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The basic decomposition problem

Notation: For a vector ~x = (x1, x2, . . . , xn) ∈ Rn,

~x ⊗ ~x ⊗ ~x

denotes the 3-way array (call it a “tensor”) in Rn×n×n whose
(i , j , k)th entry is xixjxk .

Problem: Given T ∈ Rn×n×n with the promise that

T =
n∑

t=1

λt ~vt ⊗ ~vt ⊗ ~vt

for some orthonormal basis {~vt} of Rn (w.r.t. standard inner product)
and positive scalars {λt > 0}, approximately find {(~vt , λt )}
(up to some desired precision).
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Basic questions

1. Is {(~vt , λt )} uniquely determined?

2. If so, is there an efficient algorithm for finding the
decomposition?

3. What if T is perturbed by some small amount?

Perturbed problem: Same as the original problem,
except instead of T , we are given T + E for some
“error tensor” E .

How “large” can E be if we want ε precision?
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Analogous matrix problem

Matrix problem: Given M ∈ Rn×n with the promise that

M =
n∑

t=1

λt ~vt ~vt
>

for some orthonormal basis {~vt} of Rn (w.r.t. standard inner product)
and positive scalars {λt > 0}, approximately find {(~vt , λt )}
(up to some desired precision).
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Analogous matrix problem

I We’re promised that M is symmetric and positive definite,
so requested decomposition is an eigendecomposition.
In this case, an eigendecomposition always exists, and
can be found efficiently.

It is unique if and only if the {λi} are distinct.

I What if M is perturbed by some small amount?

Perturbed matrix problem: Same as the original
problem, except instead of M, we are given M + E
for some “error matrix” E (assume to be symmetric).

Answer provided by matrix perturbation theory
(e.g., Davis-Kahan), which requires ‖E‖2 < mini 6=j |λi − λj |.
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Back to the original problem

Problem: Given T ∈ Rn×n×n with the promise that

T =
n∑

t=1

λt ~vt ⊗ ~vt ⊗ ~vt

for some orthonormal basis {~vt} of Rn (w.r.t. standard inner product)
and positive scalars {λt > 0}, approximately find {(~vt , λt )}
(up to some desired precision).

Such decompositions do not necessarily exist, even for
symmetric tensors.

Where the decompositions do exist, the Perturbed problem
asks if they are “robust”.
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Main ideas

Easy claim: Repeated application of a certain quadratic
operator based on T (a “power iteration”) recovers a single (~vt , λt )
up to any desired precision.

Self-reduction: Replace T with T − λt ~vt ⊗ ~vt ⊗ ~vt .

I Why?: T − λt ~vt ⊗ ~vt ⊗ ~vt =
∑

τ 6=t λτ ~vτ ⊗ ~vτ ⊗ ~vτ .

I Catch: We don’t recover (~vt , λt ) exactly, so we actually can
only replace T with

T − λt ~vt ⊗ ~vt ⊗ ~vt + Et

for some “error tensor” Et .

I Therefore, must anyway deal with perturbations.
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Rest of this talk

1. Identifiability of decomposition {(~vt , λt )} from T .

2. A decomposition algorithm based on tensor power
iteration.

3. Error analysis of decomposition algorithm.
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Identifiability of the decomposition

Orthonormal basis {~vt} of Rn, positive scalars {λt > 0}:

T =
n∑

t=1

λt ~vt ⊗ ~vt ⊗ ~vt

In what sense is {(~vt , λt )} uniquely determined?

Claim: {~vt} are the n isolated local maximizers of certain cubic
form fT : Bn → R, and fT (~vt ) = λt .
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Aside: multilinear form

There is a natural trilinear form associated with T :

(~x , ~y , ~z) 7→
∑
i,j,k

T i,j,k xiyjzk .

For matrices M, it looks like

(~x , ~y) 7→
∑
i,j

M i,j xiyj = ~x>M~y .
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Review: Rayleigh quotient

Recall Rayleigh quotient for matrix M :=
∑n

t=1 λt ~vt~vt
>

(assuming ~x ∈ Sn−1):

RM(~x) := ~x>M~x =
n∑

t=1

λt (~vt
>~x)2.

Every ~vt such that |λt | = max! is a maximizer of RM .

