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Motivation

Transformer [Vaswani et al, 2017]: self-attention nets used in large language models

▶ Alternative to “classical” neural network architectures, e.g.,
▶ fully-connected neural networks (FNNs)
▶ convolutional neural networks (CNNs)
▶ recurrent neural networks (RNNs)

▶ Amazing theoretical capabilities
▶ Turing-completeness [Pérez, Barceló, Marinkovic, 2021; Wei, Chen, Ma, 2021; . . . ]

▶ Recognize formal languages [Bhattamishra, Ahuja, Goyal, 2020; Hahn, 2020; Yao, Peng, Papadimitriou,

Narasimhan, 2021; Hao, Angluin, Frank, 2022; Liu, Ash, Goel, Krishnamurthy, Zhang, 2022; Angluin, Chiang, Yang, 2023; . . . ]

▶ Solve inference/learning problems (“in-context learning”) [Garg, Tsipras, Liang, Valiant,

2022; Akyürek, Schuurmans, Andreas, Ma, Zhou, 2022; Zhang, Frei, Bartlett, 2023; Abernethy, Agarwal, Marinov, Warmuth, 2023;

Bai, Chen, Wang, Xiong, Mei, 2023; . . . ]

▶ . . .
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What is special about transformers?

Transformers now underlie (many) learning-based used in NLP (and beyond)

▶ Succinct parameterization of sequence-to-sequence functions (?)

▶ Ability to capture “long-range interactions” (?)
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“What does BERT look at?” [Clark, Khandelwal, Levy, Manning, 2019]

 Head 1-1 
 

Attends broadly 
 
 

Head 3-1 
 

Attends to next token 
 
 

Head 8-7 
 

Attends to [SEP] 
 
 

Head 11-6 
 

Attends to periods 
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“What does BERT look at?” [Clark, Khandelwal, Levy, Manning, 2019]

 

Head 9-6 
 

- Prepositions attend to their objects 
 

- 76.3% accuracy at the pobj relation 

Head 8-11 
 

- Noun modifiers (e.g., determiners) attend 
  to their noun 
 

- 94.3% accuracy at the det relation 

Head 8-10 
 

- Direct objects attend to their verbs 
 

- 86.8% accuracy at the dobj relation 

Head 7-6 
 

- Possessive pronouns and apostrophes 
  attend to the head of the corresponding NP 
 

- 80.5% accuracy at the poss relation 

Head 4-10 
 

- Passive auxiliary verbs attend to the 
  verb they modify 
 

- 82.5% accuracy at the auxpass relation 

Head 5-4 
 

- Coreferent mentions attend to their antecedents 
 

- 65.1% accuracy at linking the head of a  
  coreferent mention to the head of an antecedent 
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Our research questions

For which problems are transformers especially well/ill-suited?

▶ How do transformers compare to classical architectures?

▶ How does complexity scale with input size N?

▶ This work:
N o(1)︸ ︷︷ ︸
“easy”

vs. NΩ(1)︸ ︷︷ ︸
“hard”

What we do: Formalize advantages of transformers over classical architectures
(as well as limitations of transformers) in terms of “communication” bottlenecks
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Caveat

Results are only about representational strengths/limitations of transformers

(No direct analysis of learning/generalization)
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Outline of talk

1. Transformers 101 + our results

2. Sparse Averaging

3. Element matching problems
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1. Transformers 101 + our results



What is a self-attention unit?

[Vaswani et al, 2017]
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What is a self-attention unit?

Self-attention unit: mapping of N -tuples from X = Rdin to N -tuples from
Y = Rdout of a particular parametric form

softmax

←− xT
1WV −→

←− xT
NWV −→

...

←− xT
2WV −→←− xT

iWQ −→

x
WT

KxNy

...

...

· · ·

x
WT

Kx1y

x
WT

Kx2y
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What is a self-attention unit?

