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Supervised learning pipeline

Cheap! Expensive!
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A quick example: linear thresholds

h*
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Linear threshold:

h* () + ifz>0”
€Tr) =
- ifz<o*



Active learning

A quick example: linear thresholds
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Supervised approach:
e Draw O(1/e¢) labeled data points

e Any consistent threshold h has error err(h) < e
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A quick example: linear thresholds
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Supervised approach:
e Draw O(1/e€) labeled data points

e Any consistent threshold h has error err(h) < e



Active learning

A quick example: linear thresholds
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Active learning approach:
e Draw O(1/¢) unlabeled data points

@ Repeatedly query median unlabeled point and infer labels for some
unlabeled points

@ Stop when there are two adjacent points of different labels



Active learning

A quick example: linear thresholds
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Active learning approach:
e Draw O(1/€) unlabeled data points

@ Repeatedly query median unlabeled point and infer labels for some
unlabeled points

@ Stop when there are two adjacent points of different labels



Active learning

A quick example: linear thresholds
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Active learning approach:
e Draw O(1/€) unlabeled data points

@ Repeatedly query median unlabeled point and infer labels for some
unlabeled points

@ Stop when there are two adjacent points of different labels
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A quick example: linear thresholds
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Active learning approach:
e Draw O(1/€) unlabeled data points

@ Repeatedly query median unlabeled point and infer labels for some
unlabeled points

@ Stop when there are two adjacent points of different labels
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A quick example: linear thresholds
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Active learning approach:
e Draw O(1/€) unlabeled data points

@ Repeatedly query median unlabeled point and infer labels for some
unlabeled points

@ Stop when there are two adjacent points of different labels



Active learning

A quick example: linear thresholds
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Active learning approach:
e Draw O(1/€) unlabeled data points

@ Repeatedly query median unlabeled point and infer labels for some
unlabeled points

@ Stop when there are two adjacent points of different labels



Active learning

A quick example: linear thresholds
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Active learning approach:
e Draw O(1/€) unlabeled data points

@ Repeatedly query median unlabeled point and infer labels for some
unlabeled points

@ Stop when there are two adjacent points of different labels



Active learning

A quick example: linear thresholds
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Active learning approach:
e Draw O(1/€) unlabeled data points

@ Repeatedly query median unlabeled point and infer labels for some
unlabeled points

@ Stop when there are two adjacent points of different labels

Number of labels requested: O(log1/¢)



Active learning

Overview

@ Today: General hypothesis classes

o Mellow
o Aggressive

@ Tomorrow: Interactive learning

o Nonparametric active learning
o Interactive clustering



General hypothesis classes

A partition of (some) active learning work

Separable data General (nonseparable) data

QBC [FSST97]
Aggressive | Splitting index [D05]
GBS [D04, N09]

A? algorithm [BBL06, H07]
Reduction to supervised [DHMO7]
Importance weighted [BDLO09]
Confidence rated prediction [ZC14]

Mellow CAL [CAL94]




General hypothesis classes
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General hypothesis classes CAL

Noiseless realizable setting

o Fixed binary hypothesis class H

Realizable: some true hypothesis h* € ‘H

Noiseless: query x and observe h*(x)

Pool of unlabeled data drawn from D (essentially unlimited)

@ Goal: learn low error hypothesis h € H —

err(h) = Pry.p(h(x) # h*(x))



General hypothesis classes CAL

Active learning: Version spaces

Version space: set of hypotheses consistent with all the labels seen so far.

@ Start with version space V) = H.
@ Fort=1,2,...

e Query x; and observe label y; = h*(x}).

o Set Vi={heVi_1 : h(z) =y}



General hypothesis classes CAL

Active learning: Version spaces

Version space: set of hypotheses consistent with all the labels seen so far.

@ Start with version space V) = H. h(x)=-1
@ Fort=1,2,...

o Query z; and observe label y; = h*(xy).

o Set Vi={heVi_1 : h(z) =y}

h(x) =+1
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Active learning: Version spaces

Version space: set of hypotheses consistent with all the labels seen so far.

