Computational lower bounds for Tensor PCA

Daniel Hsu (Columbia University) Based on joint work with Rishabh Dudeja (Harvard University)

> UCSD Theory Seminar April 17, 2023

Outline

• Main result: "Memory size × Sample size × Time" lower bounds for Tensor PCA and related problems

• Talk outline:

- 1. Motivation from statistical modeling
- 2. Tensor PCA and our lower bounds
- 3. Memory-bounded algorithms for Tensor PCA
- 4. High-level proof ideas

1. Motivation

Fitting statistical models to multivariate data

- Statistical model: e.g., mixture of Gaussians $Y_1, \dots, Y_n \sim_{iid} w_1 N(\mu_1, \Sigma_1) + w_2 N(\mu_2, \Sigma_2) + \cdots$
- Model fitting: Find model parameters $(w_1, \mu_1, \Sigma_1, w_2, \mu_2, \Sigma_2, ...)$ of probability distribution that "best fits the data" $y_1, ..., y_n \in \mathbb{R}^d$

How to estimate parameters?

How should I choose the model parameters to fit my multivariate data?

Maximum Likelihood Estimation (MLE)!

But likelihood is NP-hard to optimize ... [Tosh & Dasgupta, '18; ...]

That's in the worst case. Your data may be nicer ...

You're right---local search works well sometimes! [Dasgupta & Schulman, '07; Xu, <u>H.</u>, Maleki, '16; ...] Oops, local search can fail even on "best case" data. [Jin, Zhang, Balakrishnan, Wainwright, Jordan, '16]

Method of moments

Spherical Gaussians [Vempala & Wang, '02]

$$Y \sim \frac{1}{2} N(-\mu, I_d) + \frac{1}{2} N(\mu, I_d)$$

2nd moment matrix reveals μ $\mathbb{E}[YY^{\top}] = I_d + \mu\mu^{\top}$

Top eigenvector of $\mathbb{E}[YY^{\top}]$ is $\propto \mu$ "Principal Components Analysis (PCA)"

Parallel Pancakes

$$\begin{split} Y &\sim \frac{1}{2} \operatorname{N}(-\mu, I_d - \mu \mu^{\mathsf{T}}) + \frac{1}{2} \operatorname{N}(\mu, I_d - \mu \mu^{\mathsf{T}}) \\ 2^{\mathrm{nd}} \text{ moment matrix is not useful} \\ \mathbb{E}[YY^{\mathsf{T}}] &= I_d \\ \end{split}$$

But 4th moment tensor reveals μ

$$\mathbb{E}[Y^{\otimes 4}] - \operatorname{Sym}(I_d \otimes I_d) = -\frac{1}{8}\mu^{\otimes 4}$$

Problem: All known poly-time algorithms for estimating μ this way require $n \ge d^2$, even though MLE only needs $n \ge d$

Does computational tractability come with a statistical cost?

2. Tensor PCA

Tensor PCA [Montanari & Richard, '14]

Asymmetric Tensor PCA:

- $X_i = \lambda \,\theta_1 \otimes \theta_2 \otimes \cdots \otimes \theta_k + Z_i$
- $\theta_1, \dots, \theta_k \in \Theta \subseteq S^{d-1}$: k parameter vectors
- (i_1, i_2, \dots, i_k) entry of $\theta_1 \otimes \theta_2 \otimes \dots \otimes \theta_k$ is $\theta_1(i_1)\theta_2(i_2) \cdots \theta_k(i_k)$
- Data model: iid random order-k tensors $X_1, ..., X_N$ in $\bigotimes^k \mathbb{R}^d$ $X_i = \lambda \ \theta^{\bigotimes k} + Z_i$
 - $\theta \in \Theta \subseteq S^{d-1}$: parameter vector to estimate (up to sign) within ℓ_2 error 0.01
 - $\lambda^2 > 0$: signal-to-noise ratio per data point
 - Z_i : order-k tensor of d^k iid N(0,1) random variables
 - (i_1, i_2, \dots, i_k) entry of $\theta^{\otimes k}$ is $\theta(i_1)\theta(i_2)\cdots\theta(i_k)$
- Motivations:
 - k = 2: model problem for studying PCA ("spiked Wigner model")
 - $k \ge 3$: model problem for studying tensor-based method-of-moments
- Sample complexity? Computational complexity?

