Representational strengths and limitations of
transformers

Daniel Hsu
Columbia University

Joint work with Clayton Sanford (Columbia) and Matus Telgarsky (NYU)

Yale S&DS Seminar
November 27, 2023

Motivation

Transformer [Vaswani et al, 2017]: self-attention nets used in large language models

1/28

Motivation

Transformer [Vaswani et al, 2017]: self-attention nets used in large language models
» Alternative to “classical” neural network architectures, e.g.,

» fully-connected neural networks (FNNs)
» convolutional neural networks (CNNs)
» recurrent neural networks (RNNs)

1/28

Motivation

Transformer [Vaswani et al, 2017]: self-attention nets used in large language models
» Alternative to “classical” neural network architectures, e.g.,

» fully-connected neural networks (FNNs)

» convolutional neural networks (CNNs)

» recurrent neural networks (RNNs)

» Amazing theoretical capabilities

P Turing-completeness [perez, Barcels, Marinkovic, 2021; Wei, Chen, Ma, 2021; ...]

P Recognize formal languages [Bhattamishra, Ahuja, Goyal, 2020; Hahn, 2020; Yao, Peng, Papadimitriou,
Narasimhan, 2021; Hao, Angluin, Frank, 2022; Liu, Ash, Goel, Krishnamurthy, Zhang, 2022; Angluin, Chiang, Yang, 2023; ...]

» Solve inference/learning problems (“in-context learning”) (carg. Tsipras, Liang, Valiant,
2022; Akyiirek, Schuurmans, Andreas, Ma, Zhou, 2022; Zhang, Frei, Bartlett, 2023; Abernethy, Agarwal, Marinov, Warmuth, 2023;

Bai, Chen, Wang, Xiong, Mei, 2023; ...]

1/28

What is special about transformers?

Transformers now underlie (many) learning-based used in NLP (and beyond)

2/28

What is special about transformers?

Transformers now underlie (many) learning-based used in NLP (and beyond)
» Succinct parameterization of sequence-to-sequence functions (?)

» Ability to capture “long-range interactions” (7)

2/28

“What does BERT look at?” [Clark, Khandelwal, Levy, Manning, 2019]

Attends to next token Attends to [SEP] Attends to periods

found

3/28

“What does BERT look at?”

- Noun modifiers (e.g., determiners) attend
to their noun

- 94.3% accuracy at the det relation

[CLS]
The
[CLS] [CLS]
The The 45-year-old 45-year-old
. . former
complicated - complicated
language T language General
> X Electric
in in Co
the the -
executive
huge huge n
figures
new new it
law law will
has. has be
muddied- muddied casier
the -2 the \ this
fight fight

time

tSEP]

tSEP]

[Clark, Khandelwal, Levy, Manning, 2019]

- Coreferent mentions attend to their antecedents

- 65.1% accuracy at linking the head of a
coreferent mention to the head of an antecedent

with with

Kim Kim joining joining
today today peace peace
as as talks talks
she she between between
got got Israel Israel
some some and and
expert expert the (the
opinions opinions Palestinians Palestinians
on on . .
the the The The
damage damage negotiations negotiations
to to are are
her her
home home

4/28

Our research questions

For which problems are transformers especially well/ill-suited?

5/28

Our research questions

For which problems are transformers especially well/ill-suited?
» How do transformers compare to classical architectures?

5/28

Our research questions

For which problems are transformers especially well/ill-suited?
» How do transformers compare to classical architectures?
» How does complexity scale with input size N?

5/28

Our research questions

For which problems are transformers especially well/ill-suited?
» How do transformers compare to classical architectures?
» How does complexity scale with input size N?

» This work:

NeW oy, N2
N—— ——
HeasyH Hhard”

5/28

Our research questions

For which problems are transformers especially well/ill-suited?
» How do transformers compare to classical architectures?
» How does complexity scale with input size N?

» This work:
NeW oy N0
~—— ——
lleasyYY Hhardll

What we do: Formalize advantages of transformers over classical architectures
(as well as limitations of transformers) in terms of “communication” bottlenecks

5/28

Caveat

Results are only about representational strengths/limitations of transformers

(No direct analysis of learning/generalization)

6/28

Outline of talk

1. Transformers 101 + our results

2. Sparse Averaging

3. Element matching problems

7/28

1. Transformers 101 4 our results

What is a self-attention unit?

t

MatMul
f 4
SoftMax
4
Mask (opt.)
4

Scale

t
MatMul

tt

Q KV
[Vaswani et al, 2017]

'

8/28

What is a self-attention unit?

