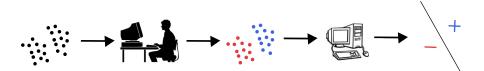
Active learning: The classics

Christopher Tosh

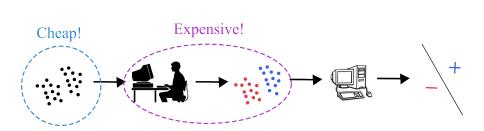
Columbia University

TRIPODS Bootcamp

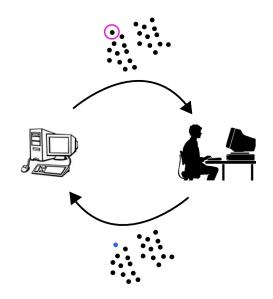
Supervised learning pipeline



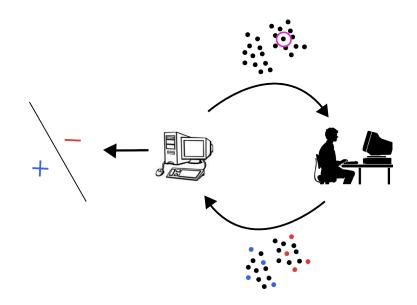
Supervised learning pipeline

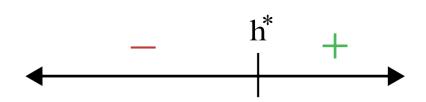


Active learning



Active learning



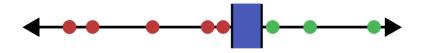


Linear threshold:

$$h^*(x) = \begin{cases} + & \text{if } x > v^* \\ - & \text{if } x \le v^* \end{cases}$$

Supervised approach:

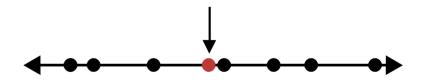
- Draw $O(1/\epsilon)$ labeled data points
- Any consistent threshold h has error $\mathrm{err}(h) \leq \epsilon$



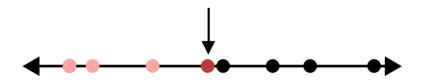
Supervised approach:

- Draw $O(1/\epsilon)$ labeled data points
- Any consistent threshold h has error $\operatorname{err}(h) \leq \epsilon$

- Draw $O(1/\epsilon)$ unlabeled data points
- Repeatedly query median unlabeled point and infer labels for some unlabeled points
- Stop when there are two adjacent points of different labels



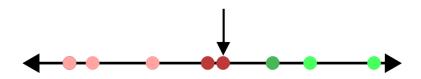
- Draw $O(1/\epsilon)$ unlabeled data points
- Repeatedly query median unlabeled point and infer labels for some unlabeled points
- Stop when there are two adjacent points of different labels



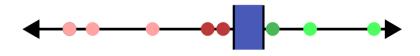
- Draw $O(1/\epsilon)$ unlabeled data points
- Repeatedly query median unlabeled point and infer labels for some unlabeled points
- Stop when there are two adjacent points of different labels

- Draw $O(1/\epsilon)$ unlabeled data points
- Repeatedly query median unlabeled point and infer labels for some unlabeled points
- Stop when there are two adjacent points of different labels

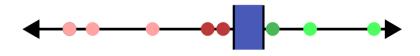
- Draw $O(1/\epsilon)$ unlabeled data points
- Repeatedly query median unlabeled point and infer labels for some unlabeled points
- Stop when there are two adjacent points of different labels



- Draw $O(1/\epsilon)$ unlabeled data points
- Repeatedly query median unlabeled point and infer labels for some unlabeled points
- Stop when there are two adjacent points of different labels



- Draw $O(1/\epsilon)$ unlabeled data points
- Repeatedly query median unlabeled point and infer labels for some unlabeled points
- Stop when there are two adjacent points of different labels



Active learning approach:

