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Notation: For a vector X = (xq, Xz, ..., Xp) € R”,
X@X®X

denotes the 3-way array (call it a “tensor’) in R™"*" whose
(i,j, k)™ entry is x;x;X.

Problem: Given T € R™ ™" with the promise that

n
T:ZAt \7t®\7f®‘7t
t=1
for some orthonormal basis {V;} of R” (w.rt. standard inner product)

and positive scalars {\; > 0}, approximately find {(V;, \¢)}
(up to some desired precision).
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1. Is {(Vt, \¢)} uniquely determined?

2. If so, is there an efficient algorithm for finding the
decomposition?

3. What if T is perturbed by some small amount?

Perturbed problem: Same as the original problem,
except instead of T, we are given T + E for some
“error tensor” E.

How “large” can E be if we want ¢ precision?
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Analogous matrix problem

» We're promised that M is symmetric and positive definite,
so requested decomposition is an eigendecomposition.

In this case, an eigendecomposition always exists, and
can be found efficiently.

It is unique if and only if the {)\;} are distinct.

» What if M is perturbed by some small amount?

Perturbed matrix problem: Same as the original
problem, except instead of M, we are given M + E
for some “error matrix” E (assume to be symmetric).

Answer provided by matrix perturbation theory
(e.g., Davis-Kahan), which requires || Ef|2 < minj |Aj — Aj|.



Back to the original problem

Problem: Given T € R™ ™" with the promise that

n
TZZ/\t Vi @ Vi ® Vi
t=1
for some orthonormal basis {V;} of R” (w.rt. standard inner product)

and positive scalars {)\; > 0}, approximately find {(V, \;)}
(up to some desired precision).




Back to the original problem

Problem: Given T € R™ ™" with the promise that

n
TZZ/\t Vi @ Vi ® Vi
t=1
for some orthonormal basis {V;} of R” (w.rt. standard inner product)

and positive scalars {)\; > 0}, approximately find {(V, \;)}
(up to some desired precision).

Such decompositions do not necessarily exist, even for
symmetric tensors.



Back to the original problem

Problem: Given T € R™ ™" with the promise that

n
TZZ/\t Vi @ Vi ® Vi
t=1
for some orthonormal basis {V;} of R” (w.rt. standard inner product)

and positive scalars {)\; > 0}, approximately find {(V, \;)}
(up to some desired precision).

Such decompositions do not necessarily exist, even for
symmetric tensors.

Where the decompositions do exist, the Perturbed problem
asks if they are “robust”.
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Main ideas

Easy claim: Repeated application of a certain quadratic
operator based on T (a “power iteration”) recovers a single (i, \;)
up to any desired precision.
Self-reduction: Replace T with T — \; V; ® V; @ V.

» Why?: T — )\ ViQ Vi @ Vp = Zr;ét/\T Ve @ Ve ® V.

» Catch: We don't recover (4, \;) exactly, so we actually can
only replace T with

T -\ Vt®Vt®Vt+Ef

for some “error tensor” E;.

» Therefore, must anyway deal with perturbations.



Rest of this talk

1. ldentifiability of decomposition {(V;, A;)} from T.

2. A decomposition algorithm based on tensor power
iteration.

3. Error analysis of decomposition algorithm.
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Identifiability of the decomposition

Orthonormal basis {v;} of R”, positive scalars {\; > 0}:

n
TZZ/\t Vi ®@ Vi ® Vt
t—1

In what sense is {(Vt, A\;)} uniquely determined?

Claim: {v;} are isolated local maximizers of certain cubic form
fr: s R", and fT(Vt) = At.
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Aside: multilinear form

There is a natural trilinear form associated with T:

(X.7.2) = > Tijk Xi¥jZ-
ijk
For matrices M, it looks like

(},y) —> ZM,‘J X,'yj = YTMY
i
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Review: Rayleigh quotient

- 5T

Recall Rayleigh quotient for matrix M := >"1_; \; ViV
(assuming X € S"'):

n
Ru(X) = X"MX = Y M\ (V' %)
t=1

Every v; such that | \;| = max! is a maximizer of Ry,.