(These are also the only local maximizers.)
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The natural cubic form
Consider the function fT : Bn → R given by

~x 7→ fT (~x) =
∑
i,j,k

T i,j,k xixjxk .

For our promised T =
∑n

t=1 λt ~vt ⊗ ~vt ⊗ ~vt , fT becomes

fT (~x) =
n∑

t=1

λt
∑
i,j,k

(
~vt ⊗ ~vt ⊗ ~vt

)
i,j,kxixjxk

=
n∑

t=1

λt
∑
i,j,k

(~vt )i(~vt )j(~vt )kxixjxk

=
n∑

t=1

λt (~vt
>~x)3.

Observation: fT (~vt ) = λt .
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Variational characterization
Claim: Isolated local maximizers of fT on Bn are {~vt}.
Objective function (with constraint):

~x 7→ inf
λ≥0

n∑
t=1

λt (~vt
>~x)3 − 1.5λ(‖~x‖22 − 1).

First-order condition for local maxima:

n∑
t=1

λt (~vt
>~x)2 ~vt = λ~x .

Second-order condition for isolated local maxima:

~w>
(

2
n∑

t=1

λt (~vt
>~x)~vt~vt

> − λI
)
~w < 0, ~w ⊥ ~x .
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Intuition behind variational characterization

May as well assume ~vt is t th coordinate basis vector, so

max
~x∈Rn

fT (~x) =
n∑

t=1

λt x3
t s.t.

n∑
t=1

x2
t ≤ 1.

Intuition: Suppose supp(~x) = {1,2}, and x1, x2 > 0.

fT (~x) = λ1x3
1 + λ2x3

2 < λ1x2
1 + λ2x2

2 ≤ max{λ1, λ2}.

Better to have |supp(~x)| = 1, i.e., picking ~x to be a coordinate
basis vector.
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Aside: canonical polyadic decomposition

Rank-K canonical polyadic decomposition (CPD) of T
(also called PARAFAC, CANDECOMP, or CP):

T =
K∑

i=1

σi ~ui ⊗ ~vi ⊗ ~wi .

[Harshman/Jennrich, 1970; Kruskal, 1977; Leurgans et al., 1993].

Number of parameters: K · (3n + 1) (compared to n3 in general).

Fact: Our promised T has a rank-n CPD.

N.B.: Overcomplete (K > n) CPD is also interesting and a
possibility as long as K (3n + 1)� n3.
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The quadratic operator

Easy claim: Repeated application of a certain quadratic
operator (based on T ) recovers a single (λt , ~vt ) up to any
desired precision.

For any T ∈ Rn×n×n and ~x = (x1, x2, . . . , xn) ∈ Rn, define the
quadratic operator

φT (~x) :=
∑
i,j,k

Ti,j,k xjxk ~ei ∈ Rn

where ~ei ∈ Rn is the i th coordinate basis vector.

If T =
n∑

t=1

λt ~vt ⊗ ~vt ⊗ ~vt , then φT (~x) =
n∑

t=1

λt
(
~vt
>~x
)2~vt .
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An algorithm?

Recall: First-order condition for local maxima of
fT (~x) =

∑n
t=1 λt (~vt

>~x)3 for ~x ∈ Bn:

φT (~x) =
n∑

t=1

λt (~vt
>~x)2 ~vt = λ~x

i.e., “eigenvector”-like condition.

Algorithm: Find ~x ∈ Bn fixed under ~x 7→ φT (~x)/‖φT (~x)‖.

(Ignoring numerical issues, can just repeatedly apply φT and defer
normalization until later.)

N.B.: Gradient ascent also works [Kolda & Mayo, ’11].
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Tensor power iteration

[De Lathauwer et al, 2000]
Start with some ~x (0), and for j = 1,2, . . . :

~x (j) := φT
(
~x (j−1)) =

n∑
t=1

λt
(
~vt
>~x (j−1))2 ~vt .

Claim: For almost all initial ~x (0), the sequence
(
~x (j)/‖~x (j)‖

)∞
j=1

converges quadratically fast to some ~vt .
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Review: matrix power iteration

Recall matrix power iteration for matrix M :=
∑n

t=1 λt ~vt~vt
>:

Start with some ~x (0), and for j = 1,2, . . . :

~x (i) := M~x (j−1) =
n∑

t=1

λt
(
~vt
>~x (j−1)) ~vt .

i.e., component in ~vt direction is scaled by λt .

