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Recap: Basic Tensor Decomposition Method

Toy Example in MATLAB

Simulated Samples: Exchangeable Model

Whiten The Samples
◮ Second Order Moments
◮ Matrix Decomposition

Orthogonal Tensor Eigen Decomposition
◮ Third Order Moments
◮ Power Iteration



Simulated Samples: Exchangeable Model

Model Parameters

Hidden State:
h ∈ basis {e1, . . . , ek}
k = 2

Observed States:
xi ∈ basis {e1, . . . , ed}
d = 3

Conditional Independency:
x1 ⊥⊥ x2 ⊥⊥ x3|h

Transition Matrix: A

Exchangeability:
E[xi|h] = Ah, ∀i ∈ 1, 2, 3

h

x1 x2 x3
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Model Parameters

Hidden State:
h ∈ basis {e1, . . . , ek}
k = 2

Observed States:
xi ∈ basis {e1, . . . , ed}
d = 3

Conditional Independency:
x1 ⊥⊥ x2 ⊥⊥ x3|h

Transition Matrix: A

Exchangeability:
E[xi|h] = Ah, ∀i ∈ 1, 2, 3

Generate Samples Snippet

for t = 1 : n
% generate h for this sample
h category=(rand()>0.5) + 1;
h(t,h category)=1;
transition cum=cumsum(A true(:,h category));
% generate x1 for this sample | h
x category=find(transition cum> rand(),1);
x1(t,x category)=1;
% generate x2 for this sample | h
x category=find(transition cum >rand(),1);
x2(t,x category)=1;
% generate x3 for this sample | h
x category=find(transition cum > rand(),1);
x3(t,x category)=1;
end



Whiten The Samples

Second Order Moments

M2 =
1
n

∑
t x

t
1 ⊗ xt2

Whitening Matrix

W = UwL
−0.5
w ,

[Uw, Lw] =k-svd(M2)

Whiten Data

yt1 = W⊤xt1

Orthogonal Basis

V = W⊤A→ V ⊤V = I

Whitening Snippet

fprintf(’The second order moment M2:’);
M2 = x1′*x2/n
[Uw, Lw, Vw]= svd(M2);
fprintf(’M2 singular values:’); Lw
W = Uw(:,1:k)* sqrt(pinv(Lw(1:k,1:k)));
y1 = x1 * W; y2 = x2 * W; y3 = x3 * W;

a1 6⊥ a2 v1 ⊥ v2



Orthogonal Tensor Eigen Decomposition

Third Order Moments

T =
1

n

∑

t∈[n]

yt1 ⊗ yt2 ⊗ yt3 ≈
∑

i∈[k]

λivi ⊗ vi ⊗ vi, V ⊤V = I

Gradient Ascent

T (I, v1, v1) =
1

n

∑

t∈[n]

〈v1, y
t
2〉〈v1, y

t
3〉y

t
1 ≈

∑

i

λi〈vi, v1〉
2vi = λ1v1.

vi are eigenvectors of tensor T .



Orthogonal Tensor Eigen Decomposition

T ← T −
∑

j

λjv
⊗3

j , v ←
T (I, v, v)

‖T (I, v, v)‖

Power Iteration Snippet

.V = zeros(k,k); Lambda = zeros(k,1);

.for i = 1:k

. v old = rand(k,1); v old = normc(v old);

. for iter = 1 : Maxiter

. v new = (y1’* ((y2*v old).*(y3*v old)))/n;

. if i >1

. % deflation

. for j = 1: i-1

. v new=v new-(V(:,j)*(v old’*V(:,j))2)* Lambda(j);

. end

. end

. lambda = norm(v new);v new = normc(v new);

. if norm(v old - v new) < TOL

. fprintf(′Converged at iteration %d.′ , iter);

. V(:,i) = v new; Lambda(i,1) = lambda;

. break;

. end

. v old = v new;

. end

.end



Orthogonal Tensor Eigen Decomposition

T ← T −
∑

j

λjv
⊗3

j , v ←
T (I, v, v)

‖T (I, v, v)‖

Power Iteration Snippet

.V = zeros(k,k); Lambda = zeros(k,1);

.for i = 1:k

. v old = rand(k,1); v old = normc(v old);

. for iter = 1 : Maxiter

. v new = (y1’* ((y2*v old).*(y3*v old)))/n;

