Representational strengths and limitations of transformers

Daniel Hsu
Columbia University

Joint work with Clayton Sanford (Columbia) and Matus Telgarsky (NYU)

Yale S\&DS Seminar
November 27, 2023

Motivation

Transformer [Vaswani et al, 2017]: self-attention nets used in large language models

Motivation

Transformer [Vaswani et al, 2017]: self-attention nets used in large language models

- Alternative to "classical" neural network architectures, e.g.,
- fully-connected neural networks (FNNs)
- convolutional neural networks (CNNs)
- recurrent neural networks (RNNs)

Motivation

Transformer [Vaswani et al, 2017]: self-attention nets used in large language models

- Alternative to "classical" neural network architectures, e.g.,
- fully-connected neural networks (FNNs)
- convolutional neural networks (CNNs)
- recurrent neural networks (RNNs)
- Amazing theoretical capabilities
- Turing-completeness [Pérez, Barceló, Marinkovic, 2021; Wei, Chen, Ma, 2021; ...]
- Recognize formal languages [Bhattamishra, Ahuja, Goyal, 2020; Hahn, 2020; Yao, Peng, Papadimitriou,

Narasimhan, 2021; Hao, Angluin, Frank, 2022; Liu, Ash, Goel, Krishnamurthy, Zhang, 2022; Angluin, Chiang, Yang, 2023; ...]

- Solve inference/learning problems ("in-context learning") [Garg, Tsipras, Liang, Valiant, 2022; Akyürek, Schuurmans, Andreas, Ma, Zhou, 2022; Zhang, Frei, Bartlett, 2023; Abernethy, Agarwal, Marinov, Warmuth, 2023;

Bai, Chen, Wang, Xiong, Mei, 2023; ...]

- ...

What is special about transformers?

Transformers now underlie (many) learning-based used in NLP (and beyond)

What is special about transformers?

Transformers now underlie (many) learning-based used in NLP (and beyond)

- Succinct parameterization of sequence-to-sequence functions (?)
- Ability to capture "long-range interactions" (?)

"What does BERT look at?"

Attends to [SEP]

Attends to periods

"What does BERT look at?"

- Noun modifiers (e.g., determiners) attend to their noun
- 94.3% accuracy at the det relation

- Coreferent mentions attend to their antecedents
- 65.1% accuracy at linking the head of a coreferent mention to the head of an antecedent

Our research questions

For which problems are transformers especially well/ill-suited?

Our research questions

For which problems are transformers especially well/ill-suited?

- How do transformers compare to classical architectures?

Our research questions

For which problems are transformers especially well/ill-suited?

- How do transformers compare to classical architectures?
- How does complexity scale with input size N ?

Our research questions

For which problems are transformers especially well/ill-suited?

- How do transformers compare to classical architectures?
- How does complexity scale with input size N ?
- This work:

$$
\underbrace{N^{o(1)}}_{\text {"easy" }} \text { vs. } \underbrace{N^{\Omega(1)}}_{\text {"hard" }}
$$

Our research questions

For which problems are transformers especially well/ill-suited?

- How do transformers compare to classical architectures?
- How does complexity scale with input size N ?
- This work:

$$
\underbrace{N^{o(1)}}_{\text {"easy" }} \text { vs. } \underbrace{N^{\Omega(1)}}_{\text {"hard" }}
$$

What we do: Formalize advantages of transformers over classical architectures (as well as limitations of transformers) in terms of "communication" bottlenecks

Caveat

Results are only about representational strengths/limitations of transformers (No direct analysis of learning/generalization)

Outline of talk

1. Transformers $101+$ our results
2. Sparse Averaging
3. Element matching problems
4. Transformers $101+$ our results

What is a self-attention unit?

What is a self-attention unit?

Self-attention unit: mapping of N-tuples from $\mathcal{X}=\mathbb{R}^{d_{\text {in }}}$ to N-tuples from $\overline{\mathcal{Y}}=\mathbb{R}^{d_{\text {out }}}$ of a particular parametric form

What is a self-attention unit?

Self-attention unit: mapping of N-tuples from $\mathcal{X}=\mathbb{R}^{d_{\text {in }}}$ to N-tuples from $\overline{\mathcal{Y}}=\mathbb{R}^{d_{\text {out }}}$ of a particular parametric form

What is a self-attention unit?

Self-attention unit: mapping of N-tuples from $\mathcal{X}=\mathbb{R}^{d_{\text {in }}}$ to N-tuples from $\overline{\mathcal{Y}}=\mathbb{R}^{d_{\text {out }}}$ of a particular parametric form

$$
\operatorname{att}(X)=\operatorname{softmax}\left(\left(X W_{Q}\right)\left(X W_{K}\right)^{\top}\right) X W_{V}
$$

- Parameters: $W_{Q}, W_{K} \in \mathbb{R}^{d_{\text {in }} \times m}, W_{V} \in \mathbb{R}^{d_{\text {in }} \times d_{\text {out }}}$ (query, key, \& value params.)
- $m=$ (internal) embedding dimension
- softmax is applied row-wise:

$$
\operatorname{softmax}(M)_{i, j}=\frac{\exp \left(M_{i, j}\right)}{\sum_{k=1}^{N} \exp \left(M_{i, k}\right)}
$$

What is a self-attention unit?