(These are also the only local maximizers.)
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The natural cubic form
Consider the function fr: S"~' — R" given by

)? —> fT()_(’) = Z Ti,j,k X,'Xij.
ij,k

For our promised T = Y"1, A\ V; ® V; ® V;, fr becomes

Z A Y (Vi@ U ® V) XiXiXe

i.j,k

= Z At > (VOiV) (Vo) kXixiXk

t=1 i,k
n

=> M (' %)°
t=1

Observation: fr(V;) = A;.
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Variational characterization

Claim: Isolated local maximizers of fr on S"~' are {V;}.
Objective function (with constraint):

X — inf At ( 8 1.5\ -1
m;ﬂzr 5(J¥]3 — 1)

First-order condition for local maxima:
n
D A (Vi X)? v = AKX,
t=1

Second-order condition for isolated local maxima:

n
W (22 M (5T R)Gv — )\/> W<0, wLX.
t=1
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Intuition behind variational characterization

May as well assume V; is 1" coordinate basis vector, so

n
max fr(X )\, x2 st x2 = 1.
f {
t—1

XERN

Intuition: Suppose supp(X) = {1,2}, and x4, xo > 0.

fT(Y) = )\1X-i3 + )\ng < )\1X12 + /\2X22 < max{)\1, )\2}.

Better to have |supp(X)| = 1, i.e., picking X to be a coordinate
basis vector. 1
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Aside: canonical polyadic decomposition

Rank-K canonical polyadic decomposition (CPD) of T
(also called PARAFAC, CANDECOMP, or CP):

K
T = ZU,‘ U,'®\7,'®W,‘.
i=1

Number of parameters: K- (3n+ 1) (compared to n® in general).

Fact: Our promised T has a rank-n CPD.

N.B.: Overcomplete (kK > n) CPD is also interesting and a
possibility as long as K(3n+ 1) < nd.



3. Power iteration



The quadratic operator

Easy claim: Repeated application of a certain quadratic
operator (based on T) recovers a single (\;, ;) up to any
desired precision.

Forany A € R™™" and X = (Xq, Xz, ..., X,) € R, define the
quadratic operator

$a(X) =D Aijk XX & €R"
i.j,k

where &; € R" is the i" coordinate basis vector.




The quadratic operator

Easy claim: Repeated application of a certain quadratic
operator (based on T) recovers a single (\;, ;) up to any
desired precision.

quadratic operator

$a(X) =D Aijk XX & €R"
i.j,k

where &; € R" is the i" coordinate basis vector.

Forany A € R™™" and X = (Xq, Xz, ..., X,) € R, define the

If T = Z/\f Vi ® Vi @ Vi, then ¢7(X Z/\t Vi X _,21

t=1



An algorithm?

Recall: First-order condition for local maxima of
fr(X) = S04 M (V' X)3 for X € S7
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i.e., “eigenvector’-like condition.
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An algorithm?

Recall: First-order condition for local maxima of
fr(X) = S04 M (V' X)3 for X € S7

n
OT(X) =) M (VX2 Vi = AR
t=1

i.e., “eigenvector’-like condition.

Algorithm: Find X € S~ fixed under X +— ¢1(X)/||o7(X)]|.

(Ignoring numerical issues, can just repeatedly apply ¢+ and defer
normalization until later.)

N.B.: Gradient ascent also works [Kolda & Mayo, ’11].

20



Tensor power iteration

X .— or( X(J 1) Z)‘t

Start with some X(®), and forj =1,2,...:

—»T—»

VtX

{.

21



Tensor power iteration

Start with some X(®), and forj =1,2,...:

_'(j) = (257' X(j 1) Z)\t \7;)? _'{.

Claim: For almost all initial X(%), the sequence (X0)/(IX0)])~,
converges quadratically fast to some V;.



