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Statistical model for machine learning
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Basic goal of machine learning
Goal: Predict outcome y from set of possible outcomes Y, on the
basis of observation x from feature space X .

I Examples:
1. x = email message, y = spam or ham
2. x = image of handwritten digit, y = digit
3. x = medical test results, y = disease status

Learning algorithm:

I Receives training data

(x1, y1), . . . , (xn, yn) ∈ X × Y

and returns a prediction function

f̂ : X → Y.

I On (new) test example (x, y), predict f̂(x).
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Assessing the quality of predictions

Loss function: ` : Y × Y → R+

I Prediction is ŷ, true outcome is y.
I Loss `(ŷ, y) measures how bad ŷ is as a prediction of y.

Examples:

1. Zero-one loss:

`(ŷ, y) = 1{ŷ 6= y} =

0 if ŷ = y,

1 if ŷ 6= y.

2. Squared loss (for Y ⊆ R):

`(ŷ, y) = (ŷ − y)2.
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Why is this possible?

I Only input provided to learning algorithm is training data

(x1, y1), . . . , (xn, yn).

I To be useful, training data must be related to test example

(x, y).

How can we formalize this?
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Basic statistical model for data

IID model of data

Regard training data and test example as independent and
identically distributed (X × Y)-valued random variables:

(X1, Y1), . . . , (Xn, Yn), (X,Y ) ∼iid P.

Can use tools from probability to study behavior of learning
algorithms under this model.
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Risk
Loss `(f(X), Y ) is random, so study average-case performance.

Risk of a prediction function f , defined by

R(f) = E[`(f(X), Y )],

where expectation is taken with respect to test example (X,Y ).

Examples:

1. Mean squared error: ` = squared loss,

R(f) = E[(f(X)− Y )2].

2. Error rate: ` = zero-one loss,

R(f) = P(f(X) 6= Y ).
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Comparison to classical statistics

How (classical) learning theory differs from classical statistics:

I Typically, data distribution P is allowed to be arbitrary.
I E.g., not from a parametric family {Pθ : θ ∈ Θ}.

I Focus on prediction rather than general estimation of P .

Now: Much overlap between machine learning and statistics.
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Inductive bias
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Is predictability enough?

Requirements for learning:

I Relationship between training data and test example
I Formalized by iid model for data.

I Relationship between Y and X.
I Example: X and Y are non-trivially correlated.

Is this enough?
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No free lunch

For any n ≤ |X |2 and any learning algorithm, there is a distribution,
from which the n training data and test example are drawn iid, s.t.:

1. There is a function f∗ : X → Y with

P(f∗(X) 6= Y ) = 0.

2. The learning algorithm returns a function f̂ : X → Y with

P(f̂(X) 6= Y ) ≥ 1
4 .
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How to pay for lunch

Must make some assumption about learning problem in order for
learning algorithm to work well.

I Called inductive bias of the learning algorithm.

Common approach:

I Assume there is a good prediction function in a restricted
function class F ⊂ YX .

I Goal: find f̂ : X → Y with small excess risk

R(f̂)−min
f∈F
R(f)

either in expectation or with high probability over random draw
of training data.
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Examples
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Example #1: Threshold functions
X = R, Y = {0, 1}.

I Threshold functions

F = {fθ : θ ∈ R}

where fθ is defined by

fθ(x) = 1{x > θ} =

0 if x ≤ θ,
1 if x > θ.

I Learning algorithm:
1. Sort training examples by xi-value.
2. Consider candidate threshold values that are (i) equal to

xi-values, (ii) equal to values midway between consecutive but
non-equal xi-values, and (iii) a value smaller than all xi-values.

3. Among candidate thresholds, pick θ̂ such that fθ̂ incorrectly
classifies the smallest number of examples in training data.
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Example #2: Linear functions

X = Rd, Y = R, ` = squared loss.

I Linear functions
F = {fw : w ∈ Rd}

where fw is defined by

fw(x) = wTx.

I Learning algorithm (“Ordinary Least Squares”):
I Return a solution ŵ to system of linear equations given by 1

n

n∑
i=1

xix
T
i

w = 1
n

n∑
i=1

yixi.
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Example #3: Linear classifiers
X = Rd, Y = {−1,+1}.

I Linear classifiers
F = {fw : w ∈ Rd}

where fw is defined by

fw(x) = sign(wTx) =

−1 if wTx ≤ 0,
+1 if wTx > 0.

I Learning algorithm (“Support Vector Machine”):
I Return solution ŵ to following optimization problem:

min
w∈Rd

λ

2 ‖w‖
2
2 + 1

n

n∑
i=1

[1− yiwTxi]+.
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Over-fitting and generalization
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Over-fitting

Over-fitting:

Phenomenon where learning algorithm returns f̂ that “fits” training
data well, but does not give accurate predictions on test examples.

I Empirical risk of f (on training data (X1, Y1), . . . , (Xn, Yn)):

Rn(f) = 1
n

n∑
i=1

`(f(Xi), Yi).

I Over-fitting: Rn(f̂) small, but R(f̂) large.
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Generalization

How to avoid over-fitting

“Theorem”: R(f̂)−Rn(f̂) is likely to be small, if learning algorithm
chooses f̂ from F that is “not too rich” relative to n.

I ⇒ Observed performance on training data (i.e., empirical risk)
generalizes to expected performance on test example (i.e., risk).

I Justifies learning algorithms based on minimizing empirical risk.
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Other issues
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Risk decomposition

R(f̂) = inf
g : X→Y

R(g) (inherent unpredictability)

+ inf
f∈F
R(f)− inf

g : X→Y
R(g) (approximation gap)

+ inf
f∈F
Rn(f)− inf

f∈F
R(f) (estimation gap)

+Rn(f̂)− inf
f∈F
Rn(f) (optimization gap)

+R(f̂)−Rn(f̂). (more estimation gap)

I Approximation:
I Which function classes F are “rich enough” for a broad class of

learning problems?
I E.g., neural networks, Reproducing Kernel Hilbert Spaces.

I Optimization:
I Often finding minimizer of Rn is computationally hard.
I What can we do instead?
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Alternative model: online learning
Alternative to iid model for data:

I Examples arrive in a stream, one at at time.
I At time t:

I Nature reveals xt.
I Learner makes prediction ŷt.
I Nature reveals yt.
I Learner incurs loss `(ŷt, yt).

Relationship between past and future:

I No statistical assumption on data.
I Just assume there exists f∗ ∈ F with small (empirical) risk

1
n

n∑
t=1

`(f∗(xt), yt).
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