Self-attention unit: mapping of N-tuples from $\mathcal{X}=\mathbb{R}^{d_{\text {in }}}$ to N-tuples from $\overline{\mathcal{Y}}=\mathbb{R}^{d_{\text {out }}}$ of a particular parametric form

$$
\operatorname{att}(X)=\operatorname{softmax}\left(\left(X W_{Q}\right)\left(X W_{K}\right)^{\top}\right) X W_{V}
$$

- Parameters: $W_{Q}, W_{K} \in \mathbb{R}^{d_{\mathrm{in}} \times m}, W_{V} \in \mathbb{R}^{d_{\mathrm{in}} \times d_{\text {out }}}$ (query, key, \& value params.)
- $m=$ (internal) embedding dimension
- softmax is applied row-wise:

$$
\operatorname{softmax}(M)_{i, j}=\frac{\exp \left(M_{i, j}\right)}{\sum_{k=1}^{N} \exp \left(M_{i, k}\right)}
$$

- Mapping is permutation-equivariant
- Each row of $\operatorname{att}(X)$ is in convex hull of $\left\{\right.$ rows of $\left.X W_{V}\right\}$

What is a transformer?

- H-headed self-attention layer: sum of H self-attention units

$$
X \mapsto \sum_{h=1}^{H} \mathrm{att}_{W_{Q}^{(h)}, W_{K}^{(h)}, W_{V}^{(h)}}(X)
$$

What is a transformer?

- H-headed self-attention layer: sum of H self-attention units

$$
X \mapsto \sum_{h=1}^{H} \mathrm{att}_{W_{Q}^{(h)}, W_{K}^{(h)}, W_{V}^{(h)}}(X)
$$

- Transformer: composition of multi-headed self-attention layers

What is a transformer?

- H-headed self-attention layer: sum of H self-attention units

$$
X \mapsto \sum_{h=1}^{H} \operatorname{att}_{W_{Q}^{(h)}, W_{K}^{(h)}, W_{V}^{(h)}}(X)
$$

- Transformer: composition of multi-headed self-attention layers
- Each self-attention unit is also allowed to process each element of input tuple using a feedforward neural network

$$
\phi: \mathbb{R}^{d_{\mathrm{in}}} \rightarrow \mathbb{R}^{d_{\mathrm{in}}^{\prime}}
$$

(same ϕ is applied to each element of input tuple) with $d_{\mathrm{in}}^{\prime}=O(m)$

- Can also process output tuple with some $\phi: \mathbb{R}^{d_{\text {out }}^{\prime}} \rightarrow \mathbb{R}^{d_{\text {out }}}, d_{\text {out }}^{\prime}=O(\mathrm{~m})$

What is a transformer?

- H-headed self-attention layer: sum of H self-attention units

$$
X \mapsto \sum_{h=1}^{H} \operatorname{att}_{W_{Q}^{(h)}, W_{K}^{(h)}, W_{V}^{(h)}}(X)
$$

- Transformer: composition of multi-headed self-attention layers
- Each self-attention unit is also allowed to process each element of input tuple using a feedforward neural network

$$
\phi: \mathbb{R}^{d_{\mathrm{in}}} \rightarrow \mathbb{R}^{d_{\mathrm{in}}^{\prime}}
$$

(same ϕ is applied to each element of input tuple) with $d_{\mathrm{in}}^{\prime}=O(m)$

- Can also process output tuple with some $\phi: \mathbb{R}^{d_{\text {out }}^{\prime}} \rightarrow \mathbb{R}^{d_{\text {out }}}, d_{\text {out }}^{\prime}=O(m)$
- ϕ 's are akin to "activation functions" in classical architectures

Our research questions

For which problems are transformers especially well/ill-suited?

- How do transformers compare to classical architectures?
- How does complexity scale with input size N ?
- This work:

$$
\underbrace{N^{o(1)}}_{\text {"easy" }} \text { vs. } \underbrace{N^{\Omega(1)}}_{\text {"hard" }}
$$

Our research questions

For which problems are transformers especially well/ill-suited?

- How do transformers compare to classical architectures?
- How does complexity scale with input size N ?
- This work:

$$
\underbrace{N^{o(1)}}_{\text {"easy" }} \text { vs. } \underbrace{N^{\Omega(1)}}_{\text {"hard" }}
$$

- Allow element-wise maps ϕ to be arbitrary functions
- How must "size" parameters L, H, m grow with N ?