@ Start with version space Vp = H. h(x) = -1
@ Fort=1,2,...

o Query z; and observe label y; = h*(xy).

o Set Vi={heVi_1 : h(z) =y}

h(x)=+1



General hypothesis classes CAL

Active learning: Version spaces

Version space: set of hypotheses consistent with all the labels seen so far.

@ Start with version space V) = H.
@ Fort=1,2,...

e Query x; and observe label y; = h*(x}).

o Set Vi={heVi_1 : h(z) =y}



cAL
Active learning: Version spaces

Version space: set of hypotheses consistent with all the labels seen so far.

@ Start with version space V) = H.
@ Fort=1,2,...

o Query z; and observe label y, = h*(x}).

o Set Vi={heVi_1 : h(z) =y}

Observation: h* € V; fort =0,1,2,...



e
A mellow strategy: CAL

Strategy:
@ Randomly sample z ~ D

@ Query z if there are two hypotheses h, h’ € V; satisfying

W) # 1 (x)



e
A mellow strategy: CAL

Strategy:
@ Randomly sample z ~ D

@ Query z if there are two hypotheses h, h’ € V; satisfying

W) # 1 (x)

Properties:

e Simple
@ Consistent

o Label complexity of CAL < Label complexity of random strategy

o Efficient to implement*



e
CAL: Label complexity

For two hypotheses h, h' € H, define
d(h. W) = Prop(h(z) £ I (x)).
Define a ball of radius 7 as
B(h,r) = {W €H : d(h,h") <r}
Define the disagreement region of radius r around h as
DIS(h,r) = {x : 3h1,ha € B(h,r) s.t. hi(x) # ha(x)}.
Then for target hypothesis h*, disagreement coefficient is

6 = sup Pro~p(z € DIS(h ,r))‘

re(0,1) r




cAL
Disagreement coefficient: Example
Linear thresholds:

+  ifx>F
—  ifx<o*

h*




General hypothesis classes CAL

Disagreement coefficient: Example

h h

< I

h(zx) # I (z) iff x € green region = d(h,h') = Pr(z € green region)




General hypothesis classes CAL

Disagreement coefficient: Example
kK
hy K hy

< s

d(h*,hy) = r = d(h*, hg)

B(h*,r) = blue region = DIS(h*,r)



General hypothesis classes CAL

Disagreement coefficient: Example
=K

< it —
I Ir

d(h*,hy) = r = d(h*, hg)

Pr(z € DIS(h*, 7)) = Pr(z € I1)+Pr(z € Ig) = d(h*, hr)+d(h*,hg) = 2r

0 = sup Prz~p(x € DIS(h*, 1)) _ 9
re(0,1) r




General hypothesis classes CAL

Disagreement coefficient: Examples

Other cases:

@ Thresholds: 0 = 2
@ Homogeneous linear separators under uniform distribution: 6 < v/d
@ Intervals of width w under uniform distribution: § = max {%,4}

@ Finite hypothesis classes: 6 < |H].



e
CAL: Label complexity

Theorem
If VC-dimension of H is d and disagreement coefficient is 6, then

~ 1
# of labels requested by CAL < O (d@ log —)
€




General hypothesis classes CAL

CAL: Label complexity

Theorem

If VC-dimension of H is d and disagreement coefficient is 6, then

~ 1
# of labels requested by CAL < O (d@ log —)
€

Compare to passive learning:

€

d
# of labels needed for passive learning > ( >



i
CAL: Label complexity proof

Start with Vo = H
Fort=1,2,...:

@ Draw unlabeled point zy ~ D

o If 3h, W' € Vi_y s.t. h(xy) # W' (z), query for label y;
@ Otherwise, create pseudo-label ¢

o Update Vi = {h € Vi1 : h(xt) =y (or 94)}



i
CAL: Label complexity proof

Start with Vp = H
Fort=1,2,...:

@ Draw unlabeled point zy ~ D

o If 3h, W' € Vi_y s.t. h(xy) # W' (z), query for label y;
@ Otherwise, create pseudo-label ¢

o Update Vi ={h e V,_y : h(zy) = y: (or g¢)}
Observation 1: We always have h*(xt) =y (or 4).

