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Transformer [Vaswani et al, 2017]: self-attention nets used in large language models
» Alternative to “classical” neural network architectures, e.g.,

» fully-connected neural networks (FNNs)

» convolutional neural networks (CNNs)

» recurrent neural networks (RNNs)

» Amazing theoretical capabilities

P Turing-completeness [perez, Barcels, Marinkovic, 2021; Wei, Chen, Ma, 2021; ... ]

P Recognize formal languages [Bhattamishra, Ahuja, Goyal, 2020; Hahn, 2020; Yao, Peng, Papadimitriou,
Narasimhan, 2021; Hao, Angluin, Frank, 2022; Liu, Ash, Goel, Krishnamurthy, Zhang, 2022; Angluin, Chiang, Yang, 2023; ...]

» Solve inference/learning problems (“in-context learning”) (carg. Tsipras, Liang, Valiant,
2022; Akyiirek, Schuurmans, Andreas, Ma, Zhou, 2022; Zhang, Frei, Bartlett, 2023; Abernethy, Agarwal, Marinov, Warmuth, 2023;

Bai, Chen, Wang, Xiong, Mei, 2023; ...]
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What is special about transformers?

Transformers now underlie (many) learning-based used in NLP (and beyond)
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What is special about transformers?

Transformers now underlie (many) learning-based used in NLP (and beyond)
» Succinct parameterization of sequence-to-sequence functions (?)

» Ability to capture “long-range interactions” (7)
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“What does BERT look at?” [Clark, Khandelwal, Levy, Manning, 2019]

Attends to next token Attends to [SEP] Attends to periods

found
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“What does BERT look at?”

- Noun modifiers (e.g., determiners) attend
to their noun

- 94.3% accuracy at the det relation
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[Clark, Khandelwal, Levy, Manning, 2019]

- Coreferent mentions attend to their antecedents

- 65.1% accuracy at linking the head of a
coreferent mention to the head of an antecedent
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Our research questions

For which problems are transformers especially well/ill-suited?
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Our research questions

For which problems are transformers especially well/ill-suited?
» How do transformers compare to classical architectures?
» How does complexity scale with input size N?

» This work:
NeW oy N0
~—— ——
lleasyYY Hhardll

What we do: Formalize advantages of transformers over classical architectures
(as well as limitations of transformers) in terms of “communication” bottlenecks
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Caveat

Results are only about representational strengths/limitations of transformers

(No direct analysis of learning/generalization)
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Outline of talk

1. Transformers 101 + our results

2. Sparse Averaging

3. Element matching problems
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1. Transformers 101 4 our results



What is a self-attention unit?
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What is a self-attention unit?

Self-attention unit: mapping of N-tuples from X = R%: to N-tuples from
Y = R%ut of a particular parametric form

T
— Wy —
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What is a self-attention unit?

Self-attention unit: mapping of N-tuples from X = R%: to N-tuples from
Y = R%ut of a particular parametric form

att(X) = softmax (X Wo)(XWk)") XWy

> Parameters: Wy, Wi € R%x™ 11y, € RAn*deuwt (query, key, & value params.)
» m = (internal) embedding dimension

» softmax is applied row-wise:

exp(M; ;)

softmax(M); ; = Zgﬂ (M)
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Self-attention unit: mapping of N-tuples from X = R%: to N-tuples from
Y = R%ut of a particular parametric form

att(X) = softmax (X Wo)(XWk)") XWy

> Parameters: Wy, Wi € R%x™ 11y, € RAn*deuwt (query, key, & value params.)
» m = (internal) embedding dimension

» softmax is applied row-wise:
exp(M;,;)

softmax(M); ; = Zgﬂ (M)

» Mapping is permutation-equivariant
» Each row of att(X) is in convex hull of {rows of X Wy }
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What is a transformer?

» [1-headed self-attention layer: sum of H self-attention units
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What is a transformer?

» [1-headed self-attention layer: sum of H self-attention units

H
X — Z attwéh)’w(h) W (X)

K v
h=1

» Transformer: composition of multi-headed self-attention layers
» Each self-attention unit is also allowed to process each element of input tuple
using a feedforward neural network

¢: REn — R

(same ¢ is applied to each element of input tuple) with di, = O(m)

/

» Can also process output tuple with some ¢: Rout — Roue ¢! = O(m)

out
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What is a transformer?