- Draw $O(1/\epsilon)$ unlabeled data points
- Repeatedly query median unlabeled point and infer labels for some unlabeled points
- Stop when there are two adjacent points of different labels

Number of labels requested: $O(\log 1/\epsilon)$

Overview

- Today: General hypothesis classes
 - Mellow
 - Aggressive
- Tomorrow: Interactive learning
 - Nonparametric active learning
 - Interactive clustering

A partition of (some) active learning work

	Separable data	General (nonseparable) data
Aggressive	QBC [FSST97] Splitting index [D05] GBS [D04, N09]	
Mellow	CAL [CAL94]	A ² algorithm [BBL06, H07] Reduction to supervised [DHM07] Importance weighted [BDL09] Confidence rated prediction [ZC14]

A partition of (some) active learning work

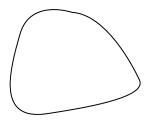
	Separable data	General (nonseparable) data
Aggressive	QBC [FSST97] Splitting index [D05] GBS [D04, N09]	
Mellow	CAL [CAL94]	A ² algorithm [BBL06, H07] Reduction to supervised [DHM07] Importance weighted [BDL09] Confidence rated prediction [ZC14]

Noiseless realizable setting

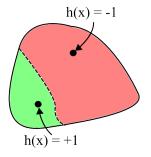
- Fixed binary hypothesis class ${\cal H}$
- Realizable: some true hypothesis $h^* \in \mathcal{H}$
- Noiseless: query x and observe $h^*(x)$
- Pool of unlabeled data drawn from \mathcal{D} (essentially unlimited)
- Goal: learn low error hypothesis $h \in \mathcal{H}$ –

$$\operatorname{err}(h) = \operatorname{Pr}_{x \sim \mathcal{D}}(h(x) \neq h^*(x))$$

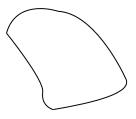
- Start with version space $V_0 = \mathcal{H}$.
- For $t = 1, 2, \ldots$
 - Query x_t and observe label $y_t = h^*(x_t)$.
 - Set $V_t = \{h \in V_{t-1} : h(x_t) = y_t\}.$



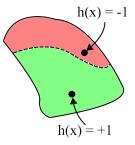
- Start with version space $V_0 = \mathcal{H}$.
- For t = 1, 2, ...
 - Query x_t and observe label $y_t = h^*(x_t)$.
 - Set $V_t = \{h \in V_{t-1} : h(x_t) = y_t\}.$



- Start with version space $V_0 = \mathcal{H}$.
- For t = 1, 2, ...
 - Query x_t and observe label $y_t = h^*(x_t)$.
 - Set $V_t = \{h \in V_{t-1} : h(x_t) = y_t\}.$



- Start with version space $V_0 = \mathcal{H}$.
- For t = 1, 2, ...
 - Query x_t and observe label $y_t = h^*(x_t)$.
 - Set $V_t = \{h \in V_{t-1} : h(x_t) = y_t\}.$

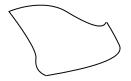


- Start with version space $V_0 = \mathcal{H}$.
- For t = 1, 2, ...
 - Query x_t and observe label $y_t = h^*(x_t)$.
 - Set $V_t = \{h \in V_{t-1} : h(x_t) = y_t\}.$



Version space: set of hypotheses consistent with all the labels seen so far.