Review: matrix power iteration

Recall matrix power iteration for matrix M := S>7_, \¢ Vi

Start with some X(®, andforj =1,2,...:

0 . pxU-1 — ZAt £U-1)

i.e., component in V; direction is scaled by ;.
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Review: matrix power iteration

Recall matrix power iteration for matrix M := S>7_, \¢ Vi

Start with some X(®, andforj =1,2,...:

0 . pxU-1 — ZAt £U-1)

i.e., component in V; direction is scaled by ;.
|f)\1 >)\22---,then

vi T x()
(v ) > k<)\2>
Zt:1 (VfTY/)) A

i.e., converges linearly to V4 (assuming gap Az/\1 < 1).

22



Tensor power iteration convergence analysis

Let ¢; := v; ' X(O (initial component in ¥; direction); assume WLOG

)\1’C1| > )\2|Cg| > )\3|C3| > e

23



Tensor power iteration convergence analysis

Let ¢; := v; ' X(O (initial component in ¥; direction); assume WLOG
Atler] > Azfea| > Asles| > -
Then

Z/\t Vt X(O) Z)\tCt Vt

i.e., component in V; direction is squared then scaled by ;.
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Tensor power iteration convergence analysis

Let ¢; := v; ' X(O (initial component in ¥; direction); assume WLOG
Aler| > Aslea| > Asles| > -

Then

Z/\t Vt X(O) Z)\tCt V[

i.e., component in V; direction is squared then scaled by ;.
Easy to show

2j+1

(7130

2
>1_k M Ao Co
S0 (7 70)° maxr

A1Cy

23



Example

n—= 1024, )\t ~u.a.r. [07 1]

Value of (v; ' X(©)2for t =1,2,...,1024
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Example

n=1024, \ ~yar [0,1].

ol |J| i Izim sl \O\l ILI 1 . ||l .‘ ‘JW.L.I J\‘ .mlm!

00
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Value of (v, X®)2for t =1,2,...,1024
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Matrix vs. tensor power iteration

Matrix power iteration:

Tensor power iteration:
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Matrix vs. tensor power iteration

Matrix power iteration:
1. Requires gap between largest and second-largest ;.
(Property of the matrix only.)

2. Converges to top ;.
3. Linear convergence. (Need O(log(1/¢)) iterations.)

Tensor power iteration:

1. Requires gap between largest and second-largest )\;|cy|.
(Property of the tensor and initialization X(©.)

2. Converges to V; for which A\¢|c¢| = max! (could be any of them).

3. Quadratic convergence. (Need O(log log(1/€)) iterations.)

25



Initialization of tensor power iteration

Convergence of tensor power iteration requires gap between
largest and second-largest \|v; ' X(7)].
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Initialization of tensor power iteration

Convergence of tensor power iteration requires gap between
largest and second-largest \|v; ' X(7)].

Example of bad initialization: Suppose T = >, V; ® V; @ V4,
and x(0) = \1*@(\71 + \72)

o1(¥0) = (v, "Xy, + (" %0))2y,
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Initialization of tensor power iteration

Convergence of tensor power iteration requires gap between
largest and second-largest \|v; ' X(7)].

Example of bad initialization: Suppose T = >, V; ® V; @ V4,
and x(©) = f(v1 + Vo).

) \71 + (VQT)?’(O))2\72

or(x) =

(V4
1 1

»(0)
= (V4 + o) = —Xx(O)
2(1 Vo) = 7

Fortunately, bad initialization points are atypical.

26



Full decomposition algorithm

Input: 7 € RN,
Initialize: T := T.
Fori=1,2,...,n:
1. Pick X(© ¢ "1 u.a.r.
2. Run tensor power iteration with T starting from ¥(© for N
iterations.
3. Set U := XN/ XN)|| and }; := f=(¥;).
4. Replace T:=T -} I, ¥ ® 0.
Output: {(V;, 1) : ie[n]}.