If λ1 > λ2 ≥ · · · , then(
~v1
>~x (j))2∑n

t=1
(
~vt
>~x (j)

)2 ≥ 1− k
(
λ2

λ1

)2j

.

i.e., converges linearly to ~v1 (assuming gap λ2/λ1 < 1).
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Tensor power iteration convergence analysis

Let ct := ~vt
>~x (0) (initial component in ~vt direction); assume WLOG

λ1|c1| > λ2|c2| ≥ λ3|c3| ≥ · · · .

Then

~x (1) =
n∑

t=1

λt
(
~vt
>~x (0))2~vt =

n∑
t=1

λtc2
t ~vt

i.e., component in ~vt direction is squared then scaled by λt .

Easy to show(
~v1
>~x (j))2∑n

t=1
(
~vt
>~x (j)

)2 ≥ 1− k
(

λ1

maxt 6=1 λt

)2∣∣∣∣λ2c2

λ1c1

∣∣∣∣2j+1

.
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Example
n = 1024, λt ∼u.a.r. [0,1].
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Example
n = 1024, λt ∼u.a.r. [0,1].
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Example
n = 1024, λt ∼u.a.r. [0,1].
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Example
n = 1024, λt ∼u.a.r. [0,1].
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Example
n = 1024, λt ∼u.a.r. [0,1].
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Example
n = 1024, λt ∼u.a.r. [0,1].
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Matrix vs. tensor power iteration

Matrix power iteration:
1. Requires gap between largest and second-largest λt .

(Property of the matrix only.)

2. Converges to top ~vt .

3. Linear convergence. (Need O(log(1/ε)) iterations.)

Tensor power iteration:
1. Requires gap between largest and second-largest λt |ct |.

(Property of the tensor and initialization ~x (0).)

2. Converges to ~vt for which λt |ct | = max! (could be any of them).

3. Quadratic convergence. (Need O(log log(1/ε)) iterations.)
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Initialization of tensor power iteration

Convergence of tensor power iteration requires gap between
largest and second-largest λt |~vt

>~x (0)|.

Example of bad initialization: Suppose T =
∑

t ~vt ⊗ ~vt ⊗ ~vt ,
and ~x (0) = 1√

2
(~v1 + ~v2).

φT (~x (0)) = (~v1
>~x (0))2~v1 + (~v2

>~x (0))2~v2

=
1
2

(~v1 + ~v2) =
1√
2
~x (0).

Fortunately, bad initialization points are atypical.
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Full decomposition algorithm

Input: T ∈ Rn×n×n.
Initialize: T̃ := T .
For i = 1,2, . . . ,n:

1. Pick ~x (0) ∈ Sn−1 unif. at random.
2. Run tensor power iteration with T̃ starting from ~x (0) for N

iterations.
3. Set v̂i := ~x (N)/‖~x (N)‖ and λ̂i := fT̃ (v̂i).

4. Replace T̃ := T̃ − λ̂i v̂i ⊗ v̂i ⊗ v̂i .
Output: {(v̂i , λ̂i) : i ∈ [n]}.

Actually: repeat Steps 1–3 several times, and take results of
trial yielding largest λ̂i .
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Aside: direct minimization

Can also consider directly minimizing∥∥∥∥T −
n∑

t=1

λ̂t v̂t ⊗ v̂t ⊗ v̂t

∥∥∥∥2

F

via local optimization (e.g., coord. descent, alternating least squares).

Decomposition algorithm via tensor power iteration can be
viewed as orthgonal greedy algorithm for minimizing above
objective [Zhang & Golub, ’01].
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Aside: implementation for bag-of-words models

Let ~f (i) be empirical word frequency vector for document i :

(~f (i))j =
# times word j appears in document i

length of document i

Matrix of word-pair frequencies (from m documents)

P̂airs ≈ 1
m

m∑
i=1

~f (i) ⊗~f (i) −→
K∑

t=1

~µt ⊗ ~µt .