- Start with version space $V_0 = \mathcal{H}$.
- For t = 1, 2, ...
 - Query x_t and observe label $y_t = h^*(x_t)$.
 - Set $V_t = \{h \in V_{t-1} : h(x_t) = y_t\}.$



Observation: $h^* \in V_t$ for $t = 0, 1, 2, \ldots$

A mellow strategy: CAL

Strategy:

- Randomly sample $x \sim \mathcal{D}$
- Query x if there are two hypotheses $h, h' \in V_t$ satisfying

 $h(x) \neq h'(x)$

A mellow strategy: CAL

Strategy:

- Randomly sample $x \sim \mathcal{D}$
- Query x if there are two hypotheses $h, h' \in V_t$ satisfying

 $h(x) \neq h'(x)$

Properties:

- Simple
- Consistent
- Label complexity of CAL < Label complexity of random strategy
- Efficient to implement* ٠

CAL: Label complexity

For two hypotheses $h, h' \in \mathcal{H}$, define

$$d(h, h') = \mathsf{Pr}_{x \sim \mathcal{D}}(h(x) \neq h'(x)).$$

Define a ball of radius \boldsymbol{r} as

$$B(h,r) = \{h' \in \mathcal{H} : d(h,h') \le r\}$$

Define the disagreement region of radius r around h as

$$\mathsf{DIS}(h,r) \; = \; \{x \, : \, \exists h_1, h_2 \in B(h,r) \text{ s.t. } h_1(x) \neq h_2(x) \}.$$

Then for target hypothesis h^* , disagreement coefficient is

$$\theta = \sup_{r \in (0,1)} \frac{\Pr_{x \sim \mathcal{D}}(x \in \mathsf{DIS}(h^*, r))}{r}.$$

CAL

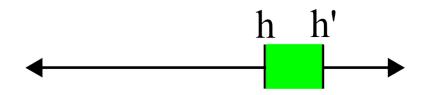
Disagreement coefficient: Example

Linear thresholds:

$$h^*(x) = \begin{cases} + & \text{if } x > v^* \\ - & \text{if } x \le v^* \end{cases}$$

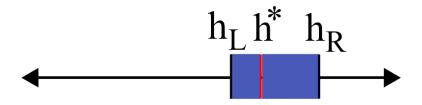


Disagreement coefficient: Example



 $h(x) \neq h'(x)$ iff $x \in \text{green region} \implies d(h, h') = \Pr(x \in \text{green region})$

Disagreement coefficient: Example



$$d(h^*, h_L) = r = d(h^*, h_R)$$

 $B(h^*, r) =$ blue region $=$ DIS (h^*, r)

Disagreement coefficient: Example

$$\begin{array}{c} h_L h^* h_R \\ \bullet \\ I_L I_R \end{array}$$

$$d(h^*, h_L) = r = d(h^*, h_R)$$

 $\Pr(x \in \mathsf{DIS}(h^*, r)) = \Pr(x \in \underline{I_L}) + \Pr(x \in I_R) = d(h^*, h_L) + d(h^*, h_R) = 2r$

$$\theta = \sup_{r \in (0,1)} \frac{\mathsf{Pr}_{x \sim \mathcal{D}}(x \in \mathsf{DIS}(h^*, r))}{r} = 2.$$

CAL

Disagreement coefficient: Examples

Other cases:

- Thresholds: $\theta = 2$
- Homogeneous linear separators under uniform distribution: $\theta < \sqrt{d}$
- Intervals of width w under uniform distribution: $\theta = \max\left\{\frac{1}{w}, 4\right\}$
- Finite hypothesis classes: $\theta \leq |\mathcal{H}|$.

CAL: Label complexity

Theorem

If VC-dimension of $\mathcal H$ is d and disagreement coefficient is $\theta,$ then

$$\#$$
 of labels requested by CAL $\leq \tilde{O}\left(d heta\lograc{1}{\epsilon}
ight)$

CAL: Label complexity

Theorem

If VC-dimension of $\mathcal H$ is d and disagreement coefficient is $\theta,$ then

$$\#$$
 of labels requested by CAL $\,\leq\, ilde{O}\left(d heta\lograc{1}{\epsilon}
ight)$

Compare to passive learning:

$$\#$$
 of labels needed for passive learning $\ \geq \ \Omega\left(rac{d}{\epsilon}
ight)$

CAL: Label complexity proof

Start with $V_0 = \mathcal{H}$ For t = 1, 2, ...:

- Draw unlabeled point $x_t \sim \mathcal{D}$
- If $\exists h, h' \in V_{t-1}$ s.t. $h(x_t) \neq h'(x_t)$, query for label y_t
- Otherwise, create pseudo-label \tilde{y}_t
- Update $V_t = \{h \in V_{t-1} : h(x_t) = y_t \text{ (or } \tilde{y}_t)\}$

CAL: Label complexity proof

Start with $V_0 = \mathcal{H}$ For $t = 1, 2, \ldots$:

- Draw unlabeled point $x_t \sim \mathcal{D}$
- If $\exists h, h' \in V_{t-1}$ s.t. $h(x_t) \neq h'(x_t)$, query for label y_t
- Otherwise, create pseudo-label \tilde{y}_t
- Update $V_t = \{h \in V_{t-1} : h(x_t) = y_t \text{ (or } \tilde{y}_t)\}$

Observation 1: We always have $h^*(x_t) = y_t$ (or \tilde{y}_t).

Observation 2: The (pseudo)-labeled dataset $(x_1, y_1/\tilde{y_1}), \ldots, (x_n, y_n/\tilde{y_n})$ is an i.i.d. labeled dataset.

CAL: Label complexity proof

Start with $V_0 = \mathcal{H}$ For $t = 1, 2, \ldots$:

- Draw unlabeled point $x_t \sim \mathcal{D}$
- If $\exists h, h' \in V_{t-1}$ s.t. $h(x_t) \neq h'(x_t)$, query for label y_t
- Otherwise, create pseudo-label \tilde{y}_t
- Update $V_t = \{h \in V_{t-1} : h(x_t) = y_t \text{ (or } \tilde{y}_t)\}$

Observation 1: We always have $h^*(x_t) = y_t$ (or \tilde{y}_t).

Observation 2: The (pseudo)-labeled dataset $(x_1, y_1/\tilde{y_1}), \ldots, (x_n, y_n/\tilde{y_n})$ is an i.i.d. labeled dataset.

Conclusion: With probability $1 - \delta$, for every $t \ge 1$ and every $h \in V_t$,

$$\operatorname{err}(h) \leq O\left(\frac{1}{t}\left(d\log t + \log \frac{t(t+1)}{\delta}\right)\right) =: r_t.$$

CAL: Label complexity proof (continued)

With probability $1 - \delta$, for every $t \ge 1$ and every $h \in V_t$,

$$\operatorname{err}(h) \leq O\left(\frac{1}{t}\left(d\log t + \log \frac{t(t+1)}{\delta}\right)\right) =: r_t.$$

At round t, CAL queries x_t if and only if there is a hypothesis $h \in V_{t-1}$ such that $h(x_t) \neq h^*(x_t)$.

CAL: Label complexity proof (continued)

With probability $1 - \delta$, for every $t \ge 1$ and every $h \in V_t$,

$$\operatorname{err}(h) \leq O\left(\frac{1}{t}\left(d\log t + \log \frac{t(t+1)}{\delta}\right)\right) =: r_t.$$

At round t, CAL queries x_t if and only if there is a hypothesis $h \in V_{t-1}$ such that $h(x_t) \neq h^*(x_t)$.

 $h \in V_{t-1}$ implies $h \in B(h^*, r_{t-1})$. \Longrightarrow query x_t only if $x_t \in \mathsf{DIS}(h^*, r_{t-1})$.

CAL: Label complexity proof (continued)

$$\mathbb{E}[\# \text{ of queries up to time n}] = \sum_{t=1}^{n} \mathbb{E}[\mathbb{E}[\mathbb{1}(\text{query } x_t) | V_{t-1}]]$$

$$\leq \sum_{t=1}^{n} \Pr(x_t \in \mathsf{DIS}(h^*, r_{t-1}))$$

$$\leq \sum_{t=1}^{n} \theta \cdot r_{t-1}$$

$$\leq O\left(\theta\left(d\log n + \log \frac{1}{\delta}\right)\log n\right)$$

Choosing n such that $r_n \leq \epsilon$ makes the above $\tilde{O}(d\theta \log \frac{1}{\epsilon})$.