27



Full decomposition algorithm

Input: 7 € RN,
Initialize: T := T.
Fori=1,2,...,n:

1. Pick X(® e "' u.a.r.

2. Run tensor power iteration with T starting from ¥(© for N
iterations.

3. Set U := XN/ XN)|| and }; := f=(¥;).
4. Replace T:=T -} I, ¥ ® 0.
Output: {(V;, 1) : ie[n]}.

Actually: repeat SteAps 1-3 several times, and take results of
trial yielding largest ;.

27



Aside: direct minimization

Can also consider directly minimizing

n 2
HT—Z)\t \71@\%@%
t=1

F

via local optimization (e.g., block coordinate descent).
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Aside: direct minimization

Can also consider directly minimizing

n 2
HT—Z)\t Vi@ U @ W
t=1

F

via local optimization (e.g., block coordinate descent).

Decomposition algorithm via tensor power iteration can be
viewed as orthgonal greedy algorithm for minimizing above
objective [zZhang & Golub, '01].

28
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Let /() be empirical word frequency vector for document /:

70) _ # times word j appears in document j
i length of document i
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Matrix of word-pair frequencies (from m documents)

K

1 )
Pairs ~ — Z 0 — > i ® fir.
i=1 t=1
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Aside: implementation for bag-of-words models

Let /() be empirical word frequency vector for document /:

70) _ # times word j appears in document j
i length of document i

Matrix of word-pair frequencies (from m documents)

K

1 )
Pairs ~ = Z 0 — " @ fir.
i=1 t=1

Tensor of word-triple frequencies (from m documents)

1L L o K
i ~ () & fl) & f) i @ il @ ilt.
Triples ~ ; 2 o) — ; fit ® [ ® [it

29



Aside: implementation for bag-of-words models

Use inner product system given by (X, y) := X" P/a\irsTV.
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Aside: implementation for bag-of-words models

Use inner product system given by (X, y) := X" Iil\irsTy.

Why?: If Pairs = S5, jir @ fir, then (ji;, /i) = L)y
= {/i;} are orthonormal under this inner product system.

Power iteration step:

m

1 O wine % 1 st N2 )
s X) = mz13<x, fy2 ) = EZ(XTPalrS Y= 70,
=

i=1

. — 71, _—
1. First compute y := Pairs X (use low-rank factors of Pairs).
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Aside: implementation for bag-of-words models

Use inner product system given by (X, y) := )?Tlil\irsTY.

Why?: If Pairs = S5, jir @ fir, then (ji;, /i) = L)y
= {/i;} are orthonormal under this inner product system.

Power iteration step:

m

1 O wine % 1 st N2 )
s X) = mz13<x, fy2 ) = EZ(XTPalrS Y= 70,
=

i=1

. — 71, _—
1. First compute y := Pairs X (use low-rank factors of Pairs).

2. Then compute (7 f())2 f() for all documents i, and add
them up (all sparse operations).

30



Aside: implementation for bag-of-words models

Use inner product system given by (X, y) := )?Tlia\irsTY.

Why?: If Pairs = S5, jir @ fir, then (ji;, /i) = L)y
= {/i;} are orthonormal under this inner product system.

Power iteration step:

m

L O wine % 1 st N2 )
s X) = mZ}x, fy2 ) = EZ(XTPalrS Y= 70,
=

i=1

. — 71, _—
1. First compute y := Pairs X (use low-rank factors of Pairs).

2. Then compute (7 f())2 f() for all documents i, and add
them up (all sparse operations).

Final running time o # topics x (model size + input size).
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4. Error analysis
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Effect of errors in tensor power iterations

Suppose we are given T := T + E, with

n
T:Z)\tﬁt®\7t®\7t, €
t=1 Xesn—1

sup [[¢e(X)ll-
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Effect of errors in tensor power iterations

Suppose we are given T := T + E, with

n
T=YNvevien,  c= sup o).

t=1 Xesn—1

What can we say about the resulting V; and \?
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Perturbation analysis

Theorem: If ¢ < O(%), then with high probability, a
modifjed variant of the full decomposition algorithm returns
{(V;, \j)) = i€ [n]} with

|V — Vil < O(e/\), 1A = \i| < O(e), ien].
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Perturbation analysis

Theorem: If ¢ < O(%), then with high probability, a
modifjed variant of the full decomposition algorithm returns
{(V;, \j)) = i€ [n]} with

|V — Vil < O(e/\), 1A = \i| < O(e), ien].