Statistical-to-computational gap

$k \geq 3$: Reasons to believe hardness?

- Failure of specific poly-time algorithms [MR'14, BAGJ'20, HKPRSS'17]
- Hypergraphic Planted Clique [ZX'18; BB'20]
- Hard in SQ model [DH'21; BBHLS'21]

k = 2: Data $X_1, ..., X_N$ are matrices

Solution: Find top eigenvector/singular vectors

- log d iterations of **power method**
- Just need $N \gtrsim d/\lambda^2$
- No gap between impossible & easy regimes!

Our results

- We show that existing poly-time algorithms for Tensor PCA are on Pareto frontier in terms of run-time, sample size, and memory size
- **Theorem** [Dudeja & <u>H.</u>, 2022]: Every algorithm for TPCA(d, k, λ^2) that accurately estimates the parameters must use memory size × sample size × time $\gtrsim \frac{d^{\lceil (k+1)/2 \rceil}}{\lambda^2}$
 - For Asymmetric Tensor PCA, get lower bound of d^k/λ^2
 - Similar results for related problems, including "Parallel Pancakes"
 - Current best poly-time algorithms match these lower bounds

3. Memory-bounded algorithms

Memory-bounded algorithms

Template for (*B*, *N*, *T*) algorithm

- Initialize memory state $\in \{0,1\}^B$
- For iteration t = 1, 2, ..., T:
 - For data point i = 1, 2, ..., N:
 - state \leftarrow update_{*t*,*i*}(state, *X*_{*i*})
- Return $\hat{\theta}(\text{state})$

Example: MLE via exhaustive search $\operatorname{argmax}_{\widehat{\theta} \in \Theta} \langle \overline{X}, \widehat{\theta}^{\otimes k} \rangle$ where $\overline{X} = (X_1 + \dots + X_N)/N$

•
$$\langle \overline{X}, \widehat{\theta}^{\otimes k} \rangle = \sum_{i=1}^{N} \langle X_i / N, \widehat{\theta}^{\otimes k} \rangle$$

- For fixed $\hat{\theta}$, can compute sum in single pass over data (= 1 "iteration")
- State tracks best obj. value and best $\hat{\theta}$
- Memory size required: B = O(d)
- Sample size required: N = O(d)
- Iterations: $T = 2^d$ ($\Theta = \{\pm 1/\sqrt{d}\}^d$)

Algorithm for Asymmetric Tensor PCA (k=4)

Matricization algorithm [MR'14]

- Let $A = \operatorname{reshape}(\overline{X}) \in \mathbb{R}^{d^2 \times d^2}$
- $(\hat{u}, \hat{v}) = \text{top singular vectors of } A$
- $(\hat{\theta}_1, \hat{\theta}_2, \hat{\theta}_3, \hat{\theta}_4) = (\text{something w} / \hat{u}, \hat{v})$

Recall:

$$\overline{X} \sim \lambda \, \theta_1 \otimes \theta_2 \otimes \theta_3 \otimes \theta_4 + \frac{1}{\sqrt{N}} Z$$

Matricization:

$$A \sim \lambda \, u \otimes v + \frac{1}{\sqrt{N}} \operatorname{reshape}(Z)$$
$$u = \operatorname{vec}(\theta_1 \otimes \theta_2), v = \operatorname{vec}(\theta_3 \otimes \theta_4)$$

Sample size requirement

 $N \asymp \frac{d^2}{\lambda^2}$

Power method impl. Memory size: $B \approx d^2$ Iterations: $T \approx \log d$

Total resources $BNT \approx \frac{d^4}{\lambda^2} \log d$

Phase diagram for Asymmetric Tensor PCA

• "Overparameterized" algorithms with $B \approx d^2$

Need for overparameterization in ATPCA

• Insufficiently overparameterized algorithms with $B \simeq d^b$ and b < 2

4. Proof ideas

Proof strategy: communication complexity

- Reduction from distributed estimation in blackboard model [Shamir, '14; Dagan & Shamir, '18]
 - (B, N, T) algorithm \rightarrow protocol where each of N machines writes BT bits
- We prove new communication lower bounds for Tensor PCA

(B, N, T) algorithm

- Initialize memory state $\in \{0,1\}^B$
- For iteration t = 1, 2, ..., T:
 - For data point i = 1, 2, ..., N:
 - state \leftarrow update_{*t*,*i*}(state, *X*_{*i*})
- Return $\hat{\theta}(\text{state})$