. if i >1

. % deflation

. for j = 1: i-1

. v new=v new-(V(:,j)*(v old’*V(:,j))2)* Lambda(j);

. end

. end

. lambda = norm(v new);v new = normc(v new);

. if norm(v old - v new) < TOL

. fprintf(′Converged at iteration %d.′ , iter);

. V(:,i) = v new; Lambda(i,1) = lambda;

. break;

. end

. v old = v new;

. end

.end

iter 0

iter 1
iter 2iter 3iter 4iter 5

Green: Groundtruth

Red: Estimation at each iteration



Resources for this talk

Agenda

Applying tensor methods for learning hidden communities in networks.

Issues in implementation and results on real datasets.

Papers

“Fast Detection of Overlapping Communities via Online Tensor
Methods” by F. Huang, U. N. Niranjan, M. U. Hakeem, A., Preprint,
Sept. 2013.

“Tensor Decompositions on REEF,” F. Huang, S. Matusevych, N.
Karampatziakis, P. Mineiro, A. , under preparation.

Code

GPU and CPU codes: github.com/FurongHuang/
Fast-Detection-of-Overlapping-Communities-via-Online-Tensor-

REEF code will be released soon.

github.com/FurongHuang/
Fast-Detection-of-Overlapping-Communities-via-Online-Tensor-Methods.git


Outline

1 Recap: A Toy Example via MATLAB

2 Community Detection through Tensor Methods
Whitening
Tensor Decomposition
Code Optimization
Experimental Results

3 Implementing In the Cloud

4 Conclusion



Social Networks & Recommender Systems

Social Networks

Network of social ties, e.g.
friendships, co-authorships

Hidden: communities of actors.

Recommender Systems

Observed: Ratings of users for
various products.

Goal: New recommendations.

Modeling: User/product groups.



Network Community Models

How are communities formed? How do communities interact?
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Mixed Membership Model (Airoldi et al)

k communities and n nodes. Graph G ∈ R
n×n (adjacency matrix).

Fractional memberships: πx ∈ R
k membership of node x.

∆k−1 := {πx ∈ R
k, πx(i) ∈ [0, 1],

∑

i

πx(i) = 1, ∀x ∈ [n]}.

Node memberships {πu} drawn from Dirichlet distribution.



Mixed Membership Model (Airoldi et al)

k communities and n nodes. Graph G ∈ R
n×n (adjacency matrix).

Fractional memberships: πx ∈ R
k membership of node x.

∆k−1 := {πx ∈ R
k, πx(i) ∈ [0, 1],

∑

i

πx(i) = 1, ∀x ∈ [n]}.

Node memberships {πu} drawn from Dirichlet distribution.

Edges conditionally independent given community memberships:
Gi,j ⊥⊥ Ga,b|πi, πj , πa, πb.

Edge probability averaged over community memberships

P[Gi,j = 1|πi, πj ] = E[Gi,j |πi, πj ] = π⊤
i Pπj .

P ∈ R
k×k: average edge connectivity for pure communities.

Airoldi, Blei, Fienberg, and Xing. Mixed membership stochastic blockmodels. J. of Machine

Learning Research, June 2008.



Networks under Community Models
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Networks under Community Models

Stochastic Block Model

 

 

α0 = 0

Mixed Membership Model

 

 

α0 = 10

Unifying Assumption

Edges conditionally independent given community memberships
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Subgraph Counts as Graph Moments

3-star counts sufficient for identifiability and learning of MMSB

3-Star Count Tensor

M̃3(a, b, c) =
1

|X|
# of common neighbors in X

=
1

|X|

∑

x∈X

G(x, a)G(x, b)G(x, c).

M̃3 =
1

|X|

∑

x∈X

[G⊤
x,A ⊗G⊤

x,B ⊗G⊤
x,C ]

x

a b c

A B C

X



Multi-view Representation

Conditional independence of the three views

πx: community membership vector of node x.

3-stars

xX

A B C

Graphical model

πx

G⊤
x,A G⊤

x,B
G⊤

x,C

U V W

Linear Multiview Model: E[G⊤
x,A|Π] = Π⊤

AP
⊤πx = Uπx.