Essentially third-order analogue of Wedin’s theorem for SVD of
matrices, but specific to particular algorithm.
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Effect of errors in tensor power iterations

Quadratic operator ¢+ with T

6:(X) = SN (W R+ 0e(X).
t=1
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Effect of errors in tensor power iterations

Quadratic operator ¢+ with T
- 2
Z/\t (VtT;) \_/} + (ﬁE()?)
t=1

Claim: If ¢ < O(™%21) and N > Q(log(n) + log log &A1), then
N steps of tensor power iteration on T + E (with good |n|t|aI|zation)
gives A

Vi = vill < O(e/A), A= Ail < O(e).
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Deflation

(For simplicity, assume )4
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Using tensor power iteration on T=T+E:
Approximate (say) v; with ¥, up to error ||vVy — V4| < e.
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Deflation

(For simplicity, assume Ay = --- =\, =1.)

Using tensor power iteration on T=T+E:
Approximate (say) v; with ¥, up to error ||vVy — V4| < e.
Deflation danger: To find next v;, use

n
T-noenhewn IZVt®\7t®‘7t
t—2

+E+(V1®\71®\71—\71®01®\71).
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Deflation

(For simplicity, assume Ay = --- =\, =1.)

Using tensor power iteration on T=T+E:
Approximate (say) v; with ¥, up to error ||vVy — V4| < e.

Deflation danger: To find next v;, use

n
T_O1®‘A/1®‘A/1:Z‘7t®‘71®‘7t
t=2
+E+(V1®\71®\71—\71®01®\71).

Now error seems to be of size 2¢. ..
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Deflation

(For simplicity, assume Ay = --- =\, =1.)

Using tensor power iteration on T=T+E:
Approximate (say) v; with ¥, up to error ||vVy — V4| < e.
Deflation danger: To find next v;, use
N n
T-noenhewn IZVt®\7t®‘7t
t=2

+E+(V1®\71®\71—\71®01®\71).

Now error seems to be of size 2¢... exponential explosion?
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How do the errors look?

E; :=\71®\71®|71—\71®\71®\71
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How do the errors look?
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» Take any direction X orthogonal to v;:
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How do the errors look?

E; Z=\71®\71®\71—\71®\71®\71
» Take any direction X orthogonal to v;:

lpe, (R)| = [I(V4 " X)2Vy — (i1 "%)2 4|
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How do the errors look?

E; Z=\71®\71®\71—\71®\71®\71
» Take any direction X orthogonal to v;:

log, )l = 11(V4 " X)2Vs — (47 %)% |
= [|(01 ") |
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How do the errors look?

E; Z=\71®\71®\71—\71®\71®\71
» Take any direction X orthogonal to v;:
— — 2 A — 2/\
lpe, )| = (V4" X)?Vy — (i1 "X)2 4|
/\ — 2/\
= [I(¥1 "X)? 4 ||

= ((h — v1)"X)?
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How do the errors look?

E; Z=\71®\71®\71—\71®\71®\71
» Take any direction X orthogonal to v;:

lpe, () = (Vi X)2vy — (1" X)?1n])
= [|(7n "X)2 1|
= ((1y — v4)"X)?

S ”\71 — \71”2 S 62.
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How do the errors look?

span{va, 3, ...
Ei=vievieovi—heheh
» Take any direction X orthogonal to v;:

loe, (%) = (v %)20 — (in" %)%
= [ %)
= ((In — 1)TX)?
< || — v ||? < €2
» Effect of £ + E4 in directions orthogonal to v; is just
(14 0(1))e.
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Deflation analysis

Upshot: all errors due to “deflation” have only lower-order
effects on ability to find subsequent v;.
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Deflation analysis

Upshot: all errors due to “deflation” have only lower-order
effects on ability to find subsequent v;.

