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Active learning

A quick example: linear thresholds

Linear threshold:

h∗(x) =

{
+ if x > v∗

− if x ≤ v∗
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unlabeled points

Stop when there are two adjacent points of different labels
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Active learning

A quick example: linear thresholds

Active learning approach:

Draw O(1/ε) unlabeled data points

Repeatedly query median unlabeled point and infer labels for some
unlabeled points

Stop when there are two adjacent points of different labels

Number of labels requested: O(log 1/ε)



Active learning

Overview

Today: General hypothesis classes

Mellow
Aggressive

Tomorrow: Interactive learning

Nonparametric active learning
Interactive clustering



General hypothesis classes

A partition of (some) active learning work

Separable data General (nonseparable) data

Aggressive
QBC [FSST97]

Splitting index [D05]
GBS [D04, N09]

Mellow CAL [CAL94]

A2 algorithm [BBL06, H07]
Reduction to supervised [DHM07]

Importance weighted [BDL09]
Confidence rated prediction [ZC14]
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General hypothesis classes CAL

Noiseless realizable setting

Fixed binary hypothesis class H

Realizable: some true hypothesis h∗ ∈ H

Noiseless: query x and observe h∗(x)

Pool of unlabeled data drawn from D (essentially unlimited)

Goal: learn low error hypothesis h ∈ H –

err(h) = Prx∼D(h(x) 6= h∗(x))



General hypothesis classes CAL

Active learning: Version spaces

Version space: set of hypotheses consistent with all the labels seen so far.

Start with version space V0 = H.

For t = 1, 2, . . .

Query xt and observe label yt = h∗(xt).

Set Vt = {h ∈ Vt−1 : h(xt) = yt}.
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General hypothesis classes CAL

Active learning: Version spaces

Version space: set of hypotheses consistent with all the labels seen so far.

Start with version space V0 = H.

For t = 1, 2, . . .

Query xt and observe label yt = h∗(xt).

Set Vt = {h ∈ Vt−1 : h(xt) = yt}.

Observation: h∗ ∈ Vt for t = 0, 1, 2, . . .
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A mellow strategy: CAL

Strategy:

Randomly sample x ∼ D
Query x if there are two hypotheses h, h′ ∈ Vt satisfying

h(x) 6= h′(x)
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A mellow strategy: CAL

Strategy:

Randomly sample x ∼ D
Query x if there are two hypotheses h, h′ ∈ Vt satisfying

h(x) 6= h′(x)

Properties:

Simple

Consistent

Label complexity of CAL ≤ Label complexity of random strategy

Efficient to implement∗



General hypothesis classes CAL

CAL: Label complexity

For two hypotheses h, h′ ∈ H, define

d(h, h′) = Prx∼D(h(x) 6= h′(x)).

Define a ball of radius r as

B(h, r) = {h′ ∈ H : d(h, h′) ≤ r}

Define the disagreement region of radius r around h as

DIS(h, r) = {x : ∃h1, h2 ∈ B(h, r) s.t. h1(x) 6= h2(x)}.

Then for target hypothesis h∗, disagreement coefficient is

θ = sup
r∈(0,1)

Prx∼D(x ∈ DIS(h∗, r))

r
.



General hypothesis classes CAL

Disagreement coefficient: Example

Linear thresholds:

h∗(x) =

{
+ if x > v∗

− if x ≤ v∗
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Disagreement coefficient: Example

h(x) 6= h′(x) iff x ∈ green region =⇒ d(h, h′) = Pr(x ∈ green region)
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Disagreement coefficient: Example

d(h∗, hL) = r = d(h∗, hR)

B(h∗, r) = blue region = DIS(h∗, r)



General hypothesis classes CAL

Disagreement coefficient: Example

d(h∗, hL) = r = d(h∗, hR)

Pr(x ∈ DIS(h∗, r)) = Pr(x ∈ IL)+Pr(x ∈ IR) = d(h∗, hL)+d(h∗, hR) = 2r

θ = sup
r∈(0,1)

Prx∼D(x ∈ DIS(h∗, r))

r
= 2.



General hypothesis classes CAL

Disagreement coefficient: Examples

Other cases:

Thresholds: θ = 2

Homogeneous linear separators under uniform distribution: θ ≤
√
d

Intervals of width w under uniform distribution: θ = max
{

1
w , 4

}
Finite hypothesis classes: θ ≤ |H|.