Subgraph Counts as Graph Moments

Second and Third Order Moments

M̂2 :=
1

|X|

∑
x
ZCG

⊤
x,CGx,BZ

⊤
B − shift

M̂3 :=
1

|X|

∑
x

[
G⊤

x,A ⊗ ZBG
⊤
x,B ⊗ ZCG

⊤
x,C

]
− shift

Symmetrize Transition Matrices

PairsC,B := G⊤
X,C ⊗G⊤

X,B

ZB := Pairs (A,C) (Pairs (B,C))†

ZC := Pairs (A,B) (Pairs (C,B))†

x

a b c
A B C

X

Linear Multiview Model: E[G⊤
x,A|Π] = Uπx.

E[M̂2|ΠA,B,C ] =
∑

i

αi

α0
ui ⊗ ui, E[M̂3|ΠA,B,C ] =

∑

i

αi

α0
ui ⊗ ui ⊗ ui.



Overview of Tensor Method

Whiten data via SVD of M̂2 ∈ R
n×n.

Estimate the third moment M̂3 ∈ R
n×n×n and whiten it implicitly to

obtain T .

Run power method (gradient ascent) on T .

Apply post-processing to obtain communities.

Compute error scores and validate with ground truth (if available).
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Whitening Matrix Computation

Symmetrization: Finding Second Order Moments M2

M̂2 = ZC PairsC,B Z⊤
B − shift

=
(
PairsA,B Pairs†C,B

)
PairsC,B

(
Pairs†B,C

)⊤
Pairs⊤A,C − shift

Challenges: n× n objects, n ∼millions or billions
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Whitening Matrix Computation
Orthogonalization: Finding Whitening Matrix W

W TM2W = I is solved by k-svd(M2)

Challenges: n× n Matrix SVDs, n ∼millions or billions



Whitening Matrix Computation
Orthogonalization: Finding Whitening Matrix W

W TM2W = I is solved by k-svd(M2)

Challenges: n× n Matrix SVDs, n ∼millions or billions

Randomized low rank approx. (GM 13’, CW 13’)

Random matrix S ∈ R
n×k̃ for dense M2

Column selection matrix: random signs S ∈ {0, 1}n×k̃ for sparse M2.

Q= orth(M2S), Z = (M2Q)⊤M2Q

[Uz, Lz, Vz] =SVD(Z) % Z ∈ R
k×k

VM2
= M2QVzL

− 1

2
z , LM2

= L
1

2
z



Whitening Matrix Computation
Orthogonalization: Finding Whitening Matrix W

W TM2W = I is solved by k-svd(M2)

Challenges: n× n Matrix SVDs, n ∼millions or billions

Randomized low rank approx. (GM 13’, CW 13’)

Random matrix S ∈ R
n×k̃ for dense M2

Column selection matrix: random signs S ∈ {0, 1}n×k̃ for sparse M2.

Q= orth(M2S), Z = (M2Q)⊤M2Q

[Uz, Lz, Vz] =SVD(Z) % Z ∈ R
k×k

VM2
= M2QVzL

− 1

2
z , LM2

= L
1

2
z

Computational Complexity

For exact rank-k SVD of n× n matrix: O(n2k).

For randomized SVD with c cores and sparsity level s per row of M2:

Time Complexity O(nsk/c+ k3)
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Using Whitening to Obtain Orthogonal Tensor

Tensor M3 Tensor T

Multi-linear transform

M3 ∈ R
n×n×n and T ∈ R

k×k×k.

T = M3(W,W,W ) =
∑

iwi(W
⊤ai)

⊗3.

T =
∑
i∈[k]

wi · vi ⊗ vi ⊗ vi is orthogonal.

Dimensionality reduction when k ≪ n.



Batch Gradient Descent

Power Iteration with Deflation

T ← T −
∑

j

λjv
⊗3

j , vi ←
T (I, vi, vi)

‖T (I, vi, vi)‖
, j < i

Alternating Least Squares

min
σ,A,B,C

∥∥∥∥∥T −
k∑

i=1

λiA(:, i) ⊗B(:, i)⊗ C(:, i)

∥∥∥∥∥

2

F

such that A⊤A = I, B⊤B = I and C⊤C = I.

Challenges:

Requires forming the tensor/passing over data in each iteration



Stochastic (Implicit) Tensor Gradient Descent

Whitened third order moments:

T = M3(W,W,W ).

