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Learning Hidden Structure

With unlabeled data, how do you discover:
topics in documents?
clusters of points?
hidden communities in social networks?
dynamics of a system?

Learning is easy with cluster labels. Learning without cluster labels?
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Using Observed Correlations

There is a growing body of that shows this is possible
(both statistically and computationally).

the idea:

1 What correlations should arise under your model?
topic models, HMMs, LDA, mixture of Gaussians, parsing (e.g. PCFGs), Bayesian
networks

2 Can we “invert”/reverse engineer the model from these correlations?
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This Tutorial

How to utilize observed correlations?

part 1: the method of moments
When are the correlations sufficient for learning?

part 2: “invert” (CP decomposition)
generalizations of simple (linear algebra) approach
aren’t these problems hard/non-convex?

part 3: implementation issues and experiments
alternating least squares (ALS)
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Two Simple Cases:

discrete case: single topic models
continuous case: mixture of gaussians

what about:
HMMs, ICA, LDA, Kalman Filters, PCFGs, Brown clustering, ...
sparse coding?
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Mixture Models

(spherical) Mixture of Gaussian:

k means: µ1, . . . µk

sample cluster H = i with prob.
wi

observe x , with spherical noise,

x = µi + η, η ∼ N (0, σ2
i I)

(single) Topic Models

k topics: µ1, . . . µk

sample topic H = i with prob. wi

observe m (exchangeable) words

x1, x2, . . . xm sampled i.i.d. from µi

dataset: multiple points / m-word documents
how to learn the params? µ1, . . . µk , w1, . . .wk (and σi ’s)
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vector notation!

k clusters, d dimensions/words, d ≥ k
for MOGs:

the conditional expectations are:

E[x |cluster i] = µi

topic models:
binary word encoding: x1 = [0,1,0, . . .]>

the µi ’s are probability vectors
for each word, the conditional probabilities are:

Pr[x1|topic i] = E[x1|topic i] = µi
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The Method of Moments

(Pearson, 1894): find params consistent with observed moments
MOGs moments:

E[x ], E[xx>], E[x ⊗ x ⊗ x ], . . .

Topic model moments:

Pr[x1],Pr[x1, x2], Pr[x1, x2, x3], . . .

Identifiability: with exact moments, what order moment suffices?
how many words per document suffice?
efficient algorithms?
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(some) Related Work

Kruskal’s Theorem:
Kruskal (1977), Bhaskara, Charikar, & Vijayaraghavan (2013), ...

Algebraic Work

ICA literature
subspace ID: linear dynamic systems
for phylogeny trees:
[J. T. Chang (1996), E. Mossel & S. Roch (2006)]
MOGs/ Pearson’s polynomial,...
[Belkin & Sinha (2010), Kalai, Moitra, & Valiant (2010), Moitra & Valiant (2010)]

See tutorial website for more comprehensive references!
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With the first moment?

MOGs:

have:

E[x ] =
k∑

i=1

wiµi

Single Topics:

with 1 word per document:

Pr[x1] =
k∑

i=1

wiµi

Not identifiable: only d nums.
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With the second moment?

MOGs:

additive noise

E[x ⊗ x ]
= E[(µi + η)⊗ (µi + η)]

=
k∑

i=1

wi µi ⊗ µi + σ2I

have a full rank matrix

Single Topics:

by exchangeability:

Pr[x1, x2]

= E[ E[x1|topic]⊗ E[x2|topic] ]

=
k∑

i=1

wi µi ⊗ µi

have a low rank matrix!

Still not identifiable!
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With three words per document?

for topics: d × d matrix, a d × d × d tensor:

M2 := Pr[x1, x2] =
k∑

i=1

wi µi ⊗ µi

M3 := Pr[x1, x2, x3] =
k∑

i=1

wi µi ⊗ µi ⊗ µi
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Whitening

Whiten: project to k dimensions; make the µ̃i ’s orthogonal
The Inverse Problem

M̃2 = I

M̃3 =
k∑

i=1

w̃i µ̃i ⊗ µ̃i ⊗ µ̃i

(for a k × k × k tensor)
Is there a unique solution? parameter counting?

yes: k < d +generic params (Kruskal (1977))
what about k > d? (Lathauwer, Castaing, & Cardoso (2007))

How is this different form an SVD?
Can we solve this efficiently?
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Mixtures of spherical Gaussians

Theorem
The variance σ2 is is the smallest eigenvalue of the observed
covariance matrix E[x ⊗ x ]− E[x ]⊗ E[x ]. Furthermore, if

M2 := E[x ⊗ x ] − σ2I
M3 := E[x ⊗ x ⊗ x ]

− σ2
d∑

i=1

(
E[x ]⊗ ei ⊗ ei + ei ⊗ E[x ]⊗ ei + ei ⊗ ei ⊗ E[x ]

)
,

then
M2 =

∑
wi µi ⊗ µi

M3 =
∑

wi µi ⊗ µi ⊗ µi .

Differing σi case also solved.
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Latent Dirichlet Allocation
prior for topic mixture π:

pα(π) =
1
Z

k∏
i=1

παi−1
i , α0 := α1 + α2 + · · ·+ αk

Theorem
Again, three words per doc suffice. Define

M2 := E[x1 ⊗ x2] − α0

α0 + 1
E[x1]⊗ E[x1]

M3 := E[x1 ⊗ x2 ⊗ x3] − α0

α0 + 2
E[x1 ⊗ x2 ⊗ E[x1]]− more stuff...

Then
M2 =

∑
w̃i µi ⊗ µi

M3 =
∑

w̃i µi ⊗ µi ⊗ µi .

Learning without inference!
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What about moment structure in other models?

general cases: MOGs, Pearson’s polynomial,...
[Belkin & Sinha (2010), Kalai, Moitra, & Valiant (2010), Moitra & Valiant (2010)]

linear dynamical systems:
Kalman filters/subspace ID literature
HMMs/operator models
[Hsu, Kakade, & Zhang (2009), Boots, S. Siddiqi & G. Gordon (2010)]

graphical models
learning a tree structure
[Wishart (’28), Perl and Tarsi (’86) ]
parameters
[Chaganty & Liang ’14]

also: ICA, sparse coding, PCFGs,mixture of linear regressors

See tutorial website for more comprehensive references!
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Thanks!

The structure of the correlations gives rise to certain decomposition
problems.
Identifiability: This is the first step.
Stay Tuned: How do we estimate efficiently?
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