Self-attention unit: mapping of N-tuples from X = R%: to N-tuples from
Y = R%ut of a particular parametric form

T
— Wy —

-

— x,Wo — T
7 = xo W —

Wra [Whao| -+ Whan 27V

softmax l l l

— Wy —

9/28

What is a self-attention unit?

Self-attention unit: mapping of N-tuples from X = R%: to N-tuples from
Y = R%ut of a particular parametric form

T
— Zq Wy —

T
— z, Wy —

— TyWy —

10/28

What is a self-attention unit?

Self-attention unit: mapping of N-tuples from X = R%: to N-tuples from
Y = R%ut of a particular parametric form

att(X) = softmax (X Wo)(XWk)") XWy

> Parameters: Wy, Wi € R%x™ 11y, € RAn*deuwt (query, key, & value params.)
» m = (internal) embedding dimension

» softmax is applied row-wise:

exp(M; ;)

softmax(M); ; = Zgﬂ (M)

11/28

What is a self-attention unit?

Self-attention unit: mapping of N-tuples from X = R%: to N-tuples from
Y = R%ut of a particular parametric form

att(X) = softmax (X Wo)(XWk)") XWy

> Parameters: Wy, Wi € R%x™ 11y, € RAn*deuwt (query, key, & value params.)
» m = (internal) embedding dimension

» softmax is applied row-wise:
exp(M;,;)

softmax(M); ; = Zgﬂ (M)

» Mapping is permutation-equivariant
» Each row of att(X) is in convex hull of {rows of X Wy }

11/28

What is a transformer?

» [1-headed self-attention layer: sum of H self-attention units

H

XHZatt h h m (X
2w it (X)

12/28

What is a transformer?

» [1-headed self-attention layer: sum of H self-attention units

H

XHZatt h h m (X
2w it (X)

» Transformer: composition of multi-headed self-attention layers

12/28

What is a transformer?

» [1-headed self-attention layer: sum of H self-attention units

H
X — Z attwéh)’w(h) W (X)

K v
h=1

» Transformer: composition of multi-headed self-attention layers
» Each self-attention unit is also allowed to process each element of input tuple
using a feedforward neural network

¢: REn — R

(same ¢ is applied to each element of input tuple) with di, = O(m)

/

» Can also process output tuple with some ¢: Rout — Roue ¢! = O(m)

out

12/28

What is a transformer?

» [1-headed self-attention layer: sum of H self-attention units

H
X — Z attwéh)’wf(?)’w‘(/h) (X)

h=1
» Transformer: composition of multi-headed self-attention layers

» Each self-attention unit is also allowed to process each element of input tuple
using a feedforward neural network

¢: REn — R

(same ¢ is applied to each element of input tuple) with di, = O(m)
» Can also process output tuple with some ¢: R%ut — Rbut ¢! = O(m)

out
> ¢'s are akin to “activation functions” in classical architectures

12/28

Our research questions

For which problems are transformers especially well/ill-suited?
» How do transformers compare to classical architectures?
» How does complexity scale with input size N7

» This work:

NeD s N2
N—— N—_——
Heasyﬂ Hhard”

13/28

Our research questions

For which problems are transformers especially well/ill-suited?
» How do transformers compare to classical architectures?

» How does complexity scale with input size N7

» This work:
NeD s N2
N—— ——
lleasyYY Hhardll

> Allow element-wise maps ¢ to be arbitrary functions
» How must “size” parameters L, H, m grow with N7

13/28

Our results

» On a sparse decoding problem: “Sparse Averaging”

» On element matching problems: “Pair/Triple Matching”

14/28

Our results

» On a sparse decoding problem: “Sparse Averaging”

> Self-att. unit with m = O(din + qlog IV) suffices for sparsity level qt
» Every FNN requires width Q(N) even if ¢ =1, dip = O(1) .
» Every RNN requires hidden state of (V) bits even if ¢ = 1, di, = O(1)

» On element matching problems: “Pair/Triple Matching”

Also (almost) matching lower bound
14/28

Our results

» On a sparse decoding problem: “Sparse Averaging”
» Self-att. unit with m = O(di, + qlog N) suffices for sparsity level ¢*
> Every FNN requires width Q(N) even if ¢ = 1, di, = O(1)
> Every RNN requires hidden state of Q(NV) bits even if ¢ = 1, dip = O(1)

» On element matching problems: “Pair/Triple Matching”?