Objective:

argmin
v

{∥∥θ
∑

i∈[k]

v⊗
3

i −
∑

t∈X

T t
∥∥2
F

}
,

where vi are the unknown tensor eigenvectors, T t = gtA ⊗ gtB ⊗ gtC−shift
such that gtA = W⊤G{x,A}, . . .



Stochastic (Implicit) Tensor Gradient Descent

Whitened third order moments:

T = M3(W,W,W ).

Objective:

argmin
v

{∥∥θ
∑

i∈[k]

v⊗
3

i −
∑

t∈X

T t
∥∥2
F

}
,

where vi are the unknown tensor eigenvectors, T t = gtA ⊗ gtB ⊗ gtC−shift
such that gtA = W⊤G{x,A}, . . .

Expand the objective:

θ
∥∥ ∑

i∈[k]

v⊗
3

i

∥∥2
F
−

〈 ∑

i∈[k]

v⊗
3

i , T t
〉

Orthogonality cost vs Correlation Reward



Stochastic (Implicit) Tensor Gradient Descent

Updating Equation

vt+1
i ← vti − 3θβt

k∑

j=1

[〈
vtj , v

t
i

〉2
vtj

]
+ βt

〈
vti , g

t
A

〉〈
vti , g

t
B

〉
gtC + . . .

Orthogonality cost vs Correlation Reward

ytA

ytC

ytB

vti

vti

Never form the tensor explicitly; multilinear operation on implicit tensor.

Space: O(k2), Time: O(k3/c)× iterations with c cores.



Unwhitening

Post Processing for memberships

Λ: eigenvalues. Φ: eigenvectors.

G: adjacency matrix, γ: normalization.

W: Whitening Matrix.

Π̂Ac = diag(γ)1/3 diag(Λ)−1Φ⊤W⊤GA,Ac ,

where Ac := X ∪B ∪ C.

Threshold the values.

Space Complexity O(nk)

Time Complexity O(nsk/c) with c cores.



Computational Complexity (k ≪ n)

n = # of nodes

N = # of iterations

k = # of communities

m = # of sampled node pairs (variational)

Module Pre STGD Post Var

Space O(nk) O(k2) O(nk) O(nk)
Time O(nsk/c+ k3) O(Nk3/c) O(nsk/c) O(mkN)

Variational method: O(m× k) for each iteration

O(n× k) < O(m× k) < O(n2 × k)

Our approach: O(nsk/c+ k3)



Computational Complexity (k ≪ n)

n = # of nodes

N = # of iterations

k = # of communities

m = # of sampled node pairs (variational)

Module Pre STGD Post Var

Space O(nk) O(k2) O(nk) O(nk)
Time O(nsk/c+ k3) O(Nk3/c) O(nsk/c) O(mkN)

Variational method: O(m× k) for each iteration

O(n× k) < O(m× k) < O(n2 × k)

Our approach: O(nsk/c+ k3)

In practice STGD is extremely fast and is not the bottleneck
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GPU/CPU Implementation
GPU (SIMD)

GPU: Hundreds of cores; parallelism for matrix/vector operations

Speed-up: Order of magnitude gains

Big data challenges: GPU memory ≪ CPU memory ≪ Hard disk

Hard disk (expandable)

CPU memory (expandable)

GPU memory (not expandable) block

block

block

block

block

block

block

block

q q q

q q q

q q q

q q q

Storage hierarchy Partitioned matrix



GPU/CPU Implementation
GPU (SIMD)

GPU: Hundreds of cores; parallelism for matrix/vector operations

Speed-up: Order of magnitude gains

Big data challenges: GPU memory ≪ CPU memory ≪ Hard disk

Hard disk (expandable)

CPU memory (expandable)

GPU memory (not expandable) block

block

block

block

block

block

block

block

q q q

q q q

q q q

q q q

Storage hierarchy Partitioned matrix

CPU

CPU: Sparse Representation, Expandable Memory

Randomized Dimensionality Reduction



Scaling Of The Stochastic Iterations

vt+1

i ← vti − 3θβt

k∑

j=1

[〈
vtj , v

t
i

〉2
vtj

]
+ βt

〈
vti , g

t
A

〉〈
vti , g

t
B

〉
gtC + . . .

Parallelize across
eigenvectors.