Our results

- On a sparse decoding problem: "Sparse Averaging"
- On element matching problems: "Pair/Triple Matching"

Our results

- On a sparse decoding problem: "Sparse Averaging"
- Self-att. unit with $m=O\left(d_{\text {in }}+q \log N\right)$ suffices for sparsity level q^{1}
- Every FNN requires width $\Omega(N)$ even if $q=1, d_{\text {in }}=\tilde{O}(1)$
- Every RNN requires hidden state of $\Omega(N)$ bits even if $q=1, d_{\text {in }}=\tilde{O}(1)$
- On element matching problems: "Pair/Triple Matching"

[^0]
Our results

- On a sparse decoding problem: "Sparse Averaging"
- Self-att. unit with $m=O\left(d_{\text {in }}+q \log N\right)$ suffices for sparsity level q^{1}
- Every FNN requires width $\Omega(N)$ even if $q=1, d_{\text {in }}=\tilde{O}(1)$
- Every RNN requires hidden state of $\Omega(N)$ bits even if $q=1, d_{\text {in }}=\tilde{O}(1)$
- On element matching problems: "Pair/Triple Matching" ${ }^{2}$
- (Standard) self-att. unit can solve Pair Matching with $m=O\left(d_{\text {in }}\right)$
- "Third-order" self-att. unit can solve Triple Matching with $m=O\left(d_{\text {in }}\right)$

[^1]
Our results

- On a sparse decoding problem: "Sparse Averaging"
- Self-att. unit with $m=O\left(d_{\text {in }}+q \log N\right)$ suffices for sparsity level q^{1}
- Every FNN requires width $\Omega(N)$ even if $q=1, d_{\text {in }}=\tilde{O}(1)$
- Every RNN requires hidden state of $\Omega(N)$ bits even if $q=1, d_{\text {in }}=\tilde{O}(1)$
- On element matching problems: "Pair/Triple Matching" ${ }^{2}$
- (Standard) self-att. unit can solve Pair Matching with $m=O\left(d_{\text {in }}\right)$
- "Third-order" self-att. unit can solve Triple Matching with $m=O\left(d_{\text {in }}\right)$
- Multi-headed self-att. layer requires $H m=\tilde{\Omega}(N)$ to solve Triple Matching ${ }^{3}$

[^2]
Our results

- On a sparse decoding problem: "Sparse Averaging"
- Self-att. unit with $m=O\left(d_{\text {in }}+q \log N\right)$ suffices for sparsity level q^{1}
- Every FNN requires width $\Omega(N)$ even if $q=1, d_{\text {in }}=\tilde{O}(1)$
- Every RNN requires hidden state of $\Omega(N)$ bits even if $q=1, d_{\text {in }}=\tilde{O}(1)$
- On element matching problems: "Pair/Triple Matching" ${ }^{2}$
- (Standard) self-att. unit can solve Pair Matching with $m=O\left(d_{\text {in }}\right)$
- "Third-order" self-att. unit can solve Triple Matching with $m=O\left(d_{\text {in }}\right)$
- Multi-headed self-att. layer requires $H m=\tilde{\Omega}(N)$ to solve Triple Matching ${ }^{3}$
- Conjecture: Transformer requires $L H m=\tilde{\Omega}\left(N^{\Omega(1)}\right)$ to solve Triple Matching

[^3]
Our results

- On a sparse decoding problem: "Sparse Averaging"
- Self-att. unit with $m=O\left(d_{\text {in }}+q \log N\right)$ suffices for sparsity level q^{1}
- Every FNN requires width $\Omega(N)$ even if $q=1, d_{\text {in }}=\tilde{O}(1)$
- Every RNN requires hidden state of $\Omega(N)$ bits even if $q=1, d_{\text {in }}=\tilde{O}(1)$
- On element matching problems: "Pair/Triple Matching" ${ }^{2}$
- (Standard) self-att. unit can solve Pair Matching with $m=O\left(d_{\text {in }}\right)$
- "Third-order" self-att. unit can solve Triple Matching with $m=O\left(d_{\text {in }}\right)$
- Multi-headed self-att. layer requires $H m=\tilde{\Omega}(N)$ to solve Triple Matching ${ }^{3}$
- Conjecture: Transformer requires $L H m=\tilde{\Omega}\left(N^{\Omega(1)}\right)$ to solve Triple Matching

[^4]2. Sparse Averaging

q-Sparse Averaging ($q \mathrm{SA}$)

Input: $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ where

$$
x_{i}=\left(\operatorname{enc}(i), \operatorname{enc}\left(S_{i}\right), v_{i}\right) \in \mathbb{R}^{d_{\mathrm{in}}}, \quad d_{\mathrm{in}}=O(d+(q+1) \log N)
$$

and

$$
\begin{array}{cl}
1,2, \ldots, N & \text { are the "keys" } \\
S_{1}, S_{2}, \ldots, S_{N} \in\binom{[N]}{q} & \text { are the "queries" } \\
v_{1}, v_{2}, \ldots, v_{N} \in \mathbb{R}^{d} & \text { are the "values" (with } \left.\left\|v_{i}\right\| \leq 1\right)
\end{array}
$$

q-Sparse Averaging ($q \mathrm{SA}$)

Input: $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ where

$$
x_{i}=\left(\operatorname{enc}(i), \operatorname{enc}\left(S_{i}\right), v_{i}\right) \in \mathbb{R}^{d_{\mathrm{in}}}, \quad d_{\mathrm{in}}=O(d+(q+1) \log N)
$$

and

$$
\begin{array}{cl}
1,2, \ldots, N & \text { are the "keys" } \\
S_{1}, S_{2}, \ldots, S_{N} \in\binom{[N]}{q} & \text { are the "queries" } \\
v_{1}, v_{2}, \ldots, v_{N} \in \mathbb{R}^{d} & \text { are the "values" (with } \left.\left\|v_{i}\right\| \leq 1\right)
\end{array}
$$