Self-attention unit: mapping of N -tuples from X = Rdin to N -tuples from
Y = Rdout of a particular parametric form

att(X) = softmax
(
(XWQ)(XWK)

T
)
XWV

▶ Parameters: WQ,WK ∈ Rdin×m,WV ∈ Rdin×dout (query, key, & value params.)

▶ m = (internal) embedding dimension

▶ softmax is applied row-wise:

softmax(M)i,j =
exp(Mi,j)∑N
k=1 exp(Mi,k)

▶ Mapping is permutation-equivariant

▶ Each row of att(X) is in convex hull of {rows of XWV }
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What is a transformer?

▶ H-headed self-attention layer: sum of H self-attention units

X 7→
H∑

h=1

att
W

(h)
Q ,W

(h)
K ,W

(h)
V

(X)

▶ Transformer: composition of multi-headed self-attention layers

▶ Each self-attention unit is also allowed to process each element of input tuple
using a feedforward neural network

ϕ : Rdin → Rd′in

(same ϕ is applied to each element of input tuple) with d′in = O(m)

▶ Can also process output tuple with some ϕ : Rd′out → Rdout , d′out = O(m)

▶ ϕ’s are akin to “activation functions” in classical architectures
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Our research questions

For which problems are transformers especially well/ill-suited?

▶ How do transformers compare to classical architectures?

▶ How does complexity scale with input size N?

▶ This work:
N o(1)︸ ︷︷ ︸
“easy”

vs. NΩ(1)︸ ︷︷ ︸
“hard”

▶ Allow element-wise maps ϕ to be arbitrary functions
▶ How must “size” parameters L, H, m grow with N?
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Our results

▶ On a sparse decoding problem: “Sparse Averaging”

▶ Self-att. unit with m = O(din + q logN) suffices for sparsity level q
▶ Every FNN requires width Ω(N) even if q = 1, din = Õ(1)
▶ Every RNN requires hidden state of Ω(N) bits even if q = 1, din = Õ(1)

▶ On element matching problems: “Pair/Triple Matching”

▶ (Standard) self-att. unit can solve Pair Matching with m = O(din)
▶ “Third-order” self-att. unit can solve Triple Matching with m = O(din)
▶ Multi-headed self-att. layer requires Hm = Ω̃(N) to solve Triple Matching
▶ Conjecture: Transformer requires LHm = Ω̃(NΩ(1)) to solve Triple Matching
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▶ On element matching problems: “Pair/Triple Matching”2

▶ (Standard) self-att. unit can solve Pair Matching with m = O(din)
▶ “Third-order” self-att. unit can solve Triple Matching with m = O(din)
▶ Multi-headed self-att. layer requires Hm = Ω̃(N) to solve Triple Matching3

▶ Conjecture: Transformer requires LHm = Ω̃(NΩ(1)) to solve Triple Matching

1Also (almost) matching lower bound
2Lower bounds assume W ’s and ϕ’s use poly logN bit precision numbers
3Also (almost) matching upper bound

14 / 28



2. Sparse Averaging



q-Sparse Averaging (qSA)

Input: (x1, x2, . . . , xN) where

xi = (enc(i), enc(Si), vi) ∈ Rdin , din = O(d+ (q + 1) logN),

and

1, 2, . . . , N are the “keys”

S1, S2, . . . , SN ∈
(
[N ]

q

)
are the “queries”

v1, v2, . . . , vN ∈ Rd are the “values” (with ∥vi∥ ≤ 1)

Output: N vectors in Rdout with dout = d, where ith output vector is

≈ 1

q

∑
j∈Si

vj
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What we show (qSA)

▶ Self-att. unit with m = O(din + q logN) suffices for sparsity level q
(+ almost matching lower bound)

▶ Every FNN requires width Ω(N) even if q = 1, din = Õ(1)

▶ Every RNN requires hidden state of Ω(N) bits even if q = 1, din = Õ(1)
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Self-attention solution (overview)

Design ϕ : Rdin → Rd′in , WQ,WK ∈ Rd′in×m, WV ∈ Rm×dout such that

softmax((ϕ(X)WQ)(ϕ(X)WK)
T)i,j ≈

{
1/q if Si ∋ j

0 if Si ̸∋ j

and

ϕ(X)WQ =

←− wT

S1
−→

...
←− wT

SN
−→

 , (ϕ(X)WK)T =

 ↑ ↑
u1 · · · uN

↓ ↓

 , ϕ(X)WV =

←− vT
1 −→
...