Lower bound via Fano's inequality

• Key quantity: Hellinger information [Chen, Guntuboyina, Zhang, '16]

$$I_{\rm h}(\theta; Y) = \inf_{Q} \int {\rm h}^2(P_{\theta}; Q) \pi({\rm d}\theta)$$

- $h^2(\cdot;\cdot)$ is squared Hellinger distance
- π is a prior distribution for parameter heta
- P_{θ} is distribution of protocol transcript Y given θ
- If $I_{\rm h}(\theta; Y) \to 0$ as $d \to \infty$, then for large enough d, every protocol fails in average case sense with $\theta \sim \pi$ (and hence also for worst θ)

• We prove
$$I_{h}(\theta; Y) \rightarrow 0$$
 if total communication $\ll \frac{d^{\lceil (k+1)/2 \rceil}}{\lambda^{2}}$ bits

Hellinger information bound

• New Hellinger information bound (simplified):

$$I_{\rm h}(\theta;Y) \lesssim \sum_{i=1}^{N} \mathbb{E}_0 \left[\int \left(\mathbb{E}_0 \left[\frac{\mathrm{d}\mu_{\theta}}{\mathrm{d}\mu_0}(X_i) - 1 \middle| Y \right] \right)^2 \pi(\mathrm{d}\theta) \right]$$

- \mathbb{E}_0 regards X_1, \ldots, X_N as iid from null distribution μ_0
- μ_{θ} is sampling distribution with parameter $\theta \in \Theta$
- What info does transcript *Y* have about (centered) likelihood ratios?

$$\left(\frac{\mathrm{d}\mu_{\theta}}{\mathrm{d}\mu_{0}}(X_{i})-1\right)_{\theta\in\Theta}$$

• Need to bound squared "2-norm" of centered likelihood ratio process

Linearization and concentration

• Linearization of "2-norm" $\|v\|_{\pi} = \sqrt{\int v(\theta)^2 \pi(d\theta)}$:

$$\begin{aligned} \left\| \mathbb{E}_{0} \left[\frac{d\mu_{\theta}}{d\mu_{0}} (X_{i}) - 1 \middle| Y \right] \right\|_{\pi} &= \sup_{\|v\|_{\pi}=1} \left\langle v, \mathbb{E}_{0} \left[\frac{d\mu_{\theta}}{d\mu_{0}} (X_{i}) - 1 \middle| Y \right] \right\rangle_{\pi} \\ &= \sup_{\|v\|_{\pi}=1} \mathbb{E}_{0} \left[\left\langle v, \frac{d\mu_{\theta}}{d\mu_{0}} (X_{i}) - 1 \right\rangle_{\pi} \middle| Y \right] \end{aligned}$$
Centered likelihood ratio has mean zero,
... but here we condition on Y

• Bound conditional expectation using concentration [Han, Özgür, Weissman, '18]

Related toy problem

- Suppose Z ~ N(0,1) and Y = Y(Z) is arbitrary function of Z taking at most M possible values
- Question: How large can $|\mathbb{E}[Z|Y]|$ (say, in expectation)?
- Answer: $O(\sqrt{\log M})$
 - For event *E*, how $|\mathbb{E}[Z|E]|$ depend on Pr(E)?
 - Which event *E* with $Pr(E) = \delta$ maximizes $|\mathbb{E}[Z|E]|$?
 - Consider tail event $E = \{Z > \Phi^{-1}(\delta)\}$

In closing...

- In lieu of proving exponential lower bounds for Tensor PCA:
 - We show that current algorithms are unimprovable without worsening some "natural" resource complexity (memory size, sample size, time)
 - Shed light on computational + statistical benefits of overparameterization
 - New communication complexity tools for distributed estimation lower bounds
- Open problems:
 - Algorithms achieving other points on Pareto frontier?
 - Lower bounds for learning problems with higher SNR?

arXiv:2204.07526

Algorithm for Tensor PCA (k=4)

Partial trace algorithm [HSSS'16]

- Let $A \in \mathbb{R}^{d \times d}$ be matrix given by $A_{i,j} = \sum_{l=1}^{d} \overline{X}_{i,j,l,l}$
- Return $\hat{\theta} = \text{top eigenvector of } A$