CAL: Label complexity proof (continued)

$$\mathbb{E}[\# \text{ of queries up to time n}] = \sum_{t=1}^{n} \mathbb{E}[\mathbb{E}[\mathbb{1}(\text{query } x_t) | V_{t-1}]]$$

$$\leq \sum_{t=1}^{n} \Pr(x_t \in \mathsf{DIS}(h^*, r_{t-1}))$$

$$\leq \sum_{t=1}^{n} \theta \cdot r_{t-1}$$

$$\leq O\left(\theta\left(d\log n + \log \frac{1}{\delta}\right)\log n\right)$$

Choosing n such that $r_n \leq \epsilon$ makes the above $\tilde{O}(d\theta \log \frac{1}{\epsilon})$.

Can turn from expectation bound to high probability bound using martingale deviation inequalities.

A partition of (some) active learning work

	Separable data	General (nonseparable) data
Aggressive	QBC [FSST97]	
	Splitting index [D05] GBS [D04, N09]	
Mellow	CAL [CAL94]	A ² algorithm [BBL06, H07]
		Reduction to supervised [DHM07]
		Importance weighted [BDL09]
		Confidence rated prediction [ZC14]

General (nonseparable) data setting

- \bullet Fixed binary hypothesis class ${\cal H}$
- Possibly not realizable: Query data point x and receive

 $y \sim \Pr_{(X,Y) \sim \mathcal{D}}(Y \,|\, X = x)$

• Target hypothesis: $h^* \in \mathcal{H}$ that minimizes error

$$\operatorname{err}(h) = \operatorname{Pr}_{(X,Y)\sim\mathcal{D}}(h(X) \neq Y)$$

- Pool of unlabeled data drawn from \mathcal{D} (essentially unlimited)
- **Goal**: learn low error hypothesis $h \in \mathcal{H}$

An agnostic mellow strategy: A² algorithm

Issue: Can no longer use version spaces.

Solution: Define effective 'version space' based on generalization bounds.

An agnostic mellow strategy: A² algorithm

Issue: Can no longer use version spaces.

Solution: Define effective 'version space' based on generalization bounds.

Standard learning theory result: For labeled dataset $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$ drawn from distribution \mathcal{D} ,

$$|\operatorname{err}_{\mathcal{D}}(h) - \widehat{\operatorname{err}}_{S}(h)| \leq \frac{1}{n} + \sqrt{\frac{\ln \frac{4}{\delta} + d \ln \frac{2en}{d}}{n}} =: G(n, \delta)$$

for every $h \in \mathcal{H}$ with probability $1 - \delta$.

 A^2 algorithm

An agnostic mellow strategy: A² algorithm

Issue: Can no longer use version spaces.

Solution: Define effective 'version space' based on generalization bounds.

Standard learning theory result: For labeled dataset $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$ drawn from distribution \mathcal{D} ,

$$|\operatorname{err}_{\mathcal{D}}(h) - \widehat{\operatorname{err}}_{S}(h)| \leq \frac{1}{n} + \sqrt{\frac{\ln \frac{4}{\delta} + d \ln \frac{2en}{d}}{n}} =: G(n, \delta)$$

for every $h \in \mathcal{H}$ with probability $1 - \delta$. Key idea: With probability $1 - \delta$, any $h \in \mathcal{H}$ satisfying

$$\widehat{\operatorname{err}}_{S}(h) \geq \inf_{h' \in \mathcal{H}} \widehat{\operatorname{err}}_{S}(h) + 2G(n, \delta)$$

 $\text{must have } \operatorname{err}_{\mathcal{D}}(h) > \inf_{h' \in \mathcal{H}} \operatorname{err}_{\mathcal{D}}(h).$

An agnostic mellow strategy: A² algorithm

Start with
$$V_0 = \mathcal{H}$$
, $S_0 = \emptyset$
For $t = 1, 2, \dots, T$:

• Repeat until we have n_t samples S_t :

- Draw $x \sim \mathcal{D}$.
- If $\exists h, h' \in V_{t-1}$ s.t. $h(x) \neq h'(x)$, query its label.
- Otherwise, discard x.