←− vT

N −→



ϕ will do most of the work; WQ,WK ,WV extract relevant parts of each ϕ(xi)
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Empirical solution

“Attention matrices” softmax((ϕ(X)WQ)(ϕ(X)WK)
T) ∈ R20×20 for same fixed

X, after training transformer for T epochs to solve qSA with q = 3

0.0

0.2

0.4

0.6

0.8

1.0

T = 0 T = 1000 T = 40000
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Construction using q-neighborly 0/1 polytopes

[Candès & Tao, 2005] There exist u1, u2, . . . , uN ∈ {± 1√
k
}k with k = O(q logN),

such that, for every S ∈
(
[N ]
q

)
, there exists wS ∈ Rk satisfying

∥wS∥ ≤ 2
√
q

⟨wS, uj⟩ = 1 for all j ∈ S

|⟨wS, uj⟩| ≤ 1/2 for all j /∈ S

w{2,3}

u3

u2

u1

Our ϕ : Rdin → Rd′in with d′in = O(d+ q logN) is

ϕ(enc(i), enc(Si), vi) = (ui, α wSi
, vi)

for suitably large α > 0
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(Simplified) lower bound for RNNs

Every RNN that computes qSAN (q = d = 1) requires Ω(N) bit hidden state

▶ Reduction from INDEX problem (n = N − 1)
Input: Alice has a ∈ {0, 1}n, Bob has b ∈ [n]
Goal: After Alice sends Bob a message, Bob outputs ab
Pigeonhole principle lower bound: Alice must send at least n bits

▶ Consider any RNN that processes (x1, x2, . . . , xn+1) one element at a time
and produces correct (n+ 1)th output

x1 x2 xn xn+1

· · ·

Alice Bob

xi = (enc(i), enc(∅), ai) for all i ∈ [N ]

(Alice sends nth hidden state to Bob)

xn+1 = (enc(n+ 1), enc({b}), 0)
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· · ·

Alice Bob

xi = (enc(i), enc(∅), ai) for all i ∈ [N ]

(Alice sends nth hidden state to Bob)

xn+1 = (enc(n+ 1), enc({b}), 0)

20 / 28



(Simplified) lower bound for RNNs

Every RNN that computes qSAN (q = d = 1) requires Ω(N) bit hidden state

▶ Reduction from INDEX problem (n = N − 1)
Input: Alice has a ∈ {0, 1}n, Bob has b ∈ [n]
Goal: After Alice sends Bob a message, Bob outputs ab
Pigeonhole principle lower bound: Alice must send at least n bits

▶ Consider any RNN that processes (x1, x2, . . . , xn+1) one element at a time
and produces correct (n+ 1)th output

x1 x2 xn xn+1

· · ·

Alice Bob

xi = (enc(i), enc(∅), ai) for all i ∈ [N ]

(Alice sends nth hidden state to Bob)

xn+1 = (enc(n+ 1), enc({b}), 0)

20 / 28



(Simplified) lower bound for RNNs

Every RNN that computes qSAN (q = d = 1) requires Ω(N) bit hidden state

▶ Reduction from INDEX problem (n = N − 1)
Input: Alice has a ∈ {0, 1}n, Bob has b ∈ [n]
Goal: After Alice sends Bob a message, Bob outputs ab
Pigeonhole principle lower bound: Alice must send at least n bits

▶ Consider any RNN that processes (x1, x2, . . . , xn+1) one element at a time
and produces correct (n+ 1)th output

x1 x2 xn xn+1

· · ·

Alice Bob

xi = (enc(i), enc(∅), ai) for all i ∈ [N ]