Analogous statement for matrix power iteration is not true.
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5. Recap and remarks
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» Orthogonally diagonalizable tensors have very nice
identifiability, computational, and robustness properties.
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Recap and remarks

» Orthogonally diagonalizable tensors have very nice
identifiability, computational, and robustness properties.

» Many analogues to matrix SVD, but also many important
differences arising from non-linearity.

» Greedy algorithm for finding the decomposition can be

rigorously analyzed and shown to be effective and efficient.

Many variants possible (e.g., initialization, deflation).

» Non-orthogonal (e.g., overcomplete) CP decomposition is
active area of research.

39



Questions?
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6. Tensor algebra
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Tensor product of vector spaces

’What is the tensor product V Q) W of vector spaces V and W?
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Tensor product of vector spaces

’What is the tensor product V Q) W of vector spaces V and W?

» Define objects E; ; forve Vandw e W.

» Declare equivalences
» Ej e ~ Enat+Enw
g E‘7aV_'71+V_|72 ~ E\'/',V_Ih +E\7,VT/2
> CEV,W ~ ECV,W ~ EV,cW for c € R.
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Tensor product of vector spaces

’What is the tensor product V Q) W of vector spaces V and W?

» Define objects E; ; forve Vandw e W.

» Declare equivalences
» Ej e ~ Enat+Enw
g E‘7aV_'71+V_|72 ~ E\'/',V_Ih +E\7,W2
> CEV,W ~ ECV,W ~ EV,CW for c € R.

» Pick any bases By for V, and By for W.
V@ W :=spanof {Ej; : V€ By,w € By}, modulo
equivalences (eliminating dependence on choice of bases).
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Tensor product of vector spaces

’What is the tensor product V Q) W of vector spaces V and W?

v

v

Define objects Ej 5 for ve Vand w € W.

Declare equivalences
» Ej e ~ Enat+Enw
> E, ~ E; o+ E; 5

V, Wy +Wp v, v, w2
> C EV,W ~ ECV,W ~ EV,CW for c € R.

Pick any bases By for V, and By, for W.
V@ W :=spanof {Ej; : V€ By,w € By}, modulo
equivalences (eliminating dependence on choice of bases).

Can check that V @ W is a vector space.
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Tensor product of vector spaces

’What is the tensor product V Q) W of vector spaces V and W?

v

v

Define objects Ej 5 for ve Vand w € W.

Declare equivalences

> Eivnw ~ Eoat Ev

> Eyww, ~ Eow + Eva,

> C EV,W ~ ECV,W ~ EV,CW for c € R.
Pick any bases By for V, and By, for W.
V@ W :=spanof {Ej; : V€ By,w € By}, modulo
equivalences (eliminating dependence on choice of bases).
Can check that V @ W is a vector space.

V ® W (tensor product of v € V and w € W) is the equivalence
class of E; ; in VR W.
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Tensor algebra perspective

From tensor algebra: Since {V; : t € [n]} is a basis for R”,
{\7,- RV @V ij ke [n]} is a basis for R" Q@ R" @ R"
(“&®” denotes the tensor product of vector spaces)
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Tensor algebra perspective

From tensor algebra: Since {V; : t € [n]} is a basis for R”,
Viov®vc ijke [n]} is a basis for R" Q@ R" @ R"
(“®” denotes the tensor product of vector spaces)

Every tensor T € R" Q@ R" ® R" has a unique representation in
this basis:
T:ZC,"/"k \7,‘®\7j® ‘7/(
i,k

N.B.: dim(R" @ R" @ R") = nd.
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Aside: general bases for R" Q) R" ) R"

Pick any bases ({a;}, {4}, {7i}) for R”

(not necessary orthonormal).
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Aside: general bases for R" Q) R" ) R"

Pick any bases ({a;}, {4}, {7i}) for R”
(not necessary orthonormal). = Basis for R” Q@ R" @ R":

{di@f@v : 1<ijk<n}.
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Aside: general bases for R" Q) R" ) R"

Pick any bases ({a;}, {4}, {7i}) for R”
(not necessary orthonormal). = Basis for R” Q@ R" @ R":
{di@f@v : 1<ijk<n}.