» (Standard) self-att. unit can solve Pair Matching with m = O(d;y)
» “Third-order” self-att. unit can solve Triple Matching with m = O(din)

LAlso (almost) matching lower bound

2Lower bounds assume T's and ¢'s use poly log N bit precision numbers
14/28

Our results

» On a sparse decoding problem: “Sparse Averaging”
» Self-att. unit with m = O(di, + qlog N) suffices for sparsity level ¢*
> Every FNN requires width Q(N) even if ¢ = 1, di, = O(1)
> Every RNN requires hidden state of Q(NV) bits even if ¢ = 1, dip = O(1)

» On element matching problems: “Pair/Triple Matching”?
» (Standard) self-att. unit can solve Pair Matching with m = O(d;y)
» “Third-order” self-att. unit can solve Triple Matching with m = O(din)
> Multi-headed self-att. layer requires Hm = Q(N) to solve Triple Matching3

1Also (almost) matching lower bound
2Lower bounds assume W's and ¢'s use polylog N bit precision numbers

3Also (almost) matching upper bound
14/28

Our results

» On a sparse decoding problem: “Sparse Averaging”
» Self-att. unit with m = O(di, + qlog N) suffices for sparsity level ¢*
> Every FNN requires width Q(N) even if ¢ = 1, di, = O(1)
> Every RNN requires hidden state of Q(NV) bits even if ¢ = 1, dip = O(1)

» On element matching problems: “Pair/Triple Matching”?
» (Standard) self-att. unit can solve Pair Matching with m = O(d;y)
» “Third-order” self-att. unit can solve Triple Matching with m = O(din)
> Multi-headed self-att. layer requires Hm = Q(N) to solve Triple Matching3
» Conjecture: Transformer requires LHm = Q(NQ(D) to solve Triple Matching

1Also (almost) matching lower bound
2Lower bounds assume W's and ¢'s use polylog N bit precision numbers

3Also (almost) matching upper bound
14/28

Our results

» On a sparse decoding problem: “Sparse Averaging”
» Self-att. unit with m = O(di, + qlog N) suffices for sparsity level ¢*
> Every FNN requires width Q(N) even if ¢ = 1, di, = O(1)
> Every RNN requires hidden state of Q(NN) bits even if ¢ = 1, dip = O(1)

» On element matching problems: “Pair/Triple Matching”?
» (Standard) self-att. unit can solve Pair Matching with m = O(djy)
» “Third-order” self-att. unit can solve Triple Matching with m = O(din)
> Multi-headed self-att. layer requires Hm = Q(N) to solve Triple Matching3
» Conjecture: Transformer requires LHm = Q(NQ(U) to solve Triple Matching

1Also (almost) matching lower bound
2Lower bounds assume W's and ¢'s use polylog N bit precision numbers

3Also (almost) matching upper bound
14/28

2. Sparse Averaging

q-Sparse Averaging (¢SA)

Input: (z1,x9,...,2y) where
z; = (enc(i), enc(S;),v;) € R%», din =0O(d+ (¢ +1)log N),
and

1,2,...,N are the "keys”
N
S1,8,...,5v € ([]) are the “queries”
q

v1,va, ..., 0y € RY are the “values” (with ||v;]| < 1)

15/28

q-Sparse Averaging (¢SA)

Input: (z1,x9,...,2y) where
z; = (enc(i), enc(S;),v;) € R%», din =0O(d+ (¢ +1)log N),
and

1,2,...,N are the "keys”
N
S1,8,...,5v € ([]) are the “queries”
q

v1,va, ..., 0y € RY are the “values” (with ||v;]| < 1)

Output: N vectors in R%u with d, = d, where ith output vector is
3
~ — (%
q JES;

15/28

What we show (gSA)