» [1-headed self-attention layer: sum of H self-attention units

H
X — Z attwéh)’wf(?)’w‘(/h) (X)

h=1
» Transformer: composition of multi-headed self-attention layers

» Each self-attention unit is also allowed to process each element of input tuple
using a feedforward neural network

¢: REn — R

(same ¢ is applied to each element of input tuple) with di, = O(m)
» Can also process output tuple with some ¢: R%ut — Rbut ¢! = O(m)

out
> ¢'s are akin to “activation functions” in classical architectures
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Our research questions

For which problems are transformers especially well/ill-suited?
» How do transformers compare to classical architectures?
» How does complexity scale with input size N7

» This work:
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Our research questions

For which problems are transformers especially well/ill-suited?
» How do transformers compare to classical architectures?

» How does complexity scale with input size N7

» This work:
NeD s N2
N—— ——
lleasyYY Hhardll

> Allow element-wise maps ¢ to be arbitrary functions
» How must “size” parameters L, H, m grow with N7
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Our results

» On a sparse decoding problem: “Sparse Averaging”

» On element matching problems: “Pair/Triple Matching”
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Our results

» On a sparse decoding problem: “Sparse Averaging”
» Self-att. unit with m = O(di, + qlog N) suffices for sparsity level ¢*
> Every FNN requires width Q(N) even if ¢ = 1, di, = O(1)
> Every RNN requires hidden state of Q(NN) bits even if ¢ = 1, dip = O(1)

» On element matching problems: “Pair/Triple Matching”?
» (Standard) self-att. unit can solve Pair Matching with m = O(djy)
» “Third-order” self-att. unit can solve Triple Matching with m = O(din)
> Multi-headed self-att. layer requires Hm = Q(N) to solve Triple Matching3
» Conjecture: Transformer requires LHm = Q(NQ(U) to solve Triple Matching

1Also (almost) matching lower bound
2Lower bounds assume W's and ¢'s use polylog N bit precision numbers

3Also (almost) matching upper bound
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2. Sparse Averaging



q-Sparse Averaging (¢SA)

Input: (z1,x9,...,2y) where
z; = (enc(i), enc(S;),v;) € R%», din =0O(d+ (¢ +1)log N),
and

1,2,...,N are the "keys”
N
S1,8,...,5v € ([ ]) are the “queries”
q

v1,va, ..., 0y € RY are the “values” (with ||v;]| < 1)
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q-Sparse Averaging (¢SA)

Input: (z1,x9,...,2y) where
z; = (enc(i), enc(S;),v;) € R%», din =0O(d+ (¢ +1)log N),
and

1,2,...,N are the "keys”
N
S1,8,...,5v € ([ ]) are the “queries”
q

v1,va, ..., 0y € RY are the “values” (with ||v;]| < 1)

Output: N vectors in R%u with d, = d, where ith output vector is
3
~ — (%
q JES;
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What we show (gSA)

» Self-att. unit with m = O(d;, + qlog N) suffices for sparsity level ¢
(4 almost matching lower bound)

» Every FNN requires width Q(N) even if ¢ = 1, di, = O(1)
» Every RNN requires hidden state of Q(V) bits even if ¢ = 1, di, = O(1)
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Self-attention solution (overview)

Design ¢: R%n — R, Wy, Wx € Rn*™ Ty, € R™*dout sych that

T ~ l/q if Sz > ]
softmax((6(X)Wo) (6(X)Wi)"),; ~ {0 5
and
<— wgl — T T — U1 —
HX)Wq = : , ((X)Wk)T = [ul un |, ¢(X)Wy = :
— wg, — + + — vy —
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Self-attention solution (overview)

Design ¢: R%n — R, Wy, Wx € Rn*™ Ty, € R™*dout sych that

T ~ 1/q if Sz 9j
softmax((6(X) W) (6(X)Wic)) , ~ {0 o
and
— wg — 1 4 — v —
P(X)Wq = : » (P(X)Wk)' = lul ceun |, o(X)Wy = :
— wg, — 4 + — vy —

