine Learning, June 2013.
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Brief Proof Sketch

Structural Condition: (Additive) Graph Expansion

|N (S)| > |S|+ dmax, for all S ⊂ [k]

Parametric Conditions: Generic Parameters

‖Φv‖0 > |NΦ(supp(v))| − | supp(v)|

Structural and Parametric Conditions Imply:

When | supp(v)| > 1, ‖Φv‖0 > |NΦ(supp(v))| − | supp(v)| > dmax

Thus, | supp(v)| = 1, for Φv to be one of k sparsest vectors in Col(Φ)

Claim: Parametric conditions are satisfied for generic parameters



Tractable Learning Algorithm

Learning Task

Recover topic-word matrix Φ from M2 = ΦE[hh>]Φ> .

Exhaustive search

min
z 6=0

‖Φz‖0

Convex relaxation

minz ‖Φz‖1, b>z = 1,

where b is a row in Φ.

Change of Variables

minw ‖M
1/2
2 w‖1, e>i M

1/2
2 w = 1.

Under “reasonable” conditions, the above program exactly recovers Φ
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Latent General Topic Models

h1 hk

x(1) x(2) x(n)

Φ

So far: recover topic-word matrix Φ from ΦE[hh>]Φ> .

Learning topic proportion distribution

E[hh>] not enough to recover general distributions

Need higher order moments to learn distribution of h

Any models where low order moments suffice? e.g. Dirichlet/single
topic require only third order moments. What about any other
distributions?

Are there other topic distributions which can be learned efficiently?
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Learning Latent Bayesian Networks

BN: Markov relationships on DAG

Pai: parents of node i. P(h) =
n∏

i=1
P(hi|hPai)

Linear Bayesian Network: hj =
∑

i∈Paj

λjihi + ηj

h = Λh+ η E[xi|η] = Φ(I − Λ)−1η = Φ′η and ηi uncorrelated

h1 hk

x(1) x(2) x(n)

Φ

≡
η1 η2 ηk

x(1) x(2) x(n)

Φ′

Φ: structured and sparse while Φ′ is dense

h: correlated topics while η are uncorrelated
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Learning Latent Bayesian Networks

E[xi|η] = Φ(I − Λ)−1η = Φ′η E[η] = λ

E[x1 ⊗ x2 ⊗ x3] = E[η⊗3](Φ′,Φ′,Φ′) =
∑

i λi(φ
′
i)
⊗3

Solving CP decomposition through Tensor Power Method

Recall ηi are uncorrelated: E[η⊗] is diagonal.

Reduction to CP decomposition: can be efficient solved via tensor
power method

Sparse Tucker Decomposition: Unmixing via Convex Optimization

Un-mix Φ from Φ′ = Φ(I − Λ)−1 through `1 optimization.

Learning both structure and parameters of Φ and distribution of h
Combine non-convex and convex methods for learning!
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Extension to learning overcomplete representations

So far..

Pairwise moments for learning structured topic-word matrices

Third order moments for learning latent Bayesian network models

Number of topics k, n is vocabulary size and k < n.

Undercomplete Representation

k

n

h1 h2 hk

x(1)x(2) x(n)

Overcomplete Representation

k

n

h1 h2 hk

x(1)x(2) x(n)

What about overcomplete models: k > n? Do higher-order moments help?
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Learning Overcomplete Representations

Why Overcomplete Representations?

Flexible modeling, robust to noise

Huge gains in many applications, e.g. speech and computer vision.

Recall Tucker Form of Moments for Topic Models

M2 := E(x1 ⊗ x2) = E[h⊗2](Φ,Φ) ≡ ΦE[hh>]Φ>

M3 := E(x1 ⊗ x2 ⊗ x3) = E[h⊗3](Φ,Φ,Φ)

k > n: Tucker decomposition not unique: model non-identifiable.

Identifiability of Overcomplete Models

Possible under the notion of topic persistence

Includes single topic model as a special case.
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Persistent Topic Models

Bag of Words Model

Words

Topics

Topic
Mixture

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

ΦΦΦΦΦ

h

Persistent Topic Model

Words
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h

Single-topic model is a special case.

Persistence: incorporates locality or order of words.

Identifiability conditions for overcomplete models?
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Identifiability of Overcomplete Models

Recall Tucker Form of Moments for Bag-of-Words Model

Tensor form: E(x1 ⊗ x2 ⊗ x3 ⊗ x4) = E[h⊗4](Φ,Φ,Φ,Φ)

Matricized form:
E((x1 ⊗ x2)(x3 ⊗ x4)

>) = (Φ ⊗ Φ)E[(h⊗ h)(h ⊗ h)>](Φ⊗ Φ)>
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Identifiability of Overcomplete Models

Recall Tucker Form of Moments for Bag-of-Words Model

Tensor form: E(x1 ⊗ x2 ⊗ x3 ⊗ x4) = E[h⊗4](Φ,Φ,Φ,Φ)

Matricized form:
E((x1 ⊗ x2)(x3 ⊗ x4)

>) = (Φ ⊗ Φ)E[(h⊗ h)(h ⊗ h)>](Φ⊗ Φ)>

For Persistent Topic Model

Tensor form: E(x1 ⊗ x2 ⊗ x3 ⊗ x4) = E[hh>](Φ � Φ,Φ�Φ)

Matricized form:
E((x1 ⊗ x2)(x3 ⊗ x4)

>) = (Φ � Φ)E[hh>](Φ � Φ)>

Kronecker vs. Khatri-Rao Products

Φ: Topic-word matrix, is n× k.

(Φ⊗ Φ): Kronecker product, is n2 × k2 matrix.

(Φ� Φ): Khatri-Rao product, is n2 × k matrix.



Some Intuitions

Bag-of-words Model:

(Φ⊗ Φ)E[(h⊗ h)(h⊗ h)>](Φ ⊗Φ)>

Persistent Model:
(Φ� Φ)E[hh>](Φ� Φ)>

Topic-Word Matrix Φ
k

n

Effective Topic-Word Matrix Given Fourth-Order Moments:

Bag of Words Model:
Kronecker Product Φ⊗Φ

k2

n2

Not Identifiable

Persistent Model:
Khatri-Rao Product Φ� Φ

k

n2

Identifiable
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Tensor Decomposition Methods

Moment tensors have tractable forms for many models, e.g. Topic
models, HMMs, Gaussian mixtures, ICA.

Efficient CP tensor decomposition through power iterations.

Efficient structured Tucker decomposition through `1.

Structured topic-word matrices: Expansion conditions

Can be extended to overcomplete representations



Conclusion
Moment-based Estimation of Latent Variable Models

Moments are easy to estimate.

Low-order moments have good concentration properties

Tensor Decomposition Methods

Moment tensors have tractable forms for many models, e.g. Topic
models, HMMs, Gaussian mixtures, ICA.

Efficient CP tensor decomposition through power iterations.

Efficient structured Tucker decomposition through `1.

Structured topic-word matrices: Expansion conditions

Can be extended to overcomplete representations

Practical Considerations for Tensor Methods

Not covered in detail in this tutorial.

Matrix algebra and iterative methods.

Scalable: Parallel implementation on GPUs


	Introduction
	Form of Moments
	Matrix Case: Learning using Pairwise Moments
	Identifiability and Learning of Topic-Word Matrix
	Learning Latent Space Parameters of the Topic Model

	Tensor Case: Learning From Higher Order Moments
	Overcomplete Representations

	Conclusion