» Self-att. unit with m = O(d;, + qlog N) suffices for sparsity level ¢
(4 almost matching lower bound)

» Every FNN requires width Q(N) even if ¢ = 1, di, = O(1)
» Every RNN requires hidden state of Q(V) bits even if ¢ = 1, di, = O(1)

16/28

Self-attention solution (overview)

Design ¢: R%n — R, Wy, Wx € Rn*™ Ty, € R™*dout sych that

T ~ l/q if Sz >]
softmax((6(X)Wo) (6(X)Wi)"),; ~ {0 5
and
<— wgl — T T — U1 —
HX)Wq = : , ((X)Wk)T = [ul un |, ¢(X)Wy = :
— wg, — + + — vy —

17/28

Self-attention solution (overview)

Design ¢: R%n — R, Wy, Wx € Rn*™ Ty, € R™*dout sych that

T ~ 1/q if Sz 9j
softmax((6(X) W) (6(X)Wic)) , ~ {0 o
and
— wg — 1 4 — v —
P(X)Wq = : » (P(X)Wk)' = lul ceun |, o(X)Wy = :
— wg, — 4 + — vy —

¢ will do most of the work; Wy, Wi, Wy extract relevant parts of each ¢(x;)

17/28

Empirical solution

“Attention matrices” softmax((¢(X)Wq)(¢(X)Wk)™) € R0 for same fixed
X, after training transformer for T" epochs to solve gSA with ¢ = 3

I:E EEDEE D::' #::ﬂ.:u.;.{-;l é ‘:-! D-:.
T, FreRl o foeRl
% B8 LT ki

= DDDE'D:EPD - o o - -I.-:.-

T=0 T = 1000 T = 40000

18/28

Construction using ¢-neighborly 0/1 polytopes

[Candes & Tao, 2005] There exist uy, ug, ..., ux € {i\/ig}’C with £ = O(qlog N),

such that, for every S € ([];”), there exists wg € R* satisfying

lwsll < 2v/q
(ws,uj) =1 forall jeS
[(ws,u;)| <1/2 forall j ¢S

19/28

Construction using ¢-neighborly 0/1 polytopes

[Candes & Tao, 2005] There exist uy, ug, ..., ux € {i\/ig}’C with £ = O(qlog N),

such that, for every S € ([];”), there exists wg € R* satisfying

lwsll < 2v/q
(ws,uj) =1 forall jeS
[(ws,u;)| <1/2 forall j ¢S

19/28

Construction using ¢-neighborly 0/1 polytopes

[Candes & Tao, 2005] There exist uy, ug, ..., ux € {i\/ig}’C with £ = O(qlog N),

such that, for every S € ([];”), there exists wg € R* satisfying

lwsll < 2v/q
(ws,uj) =1 forall jeS
[(ws,u;)| <1/2 forall j ¢S

W{2, 3} Our ¢: Ré%» — R%n with d, = O(d + qlog N) is

u ‘ ¢(enc(i), enc(S;), v;) = (u;, @ wg;, v;)

® U3 for suitably large oo > 0

19/28

(Simplified) lower bound for RNNs

Every RNN that computes ¢SAy (¢ = d = 1) requires (V) bit hidden state

20/28

(Simplified) lower bound for RNNs

Every RNN that computes ¢SAy (¢ = d = 1) requires (V) bit hidden state

» Reduction from INDEX problem (n = N — 1)
Input: Alice has a € {0,1}", Bob has b € [n]
Goal: After Alice sends Bob a message, Bob outputs aj
Pigeonhole principle lower bound: Alice must send at least n bits

20/28

(Simplified) lower bound for RNNs

Every RNN that computes ¢SAy (¢ = d = 1) requires (V) bit hidden state

» Reduction from INDEX problem (n = N — 1)
Input: Alice has a € {0,1}", Bob has b € [n]
Goal: After Alice sends Bob a message, Bob outputs aj
Pigeonhole principle lower bound: Alice must send at least n bits
» Consider any RNN that processes (z1,za,...,Z,11) one element at a time
and produces correct (n + 1)th output

20/28

(Simplified) lower bound for RNNs

Every RNN that computes ¢SAy (¢ = d = 1) requires (V) bit hidden state

» Reduction from INDEX problem (n = N — 1)
Input: Alice has a € {0,1}", Bob has b € [n]
Goal: After Alice sends Bob a message, Bob outputs aj
Pigeonhole principle lower bound: Alice must send at least n bits