• Set
$$V_t = \{h \in V_{t-1} : \widehat{\operatorname{err}}_{S_t}(h) \le \inf_{h' \in \mathcal{H}} \widehat{\operatorname{err}}_{S_t}(h') + 2G(n_t, \delta)\}$$

 $\widehat{h} = \operatorname{argmin}_{h \in V_T} \widehat{\operatorname{err}}_{S_T}(h)$

An agnostic mellow strategy: A² algorithm

Start with
$$V_0 = \mathcal{H}$$
, $S_0 = \emptyset$
For $t = 1, 2, ..., T$:
• Repeat until we have n_t samples S_t :
• Draw $x \sim \mathcal{D}$.
• If $\exists h, h' \in V_{t-1}$ s.t. $h(x) \neq h'(x)$, query its label.
• Otherwise, discard x .
• Set $V_t = \{h \in V_{t-1} : \widehat{\operatorname{err}}_{S_t}(h) \leq \inf_{h' \in \mathcal{H}} \widehat{\operatorname{err}}_{S_t}(h') + 2G(n_t, \delta)\}$

$$\widehat{h} = \operatorname{argmin}_{h \in V_T} \widehat{\operatorname{err}}_{S_T}(h)$$

Theorem (Hanneke 2007)

Let $\nu = \inf_{h \in \mathcal{H}} \widehat{\operatorname{err}}_{S_t}(h)$. With probability $1 - \delta$, $\operatorname{err}(\widehat{h}) \leq \nu + \epsilon$ and

$$\# \text{ queries } \leq O\left(\theta^2 \left(1 + \frac{\nu^2}{\epsilon^2}\right) \left(d\log\frac{1}{\epsilon} + \log\frac{1}{\delta}\right)\log\frac{1}{\epsilon}\right)$$

label.

An agnostic mellow strategy: A^2 algorithm

$$\begin{array}{l} \text{Start with } V_0 = \mathcal{H}, \ S_0 = \emptyset \\ \text{For } t = 1, 2, \dots, T \\ \bullet \ \text{Repeat until we have } n_t \ \text{samples } S_t \\ \bullet \ \text{Draw } x \sim \mathcal{D}. \\ \bullet \ \text{If } \exists h, h' \in V_{t-1} \ \text{s.t.} \ h(x) \neq h'(x), \ \text{query its label.} \\ \bullet \ \text{Otherwise, discard } x. \\ \bullet \ \text{Set } V_t = \{h \in V_{t-1} \ : \ \widehat{\text{err}}_{S_t}(h) \leq \inf_{h' \in \mathcal{H}} \widehat{\text{err}}_{S_t}(h') + 2G(n_t, \delta) \} \end{array}$$

$$\widehat{h} = \operatorname{argmin}_{h \in V_T} \widehat{\operatorname{err}}_{S_T}(h)$$

Theorem (Hanneke 2007)

Let $\nu = \inf_{h \in \mathcal{H}} \widehat{\operatorname{err}}_{S_t}(h)$. With probability $1 - \delta$, $\operatorname{err}(\widehat{h}) \leq \nu + \epsilon$ and

$$\# \text{ queries } \leq O\left(\theta^2\left(1+\frac{\nu^2}{\epsilon^2}\right)\left(\frac{d\log\frac{1}{\epsilon}+\log\frac{1}{\delta}\right)\log\frac{1}{\epsilon}\right)$$