Observation 2: The (pseudo)-labeled dataset (z1,y1/91),- -, (Tn, Yn/Yn)
is an i.i.d. labeled dataset.



i
CAL: Label complexity proof

Start with Vp = H
Fort=1,2,...:

@ Draw unlabeled point zy ~ D

o If 3h, b/ € Vi_1 s.t. h(x) # B'(xt), query for label y;
@ Otherwise, create pseudo-label ¢

o Update Vi ={h e V,_y : h(zy) = y: (or g¢)}
Observation 1: We always have h*(xt) =y (or 4).

Observation 2: The (pseudo)-labeled dataset (z1,y1/91),- -, (Tn, Yn/Yn)
is an i.i.d. labeled dataset.

Conclusion: With probability 1 — §, for every t > 1 and every h € V,

erc(h) < O (1 <dlogt—|—log tt + 1)>> —_

J



cAL
CAL: Label complexity proof (continued)

With probability 1 — ¢, for every t > 1 and every h € V4,
1 t(t+1
err(h) < O (t <dlogt+log ( ;_ )>> =7y

At round t, CAL queries x; if and only if there is a hypothesis h € V;_1
such that h(z;) # h*(xy).




cAL
CAL: Label complexity proof (continued)

With probability 1 — ¢, for every t > 1 and every h € V4,
1 t(t+1
err(h) < O (t <dlogt+log ( ;_ )>> =7y

At round t, CAL queries x; if and only if there is a hypothesis h € V;_1
such that h(z;) # h*(xy).

h € V;_1 implies h € B(h*,r.—1). = query z; only if 2y € DIS(h*,r;_1).



cAL
CAL: Label complexity proof (continued)

n
E[# of queries up to time n | = ZE[E[ﬂ(query xt) | Vi—1]]
t=1

IN

z": Pr(z, € DIS(h*,ri—1))

t=1

< i 0-ri_1
t=1

< O <9 <dlogn + log (15> logn>

Choosing n such that r, < € makes the above O(d& log %)
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CAL: Label complexity proof (continued)

E[# of queries up to time n |

Choosing n such that r, < € makes the above O(d& log %)

IN

<

<

> E[E[1(query z;) [ V1]
t=1

z": Pr(z, € DIS(h*,ri—1))

t=1

n

E 0 - Tt—1
t=1

0] <9 <dlogn + log

5

o)

Can turn from expectation bound to high probability bound using

martingale deviation inequalities.



General hypothesis classes A2 algorithm

A partition of (some) active learning work

Separable data General (nonseparable) data

QBC [FSST97]
Aggressive | Splitting index [D05]
GBS [D04, N09]

A? algorithm [BBL06, H07]
Reduction to supervised [DHMO7]
Importance weighted [BDLO09]
Confidence rated prediction [ZC14]

Mellow CAL [CAL94]




General hypothesis classes A2 algorithm

General (nonseparable) data setting

o Fixed binary hypothesis class ‘H

Possibly not realizable: Query data point 2 and receive

y ~ Prixy)yp(Y X =)

Target hypothesis: h* € H that minimizes error

err(h) = Pr(XYND( (X)#Y)

@ Pool of unlabeled data drawn from D (essentially unlimited)

Goal: learn low error hypothesis h € ‘H



General hypothesis classes A2 algorithm

An agnostic mellow strategy: A2 algorithm

Issue: Can no longer use version spaces.

Solution: Define effective ‘version space’ based on generalization bounds.



General hypothesis classes A2 algorithm

An agnostic mellow strategy: A? algorithm

Issue: Can no longer use version spaces.
Solution: Define effective ‘version space’ based on generalization bounds.

Standard learning theory result: For labeled dataset
S ={(x1,91),-..,(Tn,yn)} drawn from distribution D,

- 1 [In§+dnZ
lerrp(h) —errg(h)] < E—F né—i_% =: G(n,0)

for every h € H with probability 1 — §.



General hypothesis classes A2 algorithm

An agnostic mellow strategy: A? algorithm

Issue: Can no longer use version spaces.
Solution: Define effective ‘version space’ based on generalization bounds.