» Consider any RNN that processes (z1,za,...,Z,11) one element at a time
and produces correct (n + 1)th output

|i |jz Tn Tn+1

Alice Bob

20/28

(Simplified) lower bound for RNNs

Every RNN that computes ¢SAy (¢ = d = 1) requires (V) bit hidden state

» Reduction from INDEX problem (n = N — 1)
Input: Alice has a € {0,1}", Bob has b € [n]
Goal: After Alice sends Bob a message, Bob outputs aj
Pigeonhole principle lower bound: Alice must send at least n bits

» Consider any RNN that processes (z1,za,...,Z,11) one element at a time
and produces correct (n + 1)th output

x; = (enc(i),enc(0), a;) forall i € [N]

% & % % (Alice sends nth hidden state to Bob)
1 2 Tn: Tntl

Alice Bob Tpe1 = (enc(n + 1), enc({b}),0)

20/28

3. Element matching problems

Pair and Triple Matching

Input: (zg,x1,29,...,2x) where

dummy element: ¢ = enc(L), (for technical reasons)
for all i € [N]: x; = enc(z;), 2z €4{1,2,..., M}

and N < M = poly(N)

21/28

Pair and Triple Matching

Input: (zg,x1,29,...,2x) where

dummy element: ¢ = enc(L), (for technical reasons)
for all i € [N]: x; = enc(z;), 2z €4{1,2,..., M}

and N < M = poly(N)
(Pair Matching) Output: ith output is

1{3j € [N] st. z+2z =0 (mod M)}

21/28

Pair and Triple Matching

Input: (zg,x1,29,...,2x) where

dummy element: ¢ = enc(L), (for technical reasons)
for all i € [N]: x; = enc(z;), 2z €4{1,2,..., M}

and N < M = poly(N)
(Pair Matching) Output: ith output is

1{3j € [N] st. z+2z =0 (mod M)}

(Triple Matching) Output: ith output is
1{3j,k € [N] st. z+z+2=0 (mod M)}

21/28

What we show (element matching problems)

» (Standard) self-att. unit can solve Pair Matching with m = O(d;,)
» “Third-order" self-att. unit can solve Triple Matching with m = O(dj,)

» Multi-headed self-att. layer requires Hm = Q(N) to solve Triple Matching
(4 almost matching upper bound)

22/28

Self-attention solution (Pair Matching)

Main idea: Choose ¢: R%n — R™, W, Wi s.t. R
/ 4 1
(W4, oolenc(z)), Wip(enc(z) =a COS(QW(]Z\;Z) 6 g
> 10
5 10
S 9
4 1
7 8

23/28

Self-attention solution (Pair Matching)

Main idea: Choose ¢: R%n — R™, W, Wi s.t. R
/ 4 1
(Who(enc(z)), Wge(enc(z'))) = a COS(QW(]Z\;Z) 6 g
> 10
5 10
S 9
4 1
7 8
3 2

Large enough a = O(M?log N) ensures we can distinguish between
» z,'s with at least one match

» z;'s with no matches

23/28

Self-attention solution (Pair Matching)

Main idea: Choose ¢: R%n — R™, W, Wi s.t. R
/ 4 1
(Who(enc(z)), Wge(enc(z'))) = a COS(QW(]Z\;Z) 6 g
> 10
5 10
S 9
4 1
7 8
3 2

Large enough a = O(M?log N) ensures we can distinguish between
» z,'s with at least one match

» z;'s with no matches

(Dummy element supplies W ¢(enc(L)) # Wi ¢(enc(z;))

23/28

Lower bound for self-attention layers (Triple Matching)

Every H-headed self-attention layer with embedding dimension m that solves
Triple Matching requires H x m = Q(N)

24 /28

Lower bound for self-attention layers (Triple Matching)

Every H-headed self-attention layer with embedding dimension m that solves
Triple Matching requires H x m = Q(N)
» Reduction from DISJOINTNESS problem
Input: Alice has a € {0,1}", Bob has b € {0,1}"
Goal: After some communication, Bob determines if Vi € [n], a; Ab; =0
Lower bound (Yao, 1979): Alice and Bob must exchange at least n bits