¢ will do most of the work; Wy, Wi, Wy extract relevant parts of each ¢(x;)
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Empirical solution

“Attention matrices” softmax((¢(X)Wq)(¢(X)Wk)™) € R0 for same fixed
X, after training transformer for T" epochs to solve gSA with ¢ = 3

I:E EEDEE D::' #::ﬂ.:u.;.{-;l é ‘:-! D-:.
T, FreRl o foeRl
% B8 LT ki

= DDDE'D:EPD - o o - -I.-:.-

T=0 T = 1000 T = 40000

18/28



Construction using ¢-neighborly 0/1 polytopes

[Candes & Tao, 2005] There exist uy, ug, ..., ux € {i\/ig}’C with £ = O(qlog N),

such that, for every S € ([];”), there exists wg € R* satisfying

lwsll < 2v/q
(ws,uj) =1 forall jeS
[(ws,u;)| <1/2 forall j ¢S
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Construction using ¢-neighborly 0/1 polytopes

[Candes & Tao, 2005] There exist uy, ug, ..., ux € {i\/ig}’C with £ = O(qlog N),

such that, for every S € ([];”), there exists wg € R* satisfying

lwsll < 2v/q
(ws,uj) =1 forall jeS
[(ws,u;)| <1/2 forall j ¢S

W{2, 3} Our ¢: Ré%» — R%n with d, = O(d + qlog N) is

u ‘ ¢(enc(i), enc(S;), v;) = (u;, @ wg;, v;)

® U3 for suitably large oo > 0
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(Simplified) lower bound for RNNs

Every RNN that computes ¢SAy (¢ = d = 1) requires (V) bit hidden state
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(Simplified) lower bound for RNNs

Every RNN that computes ¢SAy (¢ = d = 1) requires (V) bit hidden state

» Reduction from INDEX problem (n = N — 1)
Input: Alice has a € {0,1}", Bob has b € [n]
Goal: After Alice sends Bob a message, Bob outputs aj
Pigeonhole principle lower bound: Alice must send at least n bits

» Consider any RNN that processes (z1,za,...,Z,11) one element at a time
and produces correct (n + 1)th output

x; = (enc(i),enc(0), a;) forall i € [N]

% & % % (Alice sends nth hidden state to Bob)
1 2 Tn:  Tntl

Alice Bob Tpe1 = (enc(n + 1), enc({b}),0)
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3. Element matching problems



Pair and Triple Matching

Input: (zg,x1,29,...,2x) where

dummy element: ¢ = enc(L), (for technical reasons)
for all i € [N]:  x; = enc(z;), 2z €4{1,2,..., M}

and N < M = poly(N)
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Pair and Triple Matching

Input: (zg,x1,29,...,2x) where

dummy element: ¢ = enc(L), (for technical reasons)
for all i € [N]:  x; = enc(z;), 2z €4{1,2,..., M}

and N < M = poly(N)
(Pair Matching) Output: ith output is

1{3j € [N] st. z+2z =0 (mod M)}

(Triple Matching) Output: ith output is
1{3j,k € [N] st. z+z+2=0 (mod M)}
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What we show (element matching problems)

» (Standard) self-att. unit can solve Pair Matching with m = O(d;,)
» “Third-order" self-att. unit can solve Triple Matching with m = O(dj,)

» Multi-headed self-att. layer requires Hm = Q(N) to solve Triple Matching
(4 almost matching upper bound)
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Self-attention solution (Pair Matching)

Main idea: Choose ¢: R%n — R™, W, Wi s.t. R
/ 4 1
(W4, oolenc(z)), Wip(enc(z ) =a COS(QW(]Z\;Z ) 6 g
> 10
5 10
S 9
4 1
7 8
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> 10
5 10
S 9
4 1
7 8
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Self-attention solution (Pair Matching)

Main idea: Choose ¢: R%n — R™, W, Wi s.t. R
/ 4 1
(Who(enc(z)), Wge(enc(z'))) = a COS(QW(]Z\;Z ) 6 g
> 10
5 10
S 9
4 1
7 8
3 2

Large enough a = O(M?log N) ensures we can distinguish between
» z,'s with at least one match