An agnostic mellow strategy: A² algorithm

Theorem (Beygelzimer et al. 2007)

For any $\nu, \epsilon > 0$ such that $2\epsilon \le \nu \le 1/4$, any input space, and any hypothesis class \mathcal{H} of VC-dimension d, there is a distribution such that

- (a) the best achievable error rate of a hypothesis in ${\cal H}$ is ν and
- (b) any active learner seeking a hypothesis with error $\nu + \epsilon$ must make $\frac{d\nu^2}{\epsilon^2}$ queries to succeed with probability at least 1/2.

 A^2 algorithm

An agnostic mellow strategy: A² algorithm

Theorem (Beygelzimer et al. 2007)

For any $\nu, \epsilon > 0$ such that $2\epsilon \le \nu \le 1/4$, any input space, and any hypothesis class \mathcal{H} of VC-dimension d, there is a distribution such that

- (a) the best achievable error rate of a hypothesis in ${\cal H}$ is ν and
- (b) any active learner seeking a hypothesis with error $\nu + \epsilon$ must make $\frac{d\nu^2}{\epsilon^2}$ queries to succeed with probability at least 1/2.

...BUT the distribution from Beygelzimer et al. is not very 'natural.'

When are these algorithms efficient?

Computational challenges:

- CAL/A²: Maintaining a version space can be computationally challenging...
 - Don't always need to do so explicitly.

Efficient CAL

To run CAL, we need to be able to determine if x falls in the disagreement region of V:

$$\exists h, h' \in V \text{ s.t. } h(x) \neq h'(x)$$

Assumption: We have an ERM oracle $learn((x_1, y_1), \ldots, (x_n, y_n))$:

- Returns $h \in \mathcal{H}$ s.t. $h(x_i) = y_i$ for $i = 1, \ldots, n$ if it exists
- Returns \perp otherwise

Efficient CAL

To run CAL, we need to be able to determine if x falls in the disagreement region of V:

$$\exists h, h' \in V \text{ s.t. } h(x) \neq h'(x)$$

Assumption: We have an ERM oracle $learn((x_1, y_1), \ldots, (x_n, y_n))$:

- Returns $h \in \mathcal{H}$ s.t. $h(x_i) = y_i$ for $i = 1, \ldots, n$ if it exists
- Returns \perp otherwise

To run CAL at round t:

• Have data $(x_1, y_1), \ldots, (x_{t-1}, y_{t-1}).$

• Query x if

$$\begin{aligned} &\texttt{learn}((x_1, y_1), \dots, (x_{t-1}, y_{t-1}), (x, +)) \neq \bot \\ &\texttt{learn}((x_1, y_1), \dots, (x_{t-1}, y_{t-1}), (x, -)) \neq \bot \end{aligned}$$

Active research directions

- Aggressive strategies for general data
- Active learning without a fixed hypothesis class
 - Nested hypothesis classes
- Circumventing lower bounds
 - Tsybakov noise, Massart noise
- Specialized algorithms for special cases
 - Linear functions, neural nets, ...

A partition of (some) active learning work

	Separable data	General (nonseparable) data
Aggressive	QBC [FSST97]	
	Splitting index [D05]	
	GBS [D04, N09]	
Mellow	CAL [CAL94]	A^2 algorithm [BBL06, H07]
		Reduction to supervised [DHM07]
		Importance weighted [BDL09]
		Confidence rated prediction [ZC14]

Mellow v.s. aggressive

Mellow active learning strategies:

• Query any data point whose label cannot be confidently inferred.

Aggressive active learning strategies:

• Query informative data points.

Generalized binary search

Introduce a prior probability measure π over \mathcal{H} .

• Assigns preferences over hypotheses.

Examples:

- Finite classes: Uniform distribution over \mathcal{H} .
- Homogeneous linear separators: Log-concave distributions, e.g. normal distribution.
- General classes: $e^{-R(h)}$ where $R(\cdot)$ is some regularizer.