Tensor of word-triple frequencies (from m documents)

T̂riples ≈ 1
m

m∑
i=1

~f (i) ⊗~f (i) ⊗~f (i) −→
K∑

t=1

~µt ⊗ ~µt ⊗ ~µt .

34



Aside: implementation for bag-of-words models

Use inner product system given by 〈~x , ~y〉 := ~x>P̂airs
†
~y .

Why?: If P̂airs =
∑K

t=1 ~µt ⊗ ~µt , then 〈~µi , ~µj〉 = 1{i=j}.
⇒ {~µi} are orthonormal under this inner product system.

Power iteration step:

φT̂riples(~x) :=
1
m

m∑
i=1

〈~x ,~f (i)〉2 ~f (i) =
1
m

m∑
i=1

(
~x>P̂airs

†~f (i)
)2 ~f (i).

1. First compute ~y := P̂airs
†
~x (use low-rank factors of P̂airs).

2. Then compute (~y>~f (i))2 ~f (i) for all documents i , and add
them up (all sparse operations).

Final running time ∝ # topics× (model size + input size).
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Effect of errors in tensor power iterations

Suppose we are given T̂ := T + E , with

T =
n∑

t=1

λt ~vt ⊗ ~vt ⊗ ~vt , ε := sup
~x∈Sn−1

‖φE (~x)‖.

What can we say about the resulting v̂i and λ̂i?
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Perturbation analysis

Theorem: If ε ≤ O(mint λt
n ), then with high probability, a

modified variant of the full decomposition algorithm returns
{(v̂i , λ̂i) : i ∈ [n]} with

‖v̂i − ~vi‖ ≤ O(ε/λi), |λ̂i − λi | ≤ O(ε), i ∈ [n].

Essentially third-order analogue of Wedin’s theorem for SVD of
matrices, but specific to fixed-point iteration algorithm.

Similar analysis holds for variational characterization.
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Effect of errors in tensor power iterations

Quadratic operator φT̂ with T̂ :

φT̂ (~x) =
n∑

t=1

λt
(
~vt
>~x
)2~vt + φE (~x).

Claim: If ε ≤ O(mint λt
n ) and N ≥ Ω(log(n) + log log maxt λt

ε ), then
N steps of tensor power iteration on T + E (with good initialization)
gives

‖v̂i − ~vi‖ ≤ O(ε/λi), |λ̂i − λi | ≤ O(ε).
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Deflation

(For simplicity, assume λ1 = · · · = λn = 1.)

Using tensor power iteration on T̂ := T + E :
Approximate (say) ~v1 with v̂1 up to error ‖~v1 − v̂1‖ ≤ ε.

Deflation danger: To find next ~vt , use

T̂ − v̂1 ⊗ v̂1 ⊗ v̂1 =
n∑

t=2

~vt ⊗ ~vt ⊗ ~vt

+ E +
(
~v1 ⊗ ~v1 ⊗ ~v1 − v̂1 ⊗ v̂1 ⊗ v̂1

)
.

Now error seems to be of size 2ε . . . exponential explosion?
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How do the errors look?

E1 := ~v1 ⊗ ~v1 ⊗ ~v1 − v̂1 ⊗ v̂1 ⊗ v̂1

I Take any direction ~x orthogonal to ~v1:

‖φE1(~x)‖ = ‖(~v1
>~x)2~v1 − (v̂1

>~x)2v̂1‖
= ‖(v̂1

>~x)2v̂1‖
= ((v̂1 − ~v1)>~x)2

≤ ‖v̂1 − ~v1‖2 ≤ ε2.

I Effect of E + E1 in directions orthogonal to ~v1 is just
(1 + o(1))ε.
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Deflation analysis

Upshot: all errors due to “deflation” have only lower-order
effects on ability to find subsequent ~vt .

Analogous statement for matrix power iteration is not true.
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Recap and remarks

I Orthogonally diagonalizable tensors have very nice
identifiability, computational, and robustness properties.

I Many analogues to matrix SVD, but also many important
differences arising from non-linearity.

I Greedy algorithm for finding the decomposition can be
rigorously analyzed and shown to be effective and efficient.