STGD is iterative:
device code reuse
buffers for updates.

vti

ytA,y
t
B ,y

t
C

CPU

GPU

Standard Interface

vti



Scaling Of The Stochastic Iterations

vt+1

i ← vti − 3θβt

k∑

j=1

[〈
vtj , v

t
i

〉2
vtj

]
+ βt

〈
vti , g

t
A

〉〈
vti , g

t
B

〉
gtC + . . .

Parallelize across
eigenvectors.

STGD is iterative:
device code reuse
buffers for updates.

vti

ytA,y
t
B ,y

t
C

CPU

GPU

Standard Interface

vti

ytA,y
t
B ,y

t
C

CPU

GPU

Device Interface

vti



Scaling Of The Stochastic Iterations

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

10
4

 

 

Number of communities k

R
u
n
n
in
g
ti
m
e(
se
cs
)

MATLAB Tensor Toolbox(CPU)

CULA Standard Interface(GPU)

CULA Device Interface(GPU)

Eigen Sparse(CPU)



Validation Metrics

Ground-truth membership available

Ground-truth membership matrix Π vs Estimated membership Π̂
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Validation Metrics

Ground-truth membership available

Ground-truth membership matrix Π vs Estimated membership Π̂

Problem: How to relate Π and Π̂?

Solution: p-value test based soft-“pairing”

Π1

Π2

Π3

Π4

Π̂1

Π̂2

Π̂3

Π̂4

Π̂5

Π̂6



Evaluation Metrics

Recovery Ratio: % of ground-truth com recovered

Error Score: E := 1
nk

∑
{paired membership errors}

= 1
k

∑
(i,j)∈E{Pval}

{
1
n

∑
x∈|X|

|Π̂i(x)−Πj(x)|

}

Insights

l1 norm error between Π̂i and the corresponding paired Πj

false pairings penalization
◮ too many falsely discovered pairings, error > 1
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Summary of Results

Friend
Users

Facebook

n ∼ 20k

Business
User
Reviews

Yelp

n ∼ 40k

Author
Coauthor

DBLP(sub)

n ∼ 1 million(∼ 100k)

Error (E) and Recovery ratio (R)

Dataset k̂ Method Running Time E R
Facebook(k=360) 500 ours 468 0.0175 100%
Facebook(k=360) 500 variational 86,808 0.0308 100%
.
Yelp(k=159) 100 ours 287 0.046 86%
Yelp(k=159) 100 variational N.A.
.
DBLP sub(k=250) 500 ours 10,157 0.139 89%
DBLP sub(k=250) 500 variational 558,723 16.38 99%
DBLP(k=6000) 100 ours 5407 0.105 95%

Thanks to Prem Gopalan and David Mimno for providing variational code.



Experimental Results on Yelp

Lowest error business categories & largest weight businesses

Rank Category Business Stars Review Counts
1 Latin American Salvadoreno Restaurant 4.0 36
2 Gluten Free P.F. Chang’s China Bistro 3.5 55
3 Hobby Shops Make Meaning 4.5 14
4 Mass Media KJZZ 91.5FM 4.0 13
5 Yoga Sutra Midtown 4.5 31



Experimental Results on Yelp

Lowest error business categories & largest weight businesses

Rank Category Business Stars Review Counts
1 Latin American Salvadoreno Restaurant 4.0 36
2 Gluten Free P.F. Chang’s China Bistro 3.5 55
3 Hobby Shops Make Meaning 4.5 14
4 Mass Media KJZZ 91.5FM 4.0 13
5 Yoga Sutra Midtown 4.5 31

Bridgeness: Distance from vector [1/k̂, . . . , 1/k̂]⊤

Top-5 bridging nodes (businesses)

Business Categories
Four Peaks Brewing Restaurants, Bars, American, Nightlife, Food, Pubs, Tempe
Pizzeria Bianco Restaurants, Pizza, Phoenix
FEZ Restaurants, Bars, American, Nightlife, Mediterranean, Lounges, Phoenix
Matt’s Big Breakfast Restaurants, Phoenix, Breakfast& Brunch
Cornish Pasty Co Restaurants, Bars, Nightlife, Pubs, Tempe
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Review of linear algebra

Tensor Modes

Analogy to Matrix Rows and Matrix Columns.

For an order-d tensor A ∈ R
n1×n2...nd :

◮ mode-1 has dimension n1,
◮ mode-2 has dimension n2, and so on.