» z;'s with no matches

(Dummy element supplies W ¢(enc(L)) # Wi ¢(enc(z;))
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Lower bound for self-attention layers (Triple Matching)

Every H-headed self-attention layer with embedding dimension m that solves
Triple Matching requires H x m = Q(N)
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Lower bound for self-attention layers (Triple Matching)

Every H-headed self-attention layer with embedding dimension m that solves
Triple Matching requires H x m = Q(N)
» Reduction from DISJOINTNESS problem
Input: Alice has a € {0,1}", Bob has b € {0,1}"
Goal: After some communication, Bob determines if Vi € [n], a; Ab; =0
Lower bound (Yao, 1979): Alice and Bob must exchange at least n bits
» Create input = for Triple Matching from a and b (with N = 2n 4 1):

B {enc(l) ifa, =0

' enc(i+1) ifa; =1
Tn4i = . .
* enc(M — (i+1)) ifb;, =1<—— " triple match with

4  Nth query iff
Zont+1 = enc(0) DISJ(a,b) =0
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H-headed self-attention layer with embedding dimension m for Triple Matching
provides a communication protocol using H X m x poly log(N) bits
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provides a communication protocol using H X m x poly log(N) bits

Main idea: Alice & Bob can jointly compute (2n + 1)th output

Alice’s
Alice’s Bob’s

softmax

Bob’s

qb(h)(enc(()))TWg‘)

1. Alice sends parts of softmax normalization terms to Bob

2. Bob completes softmax normalization terms; sends back to Alice
3. Alice sends partial weighted averages of “values” to Bob

4. Bob completes computation of weighted averages of “values”

25 /28



Lower bounds for L-layer transformers with L > 1

We conjecture (and wanted to prove):

Every transformer requires L x H x m = N to solve Triple Matching
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Easier variants of Triple Matching

» Variant 1 (family of hard instances for . = 1 lower bound):
xn = 0 and only care about Nth output

There is a L = 2 transformer solution with H = 1 and m = O(d;y)

(This separates efficient L = 1 transformers from efficient L = 2 transformers)
» Variant 2 (“Local” Triple Matching): ith output is
1{3j,kei—T,i+T] st. z+z+2z=0 (mod M)}

Can reduce to gSA problem with ¢ = O(T) and dy, = O(T)

27 /28
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%1lion@: FAIR’s paper seems to concentrate solely on the convolutional aspect
%of their model and have the attention as an after thought almost, this gives
%us a good opportunity to differentiate ourselves from their paper.

%We are simpler in a number of ways and should have the simplicity as a big selling point:
%\begin{itemize}

%\item No convolutions

%\item No need for such careful initializations and
Jnormalization.

%\item Simpler non-lineararities, they use the gated linear
Junits.

%\item Less layers?

%\end{itemize}

%0ne thing we do more is that we have self attention.
%Another selling point is the increased interpretability as
%shown with the visualizations. Which comes from the
%simplicity and use of only attentions.



Third-order self-attention unit

Third-order self-attention unit:

F(X) = softmax((XWQ) (X WD) % (XW}?))T) (XWO) « (X))

where x is column-wise Kornecker product (a.k.a. Khatri-Rao product)



Graph self-attention unit

» Input: X € RY*N adjacency matrix of digraph G = (V, €) with V = [N]
» Graph self-attention unit:

Softmax(ff(X, (XWo)(XWi)T)) X Wy

where k: R — R is an arbitrary function applied element-wise



Directed 3-Cycle and Undirected 5-Cycle

(Directed 3-Cycle) Output: ith output is
{3j.k € [N] st (i,4), (), k), (k,i) € E}
(Undirected 5-Cycle) Output: ith output is

1{3j17j27j37j4 € [N] s.t. {iajl}a{jlan}v{j27j3}a{j37j4}7{j4’i} € g}



Model sizes

Model | Input size (V) | # Layers (L) | # Heads/layer (H) | Emb. dim. (m) | # nodes/¢

BERT 512 24
GPT-2 1K 12
GPT-3 2K 96

GPT-4 32K 120 7

1024 4K

768 ?

128 12K
? ?
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