Output: N vectors in $\mathbb{R}^{d_{\text {out }}}$ with $d_{\text {out }}=d$, where i th output vector is

$$
\approx \frac{1}{q} \sum_{j \in S_{i}} v_{j}
$$

What we show ($q \mathrm{SA}$)

- Self-att. unit with $m=O\left(d_{\mathrm{in}}+q \log N\right)$ suffices for sparsity level q (+ almost matching lower bound)
- Every FNN requires width $\Omega(N)$ even if $q=1, d_{\text {in }}=\tilde{O}(1)$
- Every RNN requires hidden state of $\Omega(N)$ bits even if $q=1, d_{\mathrm{in}}=\tilde{O}(1)$

Self-attention solution (overview)

Design $\phi: \mathbb{R}^{d_{\mathrm{in}}} \rightarrow \mathbb{R}^{d_{\mathrm{in}}^{\prime}}, W_{Q}, W_{K} \in \mathbb{R}^{d_{\mathrm{in}}^{\prime} \times m}, W_{V} \in \mathbb{R}^{m \times d_{\text {out }}}$ such that

$$
\operatorname{softmax}\left(\left(\phi(X) W_{Q}\right)\left(\phi(X) W_{K}\right)^{\top}\right)_{i, j} \approx \begin{cases}1 / q & \text { if } S_{i} \ni j \\ 0 & \text { if } S_{i} \not \supset j\end{cases}
$$

and

$$
\phi(X) W_{Q}=\left[\begin{array}{ccc}
\longleftarrow & w_{S_{1}}^{\top} & \longrightarrow \\
\vdots & \\
\longleftarrow & w_{S_{N}}^{\top} & \longrightarrow
\end{array}\right], \quad\left(\phi(X) W_{K}\right)^{\top}=\left[\begin{array}{ccc}
\uparrow & & \uparrow \\
u_{1} & \cdots & u_{N} \\
\downarrow & & \downarrow
\end{array}\right], \phi(X) W_{V}=\left[\begin{array}{ccc}
\longleftarrow & v_{1}^{\top} & \longrightarrow \\
& \vdots & \\
\longleftarrow & v_{N}^{\top} & \longrightarrow
\end{array}\right]
$$

Self-attention solution (overview)

Design $\phi: \mathbb{R}^{d_{\mathrm{in}}} \rightarrow \mathbb{R}^{d_{\mathrm{in}}^{\prime}}, W_{Q}, W_{K} \in \mathbb{R}^{d_{\text {in }}^{\prime} \times m}, W_{V} \in \mathbb{R}^{m \times d_{\text {out }}}$ such that

$$
\operatorname{softmax}\left(\left(\phi(X) W_{Q}\right)\left(\phi(X) W_{K}\right)^{\top}\right)_{i, j} \approx \begin{cases}1 / q & \text { if } S_{i} \ni j \\ 0 & \text { if } S_{i} \not \supset j\end{cases}
$$

and

$$
\phi(X) W_{Q}=\left[\begin{array}{ccc}
\longleftarrow & w_{S_{1}}^{\top} & \longrightarrow \\
\vdots & \\
\longleftarrow & w_{S_{N}}^{\top} & \longrightarrow
\end{array}\right], \quad\left(\phi(X) W_{K}\right)^{\top}=\left[\begin{array}{ccc}
\uparrow & & \uparrow \\
u_{1} & \cdots & u_{N} \\
\downarrow & & \downarrow
\end{array}\right], \phi(X) W_{V}=\left[\begin{array}{ccc}
\longleftarrow & v_{1}^{\top} & \longrightarrow \\
& \vdots & \\
\longleftarrow & v_{N}^{\top} & \longrightarrow
\end{array}\right]
$$

ϕ will do most of the work; W_{Q}, W_{K}, W_{V} extract relevant parts of each $\phi\left(x_{i}\right)$

Empirical solution

"Attention matrices" softmax $\left(\left(\phi(X) W_{Q}\right)\left(\phi(X) W_{K}\right)^{\top}\right) \in \mathbb{R}^{20 \times 20}$ for same fixed X, after training transformer for T epochs to solve q SA with $q=3$

$T=0$

$T=1000$

$T=40000$

Construction using q-neighborly $0 / 1$ polytopes

[Candès \& Tao, 2005] There exist $u_{1}, u_{2}, \ldots, u_{N} \in\left\{ \pm \frac{1}{\sqrt{k}}\right\}^{k}$ with $k=O(q \log N)$, such that, for every $S \in\binom{[N]}{q}$, there exists $w_{S} \in \mathbb{R}^{k}$ satisfying

$$
\begin{aligned}
\left\|w_{S}\right\| & \leq 2 \sqrt{q} & & \\
\left\langle w_{S}, u_{j}\right\rangle & =1 & & \text { for all } j \in S \\
\mid\left\langle w_{S}, u_{j}\right\rangle & \leq 1 / 2 & & \text { for all } j \notin S
\end{aligned}
$$