Standard learning theory result: For labeled dataset
S ={(x1,91),-..,(Tn,yn)} drawn from distribution D,

- 1 [In§+dnZ
lerrp(h) —errg(h)] < E—F né—i_% =: G(n,0)

for every h € H with probability 1 — §.
Key idea: With probability 1 — §, any h € H satisfying

errs(h) > inf errg(h) +2G(n,o
errg(h) hl/relﬂerrg( ) 4+ 2G(n, 9)

must have errp(h) > inf errp(h).
heH



General hypothesis classes A2 algorithm

An agnostic mellow strategy: A? algorithm

Start with Vo = H, So =0
Fort=1,2,...,T:
@ Repeat until we have n; samples S;:

o Draw z ~ D.
o If 3h,h' € V;_1 s.t. h(x) # h'(z), query its label.
o Otherwise, discard .
e SetV,={heV_: ér\rgt(h) < hini;{ér\rst(h’) +2G(nyg,6)}
'e

h = argmin, ;. errg,.(h)



General hypothesis classes A2 algorithm

An agnostic mellow strategy: A? algorithm

Start with Vo = H, So =0
Fort=1,2,...,T:
@ Repeat until we have n; samples S;:
o Draw x ~ D.
o If 3h,h' € V;_1 s.t. h(x) # h'(z), query its label.
o Otherwise, discard .

o Set Vi = {h € Viy : &g, (h) < inf &, (W) +2G(ny, 8)}
e

~

h = argmin, ;. errg,.(h)

Theorem (Hanneke 2007)

~

Let v = én?f{ errs,(h). With probability 1 — 6, err(h) < v + € and
€

2 1 1 1
# queries < O (92 <1 + V2> <dlog — + log ) log )
€ € ) €




General hypothesis classes A2 algorithm

An agnostic mellow strategy: A? algorithm

Start with Vo = H, So =0
Fort=1,2,...,T:
@ Repeat until we have n; samples S;:
o Draw x ~ D.
o If 3h,h' € V;_1 s.t. h(x) # h'(z), query its label.
o Otherwise, discard .

o Set Vi = {h € Viy : &g, (h) < inf &, (W) +2G(ny, 8)}
e

~

h = argmin, ;. errg,.(h)

Theorem (Hanneke 2007)

~

Let v = én?f{ errs,(h). With probability 1 — 6, err(h) < v + € and
€

2 1 1 1
# queries <O (0% (1+ - dlog — + log - | log —
€2 € 0 €




General hypothesis classes A2 algorithm

An agnostic mellow strategy: A? algorithm

Theorem (Beygelzimer et al. 2007)

For any v,e > 0 such that 2e < v < 1/4, any input space, and any
hypothesis class H of VC-dimension d, there is a distribution such that

(a) the best achievable error rate of a hypothesis in H is v and

(b) any active learner seeking a hypothesis with error v + ¢ must make
%2 queries to succeed with probability at least 1/2.




General hypothesis classes A2 algorithm

An agnostic mellow strategy: A? algorithm

Theorem (Beygelzimer et al. 2007)

For any v,e > 0 such that 2e < v < 1/4, any input space, and any
hypothesis class H of VC-dimension d, there is a distribution such that

(a) the best achievable error rate of a hypothesis in H is v and

(b) any active learner seeking a hypothesis with error v + ¢ must make
%2 queries to succeed with probability at least 1/2.

...BUT the distribution from Beygelzimer et al. is not very ‘natural.’



Computational considerations

When are these algorithms efficient?

Computational challenges:

e CAL/A?: Maintaining a version space can be computationally
challenging...

e Don't always need to do so explicitly.