Tensor Unfolding

In a mode-k unfolding, the mode-k fibers are assembled to produce an
nk-by-N/nk matrix where N = n1 . . . nd.

n1

n1

n2n2n2n2

n3

T (:,:,1) T (:,:,2) T (:,:,3)

n2 × n3

T
...

Mode-1 Unfolding of A ∈ R
2×2×2 =

[
a111 a121 a112 a122
a211 a221 a212 a222.

]



Tensor Decomposition In The Cloud
Tensor decomposition is equivalent to

min
σ,A,B,C

∥∥∥∥∥T −
k∑

i=1

σiA(:, i) ⊗B(:, i) ⊗ C(:, i)

∥∥∥∥∥

2

F



Tensor Decomposition In The Cloud
Tensor decomposition is equivalent to

min
σ,A,B,C

∥∥∥∥∥T −
k∑

i=1

σiA(:, i) ⊗B(:, i) ⊗ C(:, i)

∥∥∥∥∥

2

F

Alternating Least Square is the solution:

A′ ← Taf(C,B)
(
C⊤C ⋆ B⊤B

)†

B′ ← Tbf(C,A
′)
(
C⊤C ⋆ A′⊤A′

)†

C ′ ← Tcf(B
′, A′)

(
B′⊤B′ ⋆ A′⊤A′

)†

where Ta is the mode-1 unfolding of T , Tb is the mode-2 unfolding of
T , and Tc is the mode-3 unfolding of T .

Low Rank Structure: Hidden Dimension < Observable Dimension



Challenges I

How to parallelize?

Observations: A′(i, :)← Ta(i, :)f(C,B)
(
C⊤C ⋆ B⊤B

)†

Ta ∈ R
k×k2, B and C ∈ R

k×k



Challenges I

How to parallelize?

Observations: A′(i, :)← Ta(i, :)f(C,B)
(
C⊤C ⋆ B⊤B

)†

Ta ∈ R
k×k2, B and C ∈ R

k×k

Update Rows Independently

k tensor slices ∈ R
k
2

B C ∈ R
k×k

worker 1

worker 2

worker i

worker k

→ A(1, :)

→ A(2, :)

→ A(i, :)

→ A(k, :)



Challenges II

Communication and System Architecture Overhead

Map-Reduce Framework
k tensor slices (∈ R

k
2

) in HDFS

A

B

C

Disk Disk
Disk Disk Disk

Disk

ReadReadRead

Write Write WriteContainerContainerContainer
AllocationAllocationAllocation

ALSALSALS

mode a mode b mode c

Overhead: Disk reading, Container Allocation, Intense Key/Value
Design



Challenges II

Solution: REEF

Big data framework called REEF (Retainable Evaluator Execution
Framework)

A

B

C

Disk Read

Container

Allocation

ALSALSALS

mode a mode b mode c

Advantage: Open source distributed system with one time container
allocation , keep the tensor in memory



Correctness
Evaluation Score

perplexity := exp

(
−

∑
i log-likelihood in doc i∑

i words in doc i

)

New York Times Corpus

Documents n = 300, 000

Vocabulary d = 100, 000

Topics k = 100

Stochastic Variational Inference Tensor Decomposition
Perplexity 4000 3400

SVI drawbacks:

Hyper parameters

Learning rate

Initial points



Running Time

Computational Complexity

Complexity Whitening Tensor Slices (1, . . . , k) ALS
Time O(k3) O(k2) per slice O(k3)
Space O(kd) O(k2) per slice O(k2)

Degree of Parallelism ∞ ∞ per slice k
Communication O(kd) O(k2) O(k2)

SVI 1 node Map Red 1 node REEF 4 node REEF
overall 2 hours 4 hours 31 mins 68 mins 36 mins
Whiten 16 mins 16 mins 16 mins
Matricize 15 mins 15 mins 4 mins

ALS 4 hours 37 mins 16 mins
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Conclusion

Guaranteed Learning of Latent Variable Models

Guaranteed to recover correct model

Efficient sample and computational complexities

Better performance compared to EM, Variational
Bayes etc.

Tensor approach: mixed membership
communities, topic models, latent trees...

 

 

In practice

Scalable and embarrassingly parallel: handle large datasets.

Efficient performance: perplexity or ground truth validation.

Theoretical guarantees and promising practical performance
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