Construction using q-neighborly $0 / 1$ polytopes

[Candès \& Tao, 2005] There exist $u_{1}, u_{2}, \ldots, u_{N} \in\left\{ \pm \frac{1}{\sqrt{k}}\right\}^{k}$ with $k=O(q \log N)$, such that, for every $S \in\binom{[N]}{q}$, there exists $w_{S} \in \mathbb{R}^{k}$ satisfying

$$
\begin{aligned}
\left\|w_{S}\right\| & \leq 2 \sqrt{q} & & \\
\left\langle w_{S}, u_{j}\right\rangle & =1 & & \text { for all } j \in S \\
\mid\left\langle w_{S}, u_{j}\right\rangle & \leq 1 / 2 & & \text { for all } j \notin S
\end{aligned}
$$

Construction using q-neighborly $0 / 1$ polytopes

[Candès \& Tao, 2005] There exist $u_{1}, u_{2}, \ldots, u_{N} \in\left\{ \pm \frac{1}{\sqrt{k}}\right\}^{k}$ with $k=O(q \log N)$, such that, for every $S \in\binom{[N]}{q}$, there exists $w_{S} \in \mathbb{R}^{k}$ satisfying

$$
\begin{aligned}
\left\|w_{S}\right\| & \leq 2 \sqrt{q} & & \\
\left\langle w_{S}, u_{j}\right\rangle & =1 & & \text { for all } j \in S \\
\mid\left\langle w_{S}, u_{j}\right\rangle & \leq 1 / 2 & & \text { for all } j \notin S
\end{aligned}
$$

Our $\phi: \mathbb{R}^{d_{\mathrm{in}}} \rightarrow \mathbb{R}^{d_{\mathrm{in}}^{\prime}}$ with $d_{\mathrm{in}}^{\prime}=O(d+q \log N)$ is

$$
\phi\left(\operatorname{enc}(i), \operatorname{enc}\left(S_{i}\right), v_{i}\right)=\left(u_{i}, \alpha w_{S_{i}}, v_{i}\right)
$$

for suitably large $\alpha>0$

(Simplified) lower bound for RNNs

Every RNN that computes $q \mathrm{SA}_{N}(q=d=1)$ requires $\Omega(N)$ bit hidden state

(Simplified) lower bound for RNNs

Every RNN that computes $q \operatorname{SA}_{N}(q=d=1)$ requires $\Omega(N)$ bit hidden state

- Reduction from INDEX problem ($n=N-1$)

Input: Alice has $a \in\{0,1\}^{n}$, Bob has $b \in[n]$
Goal: After Alice sends Bob a message, Bob outputs a_{b}
Pigeonhole principle lower bound: Alice must send at least n bits

(Simplified) lower bound for RNNs

Every RNN that computes $q \operatorname{SA}_{N}(q=d=1)$ requires $\Omega(N)$ bit hidden state

- Reduction from INDEX problem $(n=N-1)$ Input: Alice has $a \in\{0,1\}^{n}$, Bob has $b \in[n]$ Goal: After Alice sends Bob a message, Bob outputs a_{b} Pigeonhole principle lower bound: Alice must send at least n bits
- Consider any RNN that processes $\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)$ one element at a time and produces correct $(n+1)$ th output

(Simplified) lower bound for RNNs

Every RNN that computes $q \mathrm{SA}_{N}(q=d=1)$ requires $\Omega(N)$ bit hidden state

- Reduction from INDEX problem $(n=N-1)$ Input: Alice has $a \in\{0,1\}^{n}$, Bob has $b \in[n]$ Goal: After Alice sends Bob a message, Bob outputs a_{b} Pigeonhole principle lower bound: Alice must send at least n bits
- Consider any RNN that processes $\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)$ one element at a time and produces correct $(n+1)$ th output

Alice Bob

(Simplified) lower bound for RNNs

Every RNN that computes $q \operatorname{SA}_{N}(q=d=1)$ requires $\Omega(N)$ bit hidden state

- Reduction from INDEX problem $(n=N-1)$

Input: Alice has $a \in\{0,1\}^{n}$, Bob has $b \in[n]$
Goal: After Alice sends Bob a message, Bob outputs a_{b}
Pigeonhole principle lower bound: Alice must send at least n bits

- Consider any RNN that processes $\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)$ one element at a time and produces correct $(n+1)$ th output

Alice

$$
x_{i}=\left(\operatorname{enc}(i), \operatorname{enc}(\emptyset), a_{i}\right) \quad \text { for all } i \in[N]
$$

(Alice sends nth hidden state to Bob)

$$
x_{n+1}=(\operatorname{enc}(n+1), \operatorname{enc}(\{b\}), 0)
$$

3. Element matching problems

Pair and Triple Matching

Input: $\left(x_{0}, x_{1}, x_{2}, \ldots, x_{N}\right)$ where
dummy element: $\quad x_{0}=\operatorname{enc}(\perp), \quad$ (for technical reasons)
for all $i \in[N]: \quad x_{i}=\operatorname{enc}\left(z_{i}\right), \quad z_{i} \in\{1,2, \ldots, M\}$
and $N \ll M=\operatorname{poly}(N)$