I Many other approaches to moment-based estimation
(e.g., subspace ID / OOMs, local optimization).
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Other stuff I didn’t talk about

1. Overcomplete tensor decomposition: K > n components in Rn.

T =
K∑

t=1

λt ~vt ⊗ ~vt ⊗ ~vt .

I ICA/blind source separation [Cardoso, 1991; Goyal et al, 2014]
I Mixture models [Bhaskara et al, 2014; Anderson et al, 2014]
I Dictionary learning [Barak et al, 2014]
I . . .

2. General Tucker decompositions (CPD is a special case).
I Exploit other structure (e.g., sparsity)
I Talk to Anima about this!
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Questions?
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Tensor product of vector spaces

What is the tensor product V
⊗

W of vector spaces V and W?

I Define objects E~v ,~w for ~v ∈ V and ~w ∈W .

I Declare equivalences
I E~v1+~v2,~w ∼ E~v1,~w + E~v2,~w
I E~v ,~w1+~w2

∼ E~v ,~w1
+ E~v ,~w2

I c E~v ,~w ∼ Ec~v ,~w ∼ E~v ,c~w for c ∈ R.

I Pick any bases BV for V , and BW for W .
V
⊗

W := span of {E~v ,~w : ~v ∈ BV , ~w ∈ BW}, modulo
equivalences (eliminating dependence on choice of bases).

I Can check that V
⊗

W is a vector space.

I ~v ⊗ ~w (tensor product of ~v ∈ V and ~w ∈W ) is the equivalence
class of E~v ,~w in V

⊗
W .

48



Tensor algebra perspective

From tensor algebra: Since
{
~vt : t ∈ [n]

}
is a basis for Rn,{

~vi ⊗ ~vj ⊗ ~vk : i , j , k ∈ [n]
}

is a basis for Rn⊗Rn⊗Rn

(“
⊗

” denotes the tensor product of vector spaces)

Every tensor T ∈ Rn⊗Rn⊗Rn has a unique representation in
this basis:

T =
∑
i,j,k

ci,j,k ~vi ⊗ ~vj ⊗ ~vk

N.B.: dim(Rn⊗Rn⊗Rn) = n3.
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Aside: general bases for Rn⊗Rn⊗Rn

Pick any bases
(
{~αi}, {~βi}, {~γi}

)
for Rn

(not necessary orthonormal). ⇒ Basis for Rn⊗Rn⊗Rn:{
~αi ⊗ ~βj ⊗ ~γk : 1 ≤ i , j , k ≤ n

}
.

Every tensor T ∈ Rn⊗Rn⊗Rn has a unique representation in
this basis:

T =
∑
i,j,k

ci,j,k ~αi ⊗ ~βj ⊗ ~γk .

A tensor T such that ci,j,k 6= 0⇒ i = j = k is called diagonal:

T =
n∑

i=1

ci,i,i ~αi ⊗ ~βi ⊗ ~γi .

Claim: A tensor T can be diagonal w.r.t. at most one basis.
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Aside: canonical polyadic decomposition

Rank-K canonical polyadic decomposition (CPD) of T
(also called PARAFAC, CANDECOMP, or CP):

T =
K∑

i=1

σi ~ui ⊗ ~vi ⊗ ~wi .

Number of parameters: K · (3n + 1) (compared to n3 in general).

Fact: If T is diagonal w.r.t. bases then it has a rank-K CPD with
K ≤ n.

Diagonal w.r.t. bases ≡ “non-overcomplete” CPD.

N.B.: Overcomplete (K > n) CPD is also interesting and a
possibility as long as K (3n + 1)� n3.
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Initialization of tensor power iteration
Let tmax := arg maxt λt , and draw ~x (0) ∈ Sn−1 unif. at random.

I Most coefficients of ~x (0) are around 1/
√

n;
largest is around

√
log(n)/n.

I Almost surely, a gap exists:

max
t 6=tmax

λt |~vt
>~x (0)|

λtmax |~vtmax
>~x (0)|

< 1.

I With probability ≥ 1/n1.2, the gap is non-negligible:

max
t 6=tmax

λt |~vt
>~x (0)|

λtmax |~vtmax
>~x (0)|

< 0.9.

Try O(n1.3) initializers; chances are at least one is good.
(Very conservative estimate only; can be much better than this.)
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