Computational considerations

Efficient CAL

To run CAL, we need to be able to determine if x falls in the disagreement
region of V:

Jh,h' € V s.t. h(z) # W ()
Assumption: We have an ERM oracle learn((z1,y1), ..., (Zn,Yn)):

@ Returns h € H s.t. h(x;) =y; fori=1,... nif it exists
@ Returns L otherwise



Efficient CAL

To run CAL, we need to be able to determine if x falls in the disagreement
region of V:

Jh,h' € V s.t. h(z) # W ()

Assumption: We have an ERM oracle learn((z1,y1), ..., (Zn,Yn)):
@ Returns h € H s.t. h(x;) =y; fori=1,... nif it exists
@ Returns L otherwise

To run CAL at round ¢:

e Have data (z1,41), .-, (®4—1,yt—1)-
@ Query z if

learn((x1,y1),-- -, (=1, ¥1—1), (, +))

1
learn((x1,y1),-- -, (-1, ¥t-1), (, —)) =

£
#



Computational considerations

Active research directions

Aggressive strategies for general data

Active learning without a fixed hypothesis class
o Nested hypothesis classes

o Circumventing lower bounds
e Tsybakov noise, Massart noise

Specialized algorithms for special cases
o Linear functions, neural nets, ...



A partition of (some) active learning work

Separable data General (nonseparable) data

QBC [FSST97]
Aggressive | Splitting index [D05]
GBS [D04, NO9]

A? algorithm [BBL06, H07]
Reduction to supervised [DHMO7]
Importance weighted [BDLO09]
Confidence rated prediction [ZC14]

Mellow CAL [CAL94]




Mellow v.s. aggressive

Mellow active learning strategies:

@ Query any data point whose label cannot be confidently inferred.

Aggressive active learning strategies:

@ Query informative data points.



Generalized binary search

Introduce a prior probability measure 7 over H.

@ Assigns preferences over hypotheses.
Examples:
@ Finite classes: Uniform distribution over .

@ Homogeneous linear separators: Log-concave distributions, e.g.
normal distribution.

o General classes: e~ #(") where R(-) is some regularizer.



Generalized binary search

Introduce a prior probability measure 7 over H.

@ Assigns preferences over hypotheses.

Generalized binary search criterion:

@ Query data point that is guaranteed to lead to most probability mass
of version space being eliminated:

arg?in max {7(V,"), (V) }

T

where V.F ={h eV : h(z)=+}and V, =V \ V'



Generalized binary search: A change in objective

Given a finite pool of unlabeled data, a deterministic active learning
strategy induces a decision tree T" whose leaves are the elements of H.




Generalized binary search: A change in objective

Given a finite pool of unlabeled data, a deterministic active learning
strategy induces a decision tree T" whose leaves are the elements of H.

b hy

Possible objectives:

o Worst case cost: I}{l%})‘( length of path in T to get to h
€

@ Average case cost: Y (length of path in T to get to h) - w(h)
heH



Generalized binary search: A change in objective

Given a finite pool of unlabeled data, a deterministic active learning
strategy induces a decision tree T" whose leaves are the elements of H.

b hy

Possible objectives:

o Worst case cost: %12% length of path in T to get to h
€

@ Average case cost: Y (length of path in T to get to h) - w(h)
heH



Generalized binary search: Theorem

Theorem (Dasgupta 2004)

Let 7 be any prior over H. Suppose the optimal search tree has average

cost Q*. Then the average cost of the GBS search tree is at most
4Q* In —1

miny, 7(h)




Generalized binary search: Theorem

Theorem (Dasgupta 2004)

Let 7 be any prior over H. Suppose the optimal search tree has average
cost Q*. Then the average cost of the GBS search tree is at most
4Q* In

minp, Tr(h)

If instead only query a-approximately greedy points, i.e. points = which
satisfy

T(VT(VE) > S maxa(VEa(Vo)

x a x*

then cost becomes O (aQ* In m) (Golovin and Krause 2010).



Efficient GBS
To run GBS, we need to be able to approximately determine the split
©(V.H),7m(Vy)

Assumption: We have a sampling oracle sample(V):

@ Returns a sample from 7|y (7 conditioned on V)



GBS
Efficient GBS

To run GBS, we need to be able to approximately determine the split
m(V), m(Vy)

Assumption: We have a sampling oracle sample(V):

@ Returns a sample from 7|y (7 conditioned on V)
To run GBS at round ¢:
@ Have version space V.

e Sample hypotheses hi, ..., h, using sample(V).
@ Query x that minimizes
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