Pair and Triple Matching

Input: $\left(x_{0}, x_{1}, x_{2}, \ldots, x_{N}\right)$ where

$$
\begin{array}{rll}
\text { dummy element: } & x_{0}=\operatorname{enc}(\perp), & \\
\text { (for technical reasons) } \\
\text { for all } i \in[N]: & x_{i}=\operatorname{enc}\left(z_{i}\right), & z_{i} \in\{1,2, \ldots, M\}
\end{array}
$$

and $N \ll M=\operatorname{poly}(N)$
(Pair Matching) Output: i th output is

$$
\mathbb{1}\left\{\exists j \in[N] \quad \text { s.t. } \quad z_{i}+z_{j}=0 \quad(\bmod M)\right\}
$$

Pair and Triple Matching

Input: $\left(x_{0}, x_{1}, x_{2}, \ldots, x_{N}\right)$ where

$$
\begin{array}{rll}
\text { dummy element: } & x_{0}=\operatorname{enc}(\perp), & \\
\text { (for technical reasons) } \\
\text { for all } i \in[N]: & x_{i}=\operatorname{enc}\left(z_{i}\right), & z_{i} \in\{1,2, \ldots, M\}
\end{array}
$$

and $N \ll M=\operatorname{poly}(N)$
(Pair Matching) Output: i th output is

$$
\mathbb{1}\left\{\exists j \in[N] \quad \text { s.t. } \quad z_{i}+z_{j}=0 \quad(\bmod M)\right\}
$$

(Triple Matching) Output: i th output is

$$
\mathbb{1}\left\{\exists j, k \in[N] \quad \text { s.t. } \quad z_{i}+z_{j}+z_{k}=0 \quad(\bmod M)\right\}
$$

What we show (element matching problems)

- (Standard) self-att. unit can solve Pair Matching with $m=O\left(d_{\text {in }}\right)$
- "Third-order" self-att. unit can solve Triple Matching with $m=O\left(d_{\text {in }}\right)$
- Multi-headed self-att. layer requires $H m=\tilde{\Omega}(N)$ to solve Triple Matching (+ almost matching upper bound)

Self-attention solution (Pair Matching)

Main idea: Choose $\phi: \mathbb{R}^{d_{\mathrm{in}}} \rightarrow \mathbb{R}^{m}, W_{Q}, W_{K}$ s.t.

$$
\left\langle W_{Q}^{\top} \phi(\operatorname{enc}(z)), W_{K}^{\top} \phi\left(\operatorname{enc}\left(z^{\prime}\right)\right)\right\rangle=\alpha \cos \left(\frac{2 \pi\left(z+z^{\prime}\right)}{M}\right)
$$

Self-attention solution (Pair Matching)

Main idea: Choose $\phi: \mathbb{R}^{d_{\text {in }}} \rightarrow \mathbb{R}^{m}, W_{Q}, W_{K}$ s.t.

$$
\left\langle W_{Q}^{\top} \phi(\operatorname{enc}(z)), W_{K}^{\top} \phi\left(\operatorname{enc}\left(z^{\prime}\right)\right)\right\rangle=\alpha \cos \left(\frac{2 \pi\left(z+z^{\prime}\right)}{M}\right)
$$

Large enough $\alpha=O\left(M^{2} \log N\right)$ ensures we can distinguish between

- z_{i} 's with at least one match
- z_{i} 's with no matches

Self-attention solution (Pair Matching)

Main idea: Choose $\phi: \mathbb{R}^{d_{\text {in }}} \rightarrow \mathbb{R}^{m}, W_{Q}, W_{K}$ s.t.

$$
\left\langle W_{Q}^{\top} \phi(\operatorname{enc}(z)), W_{K}^{\top} \phi\left(\operatorname{enc}\left(z^{\prime}\right)\right)\right\rangle=\alpha \cos \left(\frac{2 \pi\left(z+z^{\prime}\right)}{M}\right)
$$

Large enough $\alpha=O\left(M^{2} \log N\right)$ ensures we can distinguish between

- z_{i} 's with at least one match
- z_{i} 's with no matches
(Dummy element supplies $W_{V}^{\top} \phi(\operatorname{enc}(\perp)) \neq W_{V}^{\top} \phi\left(\operatorname{enc}\left(z_{i}\right)\right)$

Lower bound for self-attention layers (Triple Matching)

Every H-headed self-attention layer with embedding dimension m that solves Triple Matching requires $H \times m=\tilde{\Omega}(N)$

Lower bound for self-attention layers (Triple Matching)

Every H-headed self-attention layer with embedding dimension m that solves Triple Matching requires $H \times m=\tilde{\Omega}(N)$

- Reduction from DISJOINTNESS problem

Input: Alice has $a \in\{0,1\}^{n}$, Bob has $b \in\{0,1\}^{n}$
Goal: After some communication, Bob determines if $\forall i \in[n], a_{i} \wedge b_{i}=0$ Lower bound (Yao, 1979): Alice and Bob must exchange at least n bits

Lower bound for self-attention layers (Triple Matching)

Every H-headed self-attention layer with embedding dimension m that solves Triple Matching requires $H \times m=\tilde{\Omega}(N)$

