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Learning Hidden Structure

With unlabeled data, how do we discover hidden structure?
topics in documents?
clusters? hidden communities in social networks?
hidden interactions?

Learning is easy with cluster labels. Learning without cluster labels?

S. M. Kakade (MSR) Using Observe Correlations 1 / 16



Using Observed Correlations

Two step approach:

1 Under modeling assumptions, what correlations arise?
topic models, HMMs, LDA, mixture of Gaussians models, parsing (e.g. PCFGs),
Bayesian networks

2 Can we “invert”/reverse engineer the model from these correlations?
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This Tutorial

How to utilize observed correlations?

part 1: the correlational structure
When are the correlations sufficient for learning?

part 2: “invert” (CP decomposition)
generalizations of simple (linear algebra) approach
aren’t these problems hard/non-convex?

part 3: “invert... differently” (Tucker)
exploit different structural conditions
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Two Extremes

Single hidden state active
mixture of Gaussians, single topic per document

Independent Component Analysis
Blind source separation
audio signal has different speakers talking
independent factors

What about the middle ground?
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Mixture Models

(spherical) Mixture of Gaussian:

k means: µ1, . . . µk

sample cluster H = i with prob.
wi

observe x , with spherical noise,

x = µi + η, η ∼ N (0, σ2
i I)

(single) Topic Models

k topics: µ1, . . . µk

sample topic H = i with prob. wi

observe m (exchangeable) words

x1, x2, . . . xm sampled i.i.d. from µi

dataset: multiple points / m-word documents
how to learn the params? µ1, . . . µk , w1, . . .wk (and σi ’s)
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vector notation!

k clusters, d dimensions/words, d ≥ k
for MOGs:

the conditional expectations are:

E[x |cluster i] = µi

topic models:
binary word encoding: x1 = [0,1,0, . . .]>

the µi ’s are probability vectors
for each word, the conditional probabilities are:

Pr[x1|topic i] = E[x1|topic i] = µi
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ICA

k mixing directions: µ1, . . . µk

each hidden (scalar) factor, H1,H2, . . .Hk , is independently
distributed

observe mixture x , with Gaussian noise,

x =
∑

i

µiHi + η, η ∼ N (0, σ2)

in MOG’s, only one Hi = 1
how to learn the params? µ1, . . . µk
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The Method of Moments

(Pearson, 1894): find params consistent with observed moments
MOGs moments:

E[x ], E[xx>], E[x ⊗ x ⊗ x ], . . .

Topic model moments:

Pr[x1],Pr[x1, x2], Pr[x1, x2, x3], . . .

Identifiability: with exact moments, what order moment suffices?
how many words per document suffice?
efficient algorithms?
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(some) Related Work

Kruskal’s Theorem
Kruskal (1977), Bhaskara, Charikar, & Vijayaraghavan (2013), ...

Algebraic Work

ICA literature: Cardoso&Common, ’96, ...
for phylogeny trees: J. T. Chang (1996), E. Mossel & S. Roch (2006),

Tensor Decomposition Algorithms
Lathauwer, Moor, & Vandewalle (2000), Zhang & Golub (2001), Anandkumar et. al.
(2012), ...

Structural assumptions/Dictionary learning
Spielman, Wang & Right (2012), Arora, Ge, & Moitra (2012)
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With the first moment?

MOGs:

have:

E[x ] =
k∑

i=1

wiµi

Single Topics:

with 1 word per
document:

Pr[x1] =
k∑

i=1

wiµi

ICA:

define E[Hi ] := wi

E[x ] =
k∑

i=1

wiµi

Not identifiable: only d nums.
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With the second moment?

MOGs/ICA:

additive noise

E[x ⊗ x ]
= E[(µi + η)⊗ (µi + η)]

=
k∑

i=1

wi µi ⊗ µi + σ2I

have a full rank matrix

Single Topics:

by exchangeability:

Pr[x1, x2]

= E[ E[x1|topic]⊗ E[x2|topic] ]

=
k∑

i=1

wi µi ⊗ µi

have a low rank matrix!

Still not identifiable!
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With three words per document?

for topics: d × d matrix, a d × d × d tensor:

M2 := Pr[x1, x2] =
k∑

i=1

wi µi ⊗ µi

M3 := Pr[x1, x2, x3] =
k∑

i=1

wi µi ⊗ µi ⊗ µi
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Whitening

Whiten: project to k dimensions; make the µ̃i ’s orthogonal
The Inverse Problem

M̃2 = I

M̃3 =
k∑

i=1

w̃i µ̃i ⊗ µ̃i ⊗ µ̃i

(for a k × k × k tensor)
Is there a unique solution? parameter counting?

yes: k < d +generic params (Kruskal (1977))
what about k > d? (Lathauwer, Castaing, & Cardoso (2007))

How is this different form an SVD?
Can we solve this efficiently?
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Mixtures of spherical Gaussians

Theorem
The variance σ2 is is the smallest eigenvalue of the observed
covariance matrix E[x ⊗ x ]− E[x ]⊗ E[x ]. Furthermore, if

M2 := E[x ⊗ x ] − σ2I
M3 := E[x ⊗ x ⊗ x ]

− σ2
d∑

i=1

(
E[x ]⊗ ei ⊗ ei + ei ⊗ E[x ]⊗ ei + ei ⊗ ei ⊗ E[x ]

)
,

then
M2 =

∑
wi µi ⊗ µi

M3 =
∑

wi µi ⊗ µi ⊗ µi .

Differing σi case also solved.
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Independent Component Analysis

Theorem
Different higher order moments from MOGs. Use cumulants:

M4 := E[x ⊗ x ⊗ x ⊗ x ]
−
(
E[x ⊗ x ]⊗ E[x ⊗ x ] + more stuff...

)
,

then
M4 =

∑
wi µi ⊗ µi ⊗ µi ⊗ µi .
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Latent Dirichlet Allocation
prior for topic mixture π:

pα(π) =
1
Z

k∏
i=1

παi−1
i , α0 := α1 + α2 + · · ·+ αk

Theorem
Again, three words per doc suffice. Define

M2 := E[x1 ⊗ x2] − α0

α0 + 1
E[x1]⊗ E[x1]

M3 := E[x1 ⊗ x2 ⊗ x3] − α0

α0 + 2
E[x1 ⊗ x2 ⊗ E[x1]]− more stuff...

Then
M2 =

∑
w̃i µi ⊗ µi

M3 =
∑

w̃i µi ⊗ µi ⊗ µi .

Learning without inference!
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Richer Probabilistic Models

approaches richer probabilistic models:
setting 1: have a “diagonalization” problem (like the SVD)
topic models/LDA, HMMs, mixture of Gaussians models, parsing (e.g. PCFGs),

rely on correlational structure/prior of hidden variables

setting 2: have a “sparse” problem:
Bayesian networks, Dictionary learning, topic modeling

suppose only a few “topics” are on. no other prior assumptions.
rely on sparsity + incoherence
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Thanks!

The structure of the correlations gives rise to certain decomposition
problems.
Identifiability: This is the first step.
Stay Tuned:
How do we estimate efficiently?
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