General hypothesis classes CAL

CAL: Label complexity

Theorem

If VC-dimension of H is d and disagreement coefficient is θ, then

# of labels requested by CAL ≤ Õ

(
dθ log

1

ε

)
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CAL: Label complexity

Theorem

If VC-dimension of H is d and disagreement coefficient is θ, then

# of labels requested by CAL ≤ Õ

(
dθ log

1

ε

)

Compare to passive learning:

# of labels needed for passive learning ≥ Ω

(
d

ε

)



General hypothesis classes CAL

CAL: Label complexity proof

Start with V0 = H
For t = 1, 2, . . .:

Draw unlabeled point xt ∼ D
If ∃h, h′ ∈ Vt−1 s.t. h(xt) 6= h′(xt), query for label yt

Otherwise, create pseudo-label ỹt

Update Vt = {h ∈ Vt−1 : h(xt) = yt (or ỹt)}
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Observation 2: The (pseudo)-labeled dataset (x1, y1/ỹ1), . . . , (xn, yn/ỹn)
is an i.i.d. labeled dataset.
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CAL: Label complexity proof

Start with V0 = H
For t = 1, 2, . . .:

Draw unlabeled point xt ∼ D
If ∃h, h′ ∈ Vt−1 s.t. h(xt) 6= h′(xt), query for label yt

Otherwise, create pseudo-label ỹt

Update Vt = {h ∈ Vt−1 : h(xt) = yt (or ỹt)}

Observation 1: We always have h∗(xt) = yt (or ỹt).

Observation 2: The (pseudo)-labeled dataset (x1, y1/ỹ1), . . . , (xn, yn/ỹn)
is an i.i.d. labeled dataset.

Conclusion: With probability 1− δ, for every t ≥ 1 and every h ∈ Vt,

err(h) ≤ O

(
1

t

(
d log t+ log

t(t+ 1)

δ

))
=: rt.
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CAL: Label complexity proof (continued)

With probability 1− δ, for every t ≥ 1 and every h ∈ Vt,

err(h) ≤ O

(
1

t

(
d log t+ log

t(t+ 1)

δ

))
=: rt.

At round t, CAL queries xt if and only if there is a hypothesis h ∈ Vt−1
such that h(xt) 6= h∗(xt).
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CAL: Label complexity proof (continued)

With probability 1− δ, for every t ≥ 1 and every h ∈ Vt,

err(h) ≤ O

(
1

t

(
d log t+ log

t(t+ 1)

δ

))
=: rt.

At round t, CAL queries xt if and only if there is a hypothesis h ∈ Vt−1
such that h(xt) 6= h∗(xt).

h ∈ Vt−1 implies h ∈ B(h∗, rt−1). =⇒ query xt only if xt ∈ DIS(h∗, rt−1).



General hypothesis classes CAL

CAL: Label complexity proof (continued)

E[# of queries up to time n ] =

n∑
t=1

E[E[1(query xt) |Vt−1]]

≤
n∑
t=1

Pr(xt ∈ DIS(h∗, rt−1))

≤
n∑
t=1

θ · rt−1

≤ O

(
θ

(
d log n+ log

1

δ

)
log n

)
Choosing n such that rn ≤ ε makes the above Õ(dθ log 1

ε ).



General hypothesis classes CAL

CAL: Label complexity proof (continued)

E[# of queries up to time n ] =

n∑
t=1

E[E[1(query xt) |Vt−1]]

≤
n∑
t=1

Pr(xt ∈ DIS(h∗, rt−1))

≤
n∑
t=1

θ · rt−1

≤ O

(
θ

(
d log n+ log

1

δ

)
log n

)
Choosing n such that rn ≤ ε makes the above Õ(dθ log 1

ε ).

Can turn from expectation bound to high probability bound using
martingale deviation inequalities.



General hypothesis classes A2 algorithm

A partition of (some) active learning work

Separable data General (nonseparable) data

Aggressive
QBC [FSST97]

Splitting index [D05]
GBS [D04, N09]

Mellow CAL [CAL94]

A2 algorithm [BBL06, H07]
Reduction to supervised [DHM07]

Importance weighted [BDL09]
Confidence rated prediction [ZC14]



General hypothesis classes A2 algorithm

General (nonseparable) data setting

Fixed binary hypothesis class H

Possibly not realizable: Query data point x and receive

y ∼ Pr(X,Y )∼D(Y |X = x)

Target hypothesis: h∗ ∈ H that minimizes error

err(h) = Pr(X,Y )∼D(h(X) 6= Y )

Pool of unlabeled data drawn from D (essentially unlimited)

Goal: learn low error hypothesis h ∈ H



General hypothesis classes A2 algorithm

An agnostic mellow strategy: A2 algorithm

Issue: Can no longer use version spaces.

Solution: Define effective ‘version space’ based on generalization bounds.
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An agnostic mellow strategy: A2 algorithm

Issue: Can no longer use version spaces.