- Reduction from DISJOINTNESS problem Input: Alice has $a \in\{0,1\}^{n}$, Bob has $b \in\{0,1\}^{n}$ Goal: After some communication, Bob determines if $\forall i \in[n], a_{i} \wedge b_{i}=0$ Lower bound (Yao, 1979): Alice and Bob must exchange at least n bits
- Create input x for Triple Matching from a and b (with $N=2 n+1$):

$$
\begin{aligned}
& x_{i}= \begin{cases}\operatorname{enc}(1) & \text { if } a_{i}=0 \\
\operatorname{enc}(i+1) & \text { if } a_{i}=1\end{cases} \\
& x_{n+i}= \begin{cases}\operatorname{enc}(1) & \text { if } b_{i}=0 \\
\operatorname{enc}(M-(i+1)) & \text { if } b_{i}=1\end{cases} \\
& \begin{array}{l}
\text { triple match with } \\
\text { Nth query iff }
\end{array} \\
& x_{2 n+1}=\operatorname{enc}(0) \\
& \operatorname{DISJ}(a, b)=0
\end{aligned}
$$

H-headed self-attention layer with embedding dimension m for Triple Matching provides a communication protocol using $H \times m \times$ poly $\log (N)$ bits
H-headed self-attention layer with embedding dimension m for Triple Matching provides a communication protocol using $H \times m \times$ poly $\log (N)$ bits

Main idea: Alice \& Bob can jointly compute $(2 n+1)$ th output

H-headed self-attention layer with embedding dimension m for Triple Matching provides a communication protocol using $H \times m \times$ poly $\log (N)$ bits

Main idea: Alice \& Bob can jointly compute $(2 n+1)$ th output

1. Alice sends parts of softmax normalization terms to Bob
H-headed self-attention layer with embedding dimension m for Triple Matching provides a communication protocol using $H \times m \times$ poly $\log (N)$ bits

Main idea: Alice \& Bob can jointly compute $(2 n+1)$ th output

1. Alice sends parts of softmax normalization terms to Bob
2. Bob completes softmax normalization terms; sends back to Alice
H-headed self-attention layer with embedding dimension m for Triple Matching provides a communication protocol using $H \times m \times$ poly $\log (N)$ bits

Main idea: Alice \& Bob can jointly compute $(2 n+1)$ th output

1. Alice sends parts of softmax normalization terms to Bob
2. Bob completes softmax normalization terms; sends back to Alice
3. Alice sends partial weighted averages of "values" to Bob
H-headed self-attention layer with embedding dimension m for Triple Matching provides a communication protocol using $H \times m \times \operatorname{poly} \log (N)$ bits

Main idea: Alice \& Bob can jointly compute $(2 n+1)$ th output

1. Alice sends parts of softmax normalization terms to Bob
2. Bob completes softmax normalization terms; sends back to Alice
3. Alice sends partial weighted averages of "values" to Bob
4. Bob completes computation of weighted averages of "values"

Lower bounds for L-layer transformers with $L>1$

We conjecture (and wanted to prove):
Every transformer requires $L \times H \times m=N^{\Omega(1)}$ to solve Triple Matching

Lower bounds for L-layer transformers with $L>1$

We conjecture (and wanted to prove):
Every transformer requires $L \times H \times m=N^{\Omega(1)}$ to solve Triple Matching

Instead we proved
Every "graph transformer" requires $L H m=\tilde{\Omega}(N)$ to solve Directed 3-Cycle (But efficiently solved by a "higher-order graph self-attention unit")

Lower bounds for L-layer transformers with $L>1$

We conjecture (and wanted to prove):
Every transformer requires $L \times H \times m=N^{\Omega(1)}$ to solve Triple Matching

Instead we proved
Every "graph transformer" requires $L H m=\tilde{\Omega}(N)$ to solve Directed 3-Cycle (But efficiently solved by a "higher-order graph self-attention unit")

Easier variants of Triple Matching

Easier variants of Triple Matching

- Variant 1 (family of hard instances for $L=1$ lower bound): $x_{N}=0$ and only care about N th output

Easier variants of Triple Matching

- Variant 1 (family of hard instances for $L=1$ lower bound): $x_{N}=0$ and only care about N th output

There is a $L=2$ transformer solution with $H=1$ and $m=O\left(d_{\text {in }}\right)$
(This separates efficient $L=1$ transformers from efficient $L=2$ transformers)

Easier variants of Triple Matching

- Variant 1 (family of hard instances for $L=1$ lower bound):
$x_{N}=0$ and only care about N th output
There is a $L=2$ transformer solution with $H=1$ and $m=O\left(d_{\text {in }}\right)$
(This separates efficient $L=1$ transformers from efficient $L=2$ transformers)
- Variant 2 ("Local" Triple Matching): ith output is

$$
\mathbb{1}\left\{\exists j, k \in[i-T, i+T] \quad \text { s.t. } \quad z_{i}+z_{j}+z_{k}=0 \quad(\bmod M)\right\}
$$

Easier variants of Triple Matching

- Variant 1 (family of hard instances for $L=1$ lower bound):
$x_{N}=0$ and only care about N th output
There is a $L=2$ transformer solution with $H=1$ and $m=O\left(d_{\text {in }}\right)$
(This separates efficient $L=1$ transformers from efficient $L=2$ transformers)
- Variant 2 ("Local" Triple Matching): ith output is

$$
\mathbb{1}\left\{\exists j, k \in[i-T, i+T] \quad \text { s.t. } \quad z_{i}+z_{j}+z_{k}=0 \quad(\bmod M)\right\}
$$