24 /28

Lower bound for self-attention layers (Triple Matching)

Every H-headed self-attention layer with embedding dimension m that solves
Triple Matching requires H x m = Q(N)
» Reduction from DISJOINTNESS problem
Input: Alice has a € {0,1}", Bob has b € {0,1}"
Goal: After some communication, Bob determines if Vi € [n], a; Ab; =0
Lower bound (Yao, 1979): Alice and Bob must exchange at least n bits
» Create input = for Triple Matching from a and b (with N = 2n 4 1):

B {enc(l) ifa, =0

' enc(i+1) ifa; =1
Tn4i = . .
* enc(M — (i+1)) ifb;, =1<—— " triple match with

4 Nth query iff
Zont+1 = enc(0) DISJ(a,b) =0

24 /28

H-headed self-attention layer with embedding dimension m for Triple Matching
provides a communication protocol using H X m x poly log(N) bits

25 /28

H-headed self-attention layer with embedding dimension m for Triple Matching
provides a communication protocol using H x m x poly log(NN) bits

Main idea: Alice & Bob can jointly compute (2n + 1)th output

softmax

$™ (enc(0))TW S

25/28

H-headed self-attention layer with embedding dimension m for Triple Matching
provides a communication protocol using H X m x poly log(N) bits

Main idea: Alice & Bob can jointly compute (2n + 1)th output

softmax

1. Alice sends parts of softmax normalization terms to Bob

Alice’s

Bob’s

qb(h)(enc(()))TWg‘)

Alice’s

Bob’s

25 /28

H-headed self-attention layer with embedding dimension m for Triple Matching
provides a communication protocol using H X m x poly log(N) bits

Main idea: Alice & Bob can jointly compute (2n + 1)th output

Alice’s
Alice’s Bob’s

softmax

Bob’s

qb(h)(enc(()))TWg‘)

1. Alice sends parts of softmax normalization terms to Bob
2. Bob completes softmax normalization terms; sends back to Alice

25 /28

H-headed self-attention layer with embedding dimension m for Triple Matching
provides a communication protocol using H X m x poly log(N) bits

Main idea: Alice & Bob can jointly compute (2n + 1)th output

Alice’s
Alice’s Bob’s

softmax

Bob’s

qb(h)(enc(()))TWg‘)

1. Alice sends parts of softmax normalization terms to Bob
2. Bob completes softmax normalization terms; sends back to Alice
3. Alice sends partial weighted averages of “values” to Bob

25 /28

H-headed self-attention layer with embedding dimension m for Triple Matching
provides a communication protocol using H X m x poly log(N) bits

Main idea: Alice & Bob can jointly compute (2n + 1)th output

Alice’s
Alice’s Bob’s

softmax

Bob’s

qb(h)(enc(()))TWg‘)

1. Alice sends parts of softmax normalization terms to Bob

2. Bob completes softmax normalization terms; sends back to Alice
3. Alice sends partial weighted averages of “values” to Bob

4. Bob completes computation of weighted averages of “values”

25 /28

Lower bounds for L-layer transformers with L > 1

We conjecture (and wanted to prove):

Every transformer requires L x H x m = N to solve Triple Matching

26 /28

Lower bounds for L-layer transformers with L > 1

We conjecture (and wanted to prove):

Every transformer requires L x H x m = N to solve Triple Matching

Instead we proved
Every ‘graph transformer” requires LHm = Q(N) to solve Directed 3-Cycle

(But efficiently solved by a “higher-order graph self-attention unit")

26 /28

Lower bounds for L-layer transformers with L > 1

We conjecture (and wanted to prove):

Every transformer requires L x H x m = N to solve Triple Matching

Instead we proved
Every ‘graph transformer” requires LHm = Q(N) to solve Directed 3-Cycle

(But efficiently solved by a “higher-order graph self-attention unit")

)/

26 /28

Easier variants of Triple Matching

27 /28

Easier variants of Triple Matching

» Variant 1 (family of hard instances for . = 1 lower bound):
xn = 0 and only care about Nth output

27 /28

Easier variants of Triple Matching

» Variant 1 (family of hard instances for . = 1 lower bound):
xn = 0 and only care about Nth output