Every tensor T € R” @ R" @ R" has a unique representation in
this basis:

T = Z Cijk O ® [ ® k.
ij,k
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Aside: general bases for R" Q) R" ) R"

Pick any bases ({a;}, {4}, {7i}) for R”
(not necessary orthonormal). = Basis for R” Q@ R" @ R":

{di@f@v : 1<ijk<n}.

Every tensor T € R” @ R" @ R" has a unique representation in
this basis: B
T = Z Cijk O ® [ ® k.
i.fK
Atensor T suchthat ¢jjx #0=i=j= k is called diagonal.

n
T=Y ¢idi®bod

i=1
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Aside: general bases for R" Q) R" ) R"

Pick any bases ({a;}, {4}, {7i}) for R”
(not necessary orthonormal). = Basis for R” Q@ R" @ R":

{di@f@v : 1<ijk<n}.

Every tensor T € R” @ R" @ R" has a unique representation in
this basis: B
T = Z Cijk O ® [ ® k.
i.fK
Atensor T suchthat ¢jjx #0=i=j= k is called diagonal.

n
T = Z Ciii O ® B ® 7.

i=1

Claim: A tensor T can be diagonal w.r.t. at most one basis.
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Aside: canonical polyadic decomposition

Rank-K canonical polyadic decomposition (CPD) of T
(also called PARAFAC, CANDECOMP, or CP):

K
T = ZU,‘ U/@V;@W,‘.
i=1
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K
T = ZU,‘ L7,'®\7,’®W,‘.
i=1

Number of parameters: K- (3n+ 1) (compared to n* in general).
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K < n.
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Aside: canonical polyadic decomposition

Rank-K canonical polyadic decomposition (CPD) of T
(also called PARAFAC, CANDECOMP, or CP):

K
T = ZU,‘ Ui @ Vi @ W,.
i=1

Number of parameters: K- (3n+ 1) (compared to n® in general).

Fact: If T is diagonal w.r.t. bases then it has a rank-K CPD with
K < n.

Diagonal w.r.t. bases = “non-overcomplete” CPD.

N.B.: Overcomplete (k > n) CPD is also interesting and a
possibility as long as K(3n+ 1) < nd.
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7. Initialization
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Initialization of tensor power iteration

Let fmax := argmax; \;, and draw X(®) € "' u.a.r.
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» Most coefficients of X(©) are around 1//n;

largest is around /log(n)/n.

47



Initialization of tensor power iteration

Let fmax := argmax; \;, and draw X(®) € "' u.a.r.

» Most coefficients of X(©) are around 1//n;
largest is around /log(n)/n.
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Al v X
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t#tmax )\tmax | Vinax X(O) ’
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Initialization of tensor power iteration
Let fmax := argmax; \;, and draw X(®) € "' u.a.r.

» Most coefficients of X(©) are around 1//n;
largest is around /log(n)/n.

» Almost surely, a gap exists:

Al v X
max — ——— — < 1.
t#tmax )\fmax | Vinax X(O) ’

» With probability > 1/n'2, the gap is non-negligible:

M| v " X0
max ”f—TJ <0.9.
titmax AtrT'Ia)( | Vtmax X(O) ’

47



Initialization of tensor power iteration
Let fmax := argmax; \;, and draw X(®) € "' u.a.r.

» Most coefficients of X(©) are around 1//n;
largest is around /log(n)/n.

» Almost surely, a gap exists:

Al v X
max — ——— — < 1.
t#tmax )\fmax | Vinax X(O) ’

» With probability > 1/n'2, the gap is non-negligible:

M| v " X0
max ”f—TJ <0.9.
titmax )\tmax | Vtmax X(O) ’

Try O(n'-3) initializers; chances are at least one is good.

(Very conservative estimate only; can be much better than this.)
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