Can reduce to q SA problem with $q=O(T)$ and $d_{\text {in }}=\tilde{O}(T)$

Conclusion and future work

- Transformers offer some natural advantages over FNNs, RNNs

Conclusion and future work

- Transformers offer some natural advantages over FNNs, RNNs
- Pair Matching is a canonical easy problem for Transformer

Conclusion and future work

- Transformers offer some natural advantages over FNNs, RNNs
- Pair Matching is a canonical easy problem for Transformer
- Some reasons to think Triple Matching is canonical hard problem

Conclusion and future work

- Transformers offer some natural advantages over FNNs, RNNs
- Pair Matching is a canonical easy problem for Transformer
- Some reasons to think Triple Matching is canonical hard problem
- Also to-do:
- Learning/generalization theory? [Edelman, Goel, Kakade, Zhang, 2022]
- Pair-wise nature of "real problems" solved by Transformers?

Conclusion and future work

- Transformers offer some natural advantages over FNNs, RNNs
- Pair Matching is a canonical easy problem for Transformer
- Some reasons to think Triple Matching is canonical hard problem
- Also to-do:
- Learning/generalization theory? [Edelman, Goel, Kakade, Zhang, 2022]
- Pair-wise nature of "real problems" solved by Transformers?

Thank you!

\%llion@: FAIR's paper seems to concentrate solely on the convolutional aspect \%of their model and have the attention as an after thought almost, this gives \%us a good opportunity to differentiate ourselves from their paper.
\%We are simpler in a number of ways and should have the simplicity as a big selling point: \% \begin\{itemize\} }
\% - No convolutions
\%
- No need for such careful initializations and \%normalization.
\%
- Simpler non-lineararities, they use the gated linear \%units.
\%
- Less layers?
\(\%\) \end\{itemize\} }
\(\%\) One thing we do more is that we have self attention. \%Another selling point is the increased interpretability as \%shown with the visualizations. Which comes from the \%simplicity and use of only attentions.

Third-order self-attention unit

Third-order self-attention unit:

$$
f(X)=\operatorname{softmax}\left(\left(X W_{Q}\right)\left(\left(X W_{K}^{(1)}\right) \star\left(X W_{K}^{(2)}\right)\right)^{\top}\right)\left(\left(X W_{V}^{(1)}\right) \star\left(X W_{V}^{(2)}\right)\right)
$$

where \star is column-wise Kornecker product (a.k.a. Khatri-Rao product)

Graph self-attention unit

- Input: $X \in \mathbb{R}^{N \times N}$, adjacency matrix of digraph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ with $\mathcal{V}=[N]$
- Graph self-attention unit:

$$
\operatorname{softmax}\left(\kappa\left(X,\left(X W_{Q}\right)\left(X W_{K}\right)^{\top}\right)\right) X W_{V}
$$

where $\kappa: \mathbb{R} \rightarrow \mathbb{R}$ is an arbitrary function applied element-wise

Directed 3-Cycle and Undirected 5-Cycle

(Directed 3-Cycle) Output: i th output is

$$
\mathbb{1}\{\exists j, k \in[N] \quad \text { s.t. } \quad(i, j),(j, k),(k, i) \in \mathcal{E}\}
$$

(Undirected 5-Cycle) Output: i th output is

$$
\mathbb{1}\left\{\exists j_{1}, j_{2}, j_{3}, j_{4} \in[N] \quad \text { s.t. } \quad\left\{i, j_{1}\right\},\left\{j_{1}, j_{2}\right\},\left\{j_{2}, j_{3}\right\},\left\{j_{3}, j_{4}\right\},\left\{j_{4}, i\right\} \in \mathcal{E}\right\}
$$

Model sizes

Model	Input size (N)	\# Layers (L)	\# Heads/layer (H)	Emb. dim. (m)	\# nodes $/ \phi$
BERT	512	24	16	1024	4 K
GPT-2	1 K	12	12	768	$?$
GPT-3	2 K	96	96	128	12 K
GPT-4	32 K	$120 ?$	$?$	$?$	$?$

[^0]: ${ }^{1}$ Also (almost) matching lower bound

[^1]: ${ }^{1}$ Also (almost) matching lower bound
 ${ }^{2}$ Lower bounds assume W^{\prime} 's and ϕ 's use poly $\log N$ bit precision numbers

[^2]: ${ }^{1}$ Also (almost) matching lower bound
 ${ }^{2}$ Lower bounds assume W 's and ϕ 's use poly $\log N$ bit precision numbers
 ${ }^{3}$ Also (almost) matching upper bound

[^3]: ${ }^{1}$ Also (almost) matching lower bound
 ${ }^{2}$ Lower bounds assume W 's and ϕ 's use poly $\log N$ bit precision numbers
 ${ }^{3}$ Also (almost) matching upper bound

[^4]: ${ }^{1}$ Also (almost) matching lower bound
 ${ }^{2}$ Lower bounds assume W 's and ϕ 's use poly $\log N$ bit precision numbers
 ${ }^{3}$ Also (almost) matching upper bound