There is a L = 2 transformer solution with H = 1 and m = O(d;y)

(This separates efficient L = 1 transformers from efficient L = 2 transformers)

27 /28

Easier variants of Triple Matching

» Variant 1 (family of hard instances for . = 1 lower bound):
xn = 0 and only care about Nth output

There is a L = 2 transformer solution with H = 1 and m = O(d;y)

(This separates efficient L = 1 transformers from efficient L = 2 transformers)

» Variant 2 (“Local” Triple Matching): ith output is

1{3j,kei—T,i+T] st. z+z+2z=0 (mod M)}

27 /28

Easier variants of Triple Matching

» Variant 1 (family of hard instances for . = 1 lower bound):
xn = 0 and only care about Nth output

There is a L = 2 transformer solution with H = 1 and m = O(d;y)

(This separates efficient L = 1 transformers from efficient L = 2 transformers)
» Variant 2 (“Local” Triple Matching): ith output is
1{3j,kei—T,i+T] st. z+z+2z=0 (mod M)}

Can reduce to gSA problem with ¢ = O(T) and dy, = O(T)

27 /28

Conclusion and future work

» Transformers offer some natural advantages over FNNs, RNNs

28/28

Conclusion and future work

» Transformers offer some natural advantages over FNNs, RNNs

» Pair Matching is a canonical easy problem for Transformer

28/28

Conclusion and future work

» Transformers offer some natural advantages over FNNs, RNNs
» Pair Matching is a canonical easy problem for Transformer

» Some reasons to think Triple Matching is canonical hard problem

28/28

Conclusion and future work

» Transformers offer some natural advantages over FNNs, RNNs
» Pair Matching is a canonical easy problem for Transformer
» Some reasons to think Triple Matching is canonical hard problem

» Also to-do:

» Learning/generalization theory? [Edelman, Goel, Kakade, Zhang, 2022]
P Pair-wise nature of “real problems” solved by Transformers?

28/28

Conclusion and future work

» Transformers offer some natural advantages over FNNs, RNNs
» Pair Matching is a canonical easy problem for Transformer
» Some reasons to think Triple Matching is canonical hard problem

» Also to-do:

» Learning/generalization theory? [Edelman, Goel, Kakade, Zhang, 2022]
P Pair-wise nature of “real problems” solved by Transformers?

Thank you!

28/28

%1lion@: FAIR’s paper seems to concentrate solely on the convolutional aspect
%of their model and have the attention as an after thought almost, this gives
%us a good opportunity to differentiate ourselves from their paper.

%We are simpler in a number of ways and should have the simplicity as a big selling point:
%\begin{itemize}

%\item No convolutions

%\item No need for such careful initializations and
Jnormalization.

%\item Simpler non-lineararities, they use the gated linear
Junits.

%\item Less layers?

%\end{itemize}

%0ne thing we do more is that we have self attention.
%Another selling point is the increased interpretability as
%shown with the visualizations. Which comes from the
%simplicity and use of only attentions.

Third-order self-attention unit

Third-order self-attention unit:

F(X) = softmax((XWQ) (X WD) % (XW}?))T) (XWO) « (X))

where x is column-wise Kornecker product (a.k.a. Khatri-Rao product)

Graph self-attention unit

» Input: X € RY*N adjacency matrix of digraph G = (V, €) with V = [N]
» Graph self-attention unit:

Softmax(ff(X, (XWo)(XWi)T)) X Wy

where k: R — R is an arbitrary function applied element-wise

Directed 3-Cycle and Undirected 5-Cycle

(Directed 3-Cycle) Output: ith output is
{3j.k € [N] st (i,4), (), k), (k,i) € E}
(Undirected 5-Cycle) Output: ith output is

1{3j17j27j37j4 € [N] s.t. {iajl}a{jlan}v{j27j3}a{j37j4}7{j4’i} € g}

Model sizes

Model | Input size (V) | # Layers (L) | # Heads/layer (H) | Emb. dim. (m) | # nodes/¢

BERT 512 24
GPT-2 1K 12
GPT-3 2K 96

GPT-4 32K 120 7

1024 4K

768 ?

128 12K
? ?

	1. Transformers 101 + our results
	2. Sparse Averaging
	3. Element matching problems
	