(Alice sends nth hidden state to Bob)

xn+1 = (enc(n+ 1), enc({b}), 0)

20 / 28



(Simplified) lower bound for RNNs

Every RNN that computes qSAN (q = d = 1) requires Ω(N) bit hidden state

▶ Reduction from INDEX problem (n = N − 1)
Input: Alice has a ∈ {0, 1}n, Bob has b ∈ [n]
Goal: After Alice sends Bob a message, Bob outputs ab
Pigeonhole principle lower bound: Alice must send at least n bits

▶ Consider any RNN that processes (x1, x2, . . . , xn+1) one element at a time
and produces correct (n+ 1)th output

x1 x2 xn xn+1

· · ·

Alice Bob

xi = (enc(i), enc(∅), ai) for all i ∈ [N ]

(Alice sends nth hidden state to Bob)

xn+1 = (enc(n+ 1), enc({b}), 0)

20 / 28



3. Element matching problems



Pair and Triple Matching

Input: (x0, x1, x2, . . . , xN) where

dummy element: x0 = enc(⊥), (for technical reasons)

for all i ∈ [N ]: xi = enc(zi), zi ∈ {1, 2, . . . ,M}

and N ≪M = poly(N)

(Pair Matching) Output: ith output is

1{∃j ∈ [N ] s.t. zi + zj = 0 (mod M)}

(Triple Matching) Output: ith output is

1{∃j, k ∈ [N ] s.t. zi + zj + zk = 0 (mod M)}
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What we show (element matching problems)

▶ (Standard) self-att. unit can solve Pair Matching with m = O(din)

▶ “Third-order” self-att. unit can solve Triple Matching with m = O(din)

▶ Multi-headed self-att. layer requires Hm = Ω̃(N) to solve Triple Matching
(+ almost matching upper bound)
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Self-attention solution (Pair Matching)

Main idea: Choose ϕ : Rdin → Rm, WQ,WK s.t.〈
W T

Qϕ(enc(z)),W
T

Kϕ(enc(z
′))
〉
= α cos(2π(z+z′)

M
)

1

1

2

2

3

3

4

4

5
5

6

6

7

7

8

8

9

9

10
10

Large enough α = O(M2 logN) ensures we can distinguish between

▶ zi’s with at least one match

▶ zi’s with no matches

(Dummy element supplies W T
V ϕ(enc(⊥)) ̸= W T

V ϕ(enc(zi))
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Lower bound for self-attention layers (Triple Matching)

Every H-headed self-attention layer with embedding dimension m that solves
Triple Matching requires H ×m = Ω̃(N)

▶ Reduction from DISJOINTNESS problem
Input: Alice has a ∈ {0, 1}n, Bob has b ∈ {0, 1}n
Goal: After some communication, Bob determines if ∀i ∈ [n], ai ∧ bi = 0
Lower bound (Yao, 1979): Alice and Bob must exchange at least n bits

▶ Create input x for Triple Matching from a and b (with N = 2n+ 1):

xi =

{
enc(1) if ai = 0

enc(i+ 1) if ai = 1

xn+i =

{
enc(1) if bi = 0

enc(M − (i+ 1)) if bi = 1

x2n+1 = enc(0)

triple match with
Nth query iff
DISJ(a, b) = 0
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H-headed self-attention layer with embedding dimension m for Triple Matching
provides a communication protocol using H ×m× poly log(N) bits

Main idea: Alice & Bob can jointly compute (2n+ 1)th output

softmax

ϕ(h)(enc(0))TW
(h)
Q

Alice’s Bob’s

Bob’s

Alice’s

1. Alice sends parts of softmax normalization terms to Bob

2. Bob completes softmax normalization terms; sends back to Alice

3. Alice sends partial weighted averages of “values” to Bob

4. Bob completes computation of weighted averages of “values”
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Lower bounds for L-layer transformers with L > 1

We conjecture (and wanted to prove):