Recall:

$$\bar{X} \sim \lambda \, \theta^{\otimes 4} + \frac{1}{\sqrt{N}} Z$$

Partial trace matrix: $A \sim \lambda \, \theta^{\otimes 2} + \frac{1}{\sqrt{N}} \sqrt{d} \, Z'$ SNR reduced from λ^2 to λ^2/d

$$\mathsf{TPCA}(d, 4, \lambda^2) \to \mathsf{TPCA}(d, 2, \frac{\lambda^2}{d})$$

Sample size requirement

$$N \asymp \frac{d}{\lambda^2/d} = \frac{d^2}{\lambda^2}$$

Power method impl. Memory size: $B \approx d$ Iterations: $T \approx \log d$

Total resources

$$BNT \asymp \frac{d^3}{\lambda^2} \log d$$

Phase diagram for Tensor PCA

• Linear memory algorithms with $B \approx d$

Frameworks for communication lower bounds

- Prior works study "hide-and-seek" variant of estimation problem [Shamir, '14; Han, Özgür, Weissman, '18; Acharya, Canonne, Sun, Tyagi, '22]
 - Nature chooses $\theta \sim \pi$ and $J \in [d]$ uniformly at random
 - Data is drawn from μ_{θ} and distributed to the parties
 - Parameter θ is revealed to all parties except with *J*-th component rerandomized (and *J* is kept hidden)
- Hide-and-seek problem is solved with O(Nd) communication
 - Each party sends likelihoods of all O(d) possibilities given own datum
 - Cannot use this to prove lower bounds of $d^{\lceil (k+1)/2 \rceil}$ bits (except if k = 2)

Using structure of blackboard protocols

- Leverage special structure of blackboard protocols [Bar-Yossef et al, '04] • In $P_{\theta}^{(i)}$, get transcript Y using $X_i \sim P_{\theta}$ and $X_j \sim P_0$ for all $j \neq i$: $h^2(P_{\theta}; P_0) \lesssim \sum_{i=1}^{N} h^2(P_{\theta}^{(i)}, P_0)$
 - Moreover:

$$h^{2}\left(P_{\theta}^{(i)}, P_{0}\right) = \mathbb{E}_{0}\left[\mathbb{E}_{0}\left[\frac{\mathrm{d}\mu_{\theta}}{\mathrm{d}\mu_{0}}(X_{i}) - 1\middle|Y\right]^{2}\right]$$

Solution to toy problem

• For any $\lambda \in (0,0.5)$,

$$\mathbb{E}[\exp(\lambda Z^2)] = (1 - 2\lambda)^{-1/2} = O(1)$$

• So, conditional on event Y = y,

$$\mathbb{E}[\exp(\lambda Z^2) | Y = y] = O(1) / \Pr(Y = y)$$

• By Jensen's inequality and convexity of $t \mapsto \exp(\lambda t^2)$, $\exp(\lambda \mathbb{E}[Z|Y = y]^2) \le O(1) / \Pr(Y = y)$

• Rearrange: $\mathbb{E}[Z|Y = y]^2 \le O(\log(1/\Pr(Y = y)))$

Comparison to [Raz, '16]

- [Raz, '16]: Every algorithm for learning d-bit parity functions requires either $\Omega(d^2)$ bits of memory or $2^{\Omega(d)}$ samples
 - Streaming setup: random example is either stored in memory or gone forever
 - Time = sample size
- Our setup:
 - We don't count data set towards memory cost
 - Only charge for additional "working memory"
 - [Kong, '18]: d-bit parities can be learned with O(d) samples, O(d) bits of working memory, and poly(d) passes through data
 - We allow for multiple passes through data set
 - But we require noise, and cannot imply exponential complexity

Parallel Pancakes

$$Y \sim \frac{1}{2} N(-\mu, I_d - \mu \mu^{\top}) + \frac{1}{2} N(\mu, I_d - \mu \mu^{\top})$$

Assume $\lambda^2 \coloneqq \|\mu\|^8 < d^{-10}$

If algorithm computes estimate $\hat{\mu}$ satisfying $\mathbb{E}\left[\frac{\langle \hat{\mu}, \mu \rangle}{\|\hat{\mu}\|_2 \|\mu\|_2}\right] \gg \frac{1}{\sqrt{d}}$

then it must use

memory size × sample size × time $\gtrsim \frac{d^3}{\lambda^2}$