Generalized binary search

Introduce a prior probability measure π over \mathcal{H} .

Assigns preferences over hypotheses.

Generalized binary search criterion:

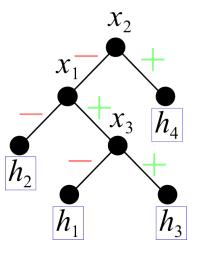
 Query data point that is guaranteed to lead to most probability mass of version space being eliminated:

$$\operatorname*{argmin}_{x} \max\left\{\pi(V_x^+), \pi(V_x^-)\right\}$$

where $V_{r}^{+} = \{h \in V : h(x) = +\}$ and $V_{r}^{-} = V \setminus V_{r}^{+}$.

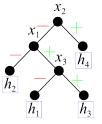
Generalized binary search: A change in objective

Given a finite pool of unlabeled data, a deterministic active learning strategy induces a decision tree T whose leaves are the elements of \mathcal{H} .



Generalized binary search: A change in objective

Given a finite pool of unlabeled data, a deterministic active learning strategy induces a decision tree T whose leaves are the elements of \mathcal{H} .



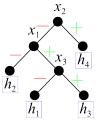
Possible objectives:

• Worst case cost: $\max_{h \in \mathcal{H}}$ length of path in T to get to h

• Average case cost: $\sum\limits_{h\in\mathcal{H}}(\text{length of path in }T\text{ to get to }h)\cdot\pi(h)$

Generalized binary search: A change in objective

Given a finite pool of unlabeled data, a deterministic active learning strategy induces a decision tree T whose leaves are the elements of \mathcal{H} .



Possible objectives:

• Worst case cost: $\max_{h \in \mathcal{H}}$ length of path in T to get to h

• Average case cost: $\sum\limits_{h\in\mathcal{H}}(\text{length of path in }T\text{ to get to }h)\cdot\pi(h)$

Generalized binary search: Theorem

Theorem (Dasgupta 2004)

Let π be any prior over \mathcal{H} . Suppose the optimal search tree has average cost Q^* . Then the average cost of the GBS search tree is at most $4Q^* \ln \frac{1}{\min_b \pi(h)}$.

Generalized binary search: Theorem

Theorem (Dasgupta 2004)

Let π be any prior over \mathcal{H} . Suppose the optimal search tree has average cost Q^* . Then the average cost of the GBS search tree is at most $4Q^* \ln \frac{1}{\min_b \pi(h)}$.

If instead only query α -approximately greedy points, i.e. points x which satisfy

$$\pi(V_x^+)\pi(V_x^-) \geq \frac{1}{\alpha} \max_{x^*} \pi(V_{x^*}^+)\pi(V_{x^*}^-)$$

then cost becomes $O\left(\alpha Q^* \ln \frac{1}{\min_h \pi(h)}\right)$ (Golovin and Krause 2010).

Efficient GBS

To run GBS, we need to be able to approximately determine the split $\pi(V_x^+), \pi(V_x^-)$

Assumption: We have a sampling oracle sample(V):

• Returns a sample from $\pi|_V$ (π conditioned on V)

Efficient GBS

To run GBS, we need to be able to approximately determine the split $\pi(V_x^+), \pi(V_x^-)$

Assumption: We have a sampling oracle sample(V):

• Returns a sample from $\pi|_V$ (π conditioned on V)

To run GBS at round t:

- Have version space V.
- Sample hypotheses h_1, \ldots, h_n using sample(V).
- Query x that minimizes

$$\frac{1}{n} \max\left\{\sum_{i=1}^{n} \mathbb{1}[h_i(x) = +], \sum_{i=1}^{n} \mathbb{1}[h_i(x) = -]\right\} \approx \max\left\{\pi(V_x^+), \pi(V_x^-)\right\}$$