Every transformer requires L×H ×m = NΩ(1) to solve Triple Matching

Instead we proved

Every “graph transformer” requires LHm = Ω̃(N) to solve Directed 3-Cycle

(But efficiently solved by a “higher-order graph self-attention unit”)

_
\_( ") )_/

_
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Easier variants of Triple Matching

▶ Variant 1 (family of hard instances for L = 1 lower bound):
xN = 0 and only care about Nth output

There is a L = 2 transformer solution with H = 1 and m = O(din)

(This separates efficient L = 1 transformers from efficient L = 2 transformers)

▶ Variant 2 (“Local” Triple Matching): ith output is

1{∃j, k ∈ [i− T, i+ T ] s.t. zi + zj + zk = 0 (mod M)}

Can reduce to qSA problem with q = O(T ) and din = Õ(T )
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27 / 28



Easier variants of Triple Matching

▶ Variant 1 (family of hard instances for L = 1 lower bound):
xN = 0 and only care about Nth output

There is a L = 2 transformer solution with H = 1 and m = O(din)

(This separates efficient L = 1 transformers from efficient L = 2 transformers)

▶ Variant 2 (“Local” Triple Matching): ith output is

1{∃j, k ∈ [i− T, i+ T ] s.t. zi + zj + zk = 0 (mod M)}

Can reduce to qSA problem with q = O(T ) and din = Õ(T )
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Conclusion and future work

▶ Transformers offer some natural advantages over FNNs, RNNs

▶ Pair Matching is a canonical easy problem for Transformer

▶ Some reasons to think Triple Matching is canonical hard problem

▶ Also to-do:
▶ Learning/generalization theory? [Edelman, Goel, Kakade, Zhang, 2022]
▶ Pair-wise nature of “real problems” solved by Transformers?

Thank you!
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%llion@: FAIR’s paper seems to concentrate solely on the convolutional aspect

%of their model and have the attention as an after thought almost, this gives

%us a good opportunity to differentiate ourselves from their paper.

%We are simpler in a number of ways and should have the simplicity as a big selling point:

%\begin{itemize}

%\item No convolutions

%\item No need for such careful initializations and

%normalization.

%\item Simpler non-lineararities, they use the gated linear

%units.

%\item Less layers?

%\end{itemize}

%One thing we do more is that we have self attention.

%Another selling point is the increased interpretability as

%shown with the visualizations. Which comes from the

%simplicity and use of only attentions.



Third-order self-attention unit

Third-order self-attention unit:

f(X) = softmax
(
(XWQ)

(
(XW

(1)
K ) ⋆ (XW

(2)
K )

)T
) (

(XW
(1)
V ) ⋆ (XW

(2)
V )

)
where ⋆ is column-wise Kornecker product (a.k.a. Khatri-Rao product)



Graph self-attention unit

▶ Input: X ∈ RN×N , adjacency matrix of digraph G = (V , E) with V = [N ]

▶ Graph self-attention unit:

softmax
(
κ
(
X, (XWQ)(XWK)

T
))

XWV

where κ : R→ R is an arbitrary function applied element-wise



Directed 3-Cycle and Undirected 5-Cycle

(Directed 3-Cycle) Output: ith output is

1{∃j, k ∈ [N ] s.t. (i, j), (j, k), (k, i) ∈ E}

(Undirected 5-Cycle) Output: ith output is

1{∃j1, j2, j3, j4 ∈ [N ] s.t. {i, j1}, {j1, j2}, {j2, j3}, {j3, j4}, {j4, i} ∈ E}



Model sizes

Model Input size (N) # Layers (L) # Heads/layer (H) Emb. dim. (m) # nodes/ϕ
BERT 512 24 16 1024 4K
GPT-2 1K 12 12 768 ?
GPT-3 2K 96 96 128 12K
GPT-4 32K 120 ? ? ? ?


	1. Transformers 101 + our results
	2. Sparse Averaging
	3. Element matching problems
	