Solution: Define effective ‘version space’ based on generalization bounds.

Standard learning theory result: For labeled dataset
S = {(x1, y1), . . . , (xn, yn)} drawn from distribution D,

|errD(h)− êrrS(h)| ≤ 1

n
+

√
ln 4

δ + d ln 2en
d

n
=: G(n, δ)

for every h ∈ H with probability 1− δ.
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An agnostic mellow strategy: A2 algorithm

Issue: Can no longer use version spaces.

Solution: Define effective ‘version space’ based on generalization bounds.

Standard learning theory result: For labeled dataset
S = {(x1, y1), . . . , (xn, yn)} drawn from distribution D,

|errD(h)− êrrS(h)| ≤ 1

n
+

√
ln 4

δ + d ln 2en
d

n
=: G(n, δ)

for every h ∈ H with probability 1− δ.
Key idea: With probability 1− δ, any h ∈ H satisfying

êrrS(h) ≥ inf
h′∈H

êrrS(h) + 2G(n, δ)

must have errD(h) > inf
h′∈H

errD(h).



General hypothesis classes A2 algorithm

An agnostic mellow strategy: A2 algorithm

Start with V0 = H, S0 = ∅
For t = 1, 2, . . . , T :

Repeat until we have nt samples St:

Draw x ∼ D.
If ∃h, h′ ∈ Vt−1 s.t. h(x) 6= h′(x), query its label.
Otherwise, discard x.

Set Vt = {h ∈ Vt−1 : êrrSt(h) ≤ inf
h′∈H

êrrSt(h
′) + 2G(nt, δ)}

ĥ = argminh∈VT êrrST
(h)
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An agnostic mellow strategy: A2 algorithm

Start with V0 = H, S0 = ∅
For t = 1, 2, . . . , T :

Repeat until we have nt samples St:

Draw x ∼ D.
If ∃h, h′ ∈ Vt−1 s.t. h(x) 6= h′(x), query its label.
Otherwise, discard x.

Set Vt = {h ∈ Vt−1 : êrrSt(h) ≤ inf
h′∈H

êrrSt(h
′) + 2G(nt, δ)}

ĥ = argminh∈VT êrrST
(h)

Theorem (Hanneke 2007)

Let ν = inf
h∈H

êrrSt(h). With probability 1− δ, err(ĥ) ≤ ν + ε and

# queries ≤ O
(
θ2
(

1 +
ν2

ε2

)(
d log

1

ε
+ log

1

δ

)
log

1

ε

)
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An agnostic mellow strategy: A2 algorithm

Start with V0 = H, S0 = ∅
For t = 1, 2, . . . , T :

Repeat until we have nt samples St:

Draw x ∼ D.
If ∃h, h′ ∈ Vt−1 s.t. h(x) 6= h′(x), query its label.
Otherwise, discard x.
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ĥ = argminh∈VT êrrST
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Theorem (Hanneke 2007)

Let ν = inf
h∈H

êrrSt(h). With probability 1− δ, err(ĥ) ≤ ν + ε and

# queries ≤ O
(
θ2
(

1 +
ν2

ε2

)(
d log

1

ε
+ log

1

δ

)
log

1

ε
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General hypothesis classes A2 algorithm

An agnostic mellow strategy: A2 algorithm

Theorem (Beygelzimer et al. 2007)

For any ν, ε > 0 such that 2ε ≤ ν ≤ 1/4, any input space, and any
hypothesis class H of VC-dimension d, there is a distribution such that

(a) the best achievable error rate of a hypothesis in H is ν and

(b) any active learner seeking a hypothesis with error ν + ε must make
dν2

ε2
queries to succeed with probability at least 1/2.



General hypothesis classes A2 algorithm

An agnostic mellow strategy: A2 algorithm

Theorem (Beygelzimer et al. 2007)

For any ν, ε > 0 such that 2ε ≤ ν ≤ 1/4, any input space, and any
hypothesis class H of VC-dimension d, there is a distribution such that

(a) the best achievable error rate of a hypothesis in H is ν and

(b) any active learner seeking a hypothesis with error ν + ε must make
dν2

ε2
queries to succeed with probability at least 1/2.

...BUT the distribution from Beygelzimer et al. is not very ‘natural.’



Computational considerations

When are these algorithms efficient?

Computational challenges:

CAL/A2: Maintaining a version space can be computationally
challenging...

Don’t always need to do so explicitly.



Computational considerations

Efficient CAL

To run CAL, we need to be able to determine if x falls in the disagreement
region of V :

∃h, h′ ∈ V s.t. h(x) 6= h′(x)

Assumption: We have an ERM oracle learn((x1, y1), . . . , (xn, yn)):

Returns h ∈ H s.t. h(xi) = yi for i = 1, . . . , n if it exists

Returns ⊥ otherwise



Computational considerations

Efficient CAL

To run CAL, we need to be able to determine if x falls in the disagreement
region of V :

∃h, h′ ∈ V s.t. h(x) 6= h′(x)

Assumption: We have an ERM oracle learn((x1, y1), . . . , (xn, yn)):

Returns h ∈ H s.t. h(xi) = yi for i = 1, . . . , n if it exists

Returns ⊥ otherwise

To run CAL at round t:

Have data (x1, y1), . . . , (xt−1, yt−1).

Query x if

learn((x1, y1), . . . , (xt−1, yt−1), (x,+)) 6= ⊥
learn((x1, y1), . . . , (xt−1, yt−1), (x,−)) 6= ⊥



Computational considerations

Active research directions

Aggressive strategies for general data

Active learning without a fixed hypothesis class

Nested hypothesis classes

Circumventing lower bounds

Tsybakov noise, Massart noise

Specialized algorithms for special cases

Linear functions, neural nets, ...



Extra time GBS

A partition of (some) active learning work

Separable data General (nonseparable) data

Aggressive
QBC [FSST97]

Splitting index [D05]
GBS [D04, N09]

Mellow CAL [CAL94]

A2 algorithm [BBL06, H07]
Reduction to supervised [DHM07]

Importance weighted [BDL09]
Confidence rated prediction [ZC14]



Extra time GBS

Mellow v.s. aggressive

Mellow active learning strategies:

Query any data point whose label cannot be confidently inferred.

Aggressive active learning strategies:

Query informative data points.



Extra time GBS

Generalized binary search

Introduce a prior probability measure π over H.

Assigns preferences over hypotheses.

Examples:

Finite classes: Uniform distribution over H.

Homogeneous linear separators: Log-concave distributions, e.g.
normal distribution.

General classes: e−R(h) where R(·) is some regularizer.



Extra time GBS

Generalized binary search

Introduce a prior probability measure π over H.

Assigns preferences over hypotheses.

Generalized binary search criterion:

Query data point that is guaranteed to lead to most probability mass
of version space being eliminated:

argmin
x

max
{
π(V +

x ), π(V −x )
}

where V +
x = {h ∈ V : h(x) = +} and V −x = V \ V +

x .



Extra time GBS

Generalized binary search: A change in objective

Given a finite pool of unlabeled data, a deterministic active learning
strategy induces a decision tree T whose leaves are the elements of H.



Extra time GBS

Generalized binary search: A change in objective

Given a finite pool of unlabeled data, a deterministic active learning
strategy induces a decision tree T whose leaves are the elements of H.

Possible objectives:

Worst case cost: max
h∈H

length of path in T to get to h

Average case cost:
∑
h∈H

(length of path in T to get to h) · π(h)
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Possible objectives:

Worst case cost: max
h∈H

length of path in T to get to h

Average case cost:
∑
h∈H

(length of path in T to get to h) · π(h)



Extra time GBS

Generalized binary search: Theorem

Theorem (Dasgupta 2004)

Let π be any prior over H. Suppose the optimal search tree has average
cost Q∗. Then the average cost of the GBS search tree is at most
4Q∗ ln 1

minh π(h)
.



Extra time GBS

Generalized binary search: Theorem

Theorem (Dasgupta 2004)

Let π be any prior over H. Suppose the optimal search tree has average
cost Q∗. Then the average cost of the GBS search tree is at most
4Q∗ ln 1

minh π(h)
.

If instead only query α-approximately greedy points, i.e. points x which
satisfy

π(V +
x )π(V −x ) ≥ 1

α
max
x∗

π(V +
x∗)π(V −x∗)

then cost becomes O
(
αQ∗ ln 1

minh π(h)

)
(Golovin and Krause 2010).



Extra time GBS

Efficient GBS

To run GBS, we need to be able to approximately determine the split
π(V +

x ), π(V −x )

Assumption: We have a sampling oracle sample(V ):

Returns a sample from π|V (π conditioned on V )
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Efficient GBS

To run GBS, we need to be able to approximately determine the split
π(V +

x ), π(V −x )

Assumption: We have a sampling oracle sample(V ):

Returns a sample from π|V (π conditioned on V )

To run GBS at round t:

Have version space V .

Sample hypotheses h1, . . . , hn using sample(V ).

Query x that minimizes

1

n
max

{
n∑
i=1

1[hi(x) = +],

n∑
i=1

1[hi(x) = −]

}
≈ max

{
π(V +

x ), π(V −x )
}
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