Computational lower bounds for Tensor PCA

Daniel Hsu (Columbia University)
Based on joint work with Rishabh Dudeja (Harvard University)

UCSD Theory Seminar
April 17, 2023

Outline

- Main result: "Memory size \times Sample size \times Time" lower bounds for Tensor PCA and related problems
- Talk outline:

1. Motivation from statistical modeling
2. Tensor PCA and our lower bounds
3. Memory-bounded algorithms for Tensor PCA
4. High-level proof ideas
5. Motivation

Fitting statistical models to multivariate data

- Statistical model: e.g., mixture of Gaussians

$$
Y_{1}, \ldots, Y_{n} \sim_{\text {iid }} w_{1} \mathrm{~N}\left(\mu_{1}, \Sigma_{1}\right)+w_{2} \mathrm{~N}\left(\mu_{2}, \Sigma_{2}\right)+\cdots
$$

- Model fitting: Find model parameters ($w_{1}, \mu_{1}, \Sigma_{1}, w_{2}, \mu_{2}, \Sigma_{2}, \ldots$) of probability distribution that "best fits the data" $y_{1}, \ldots, y_{n} \in \mathbb{R}^{d}$

How to estimate parameters?

Method of moments

Spherical Gaussians (vempala \& Wang, 02]

$$
Y \sim \frac{1}{2} \mathrm{~N}\left(-\mu, I_{d}\right)+\frac{1}{2} \mathrm{~N}\left(\mu, I_{d}\right)
$$

$2^{\text {nd }}$ moment matrix reveals μ

$$
\mathbb{E}\left[Y Y^{\top}\right]=I_{d}+\mu \mu^{\top}
$$

Top eigenvector of $\mathbb{E}\left[Y Y^{\top}\right]$ is $\propto \mu$ "Principal Components Analysis (PCA)"

Parallel Pancakes

$$
Y \sim \frac{1}{2} \mathrm{~N}\left(-\mu, I_{d}-\mu \mu^{\top}\right)+\frac{1}{2} \mathrm{~N}\left(\mu, I_{d}-\mu \mu^{\top}\right)
$$

$2^{\text {nd }}$ moment matrix is not useful

$$
\mathbb{E}\left[Y Y^{\top}\right]=I_{d}
$$

But $4^{\text {th }}$ moment tensor reveals μ

Problem: All known poly-time algorithms for estimating μ this way require $n \gtrsim d^{2}$, even though MLE only needs $n \gtrsim d$

Does computational tractability come with a statistical cost?
2. Tensor PCA

Tensor PCA [Montanari \& Richard, '14]

$$
\begin{aligned}
& \text { Asymmetric Tensor PCA: } \\
& \quad X_{i}=\lambda \theta_{1} \otimes \theta_{2} \otimes \cdots \otimes \theta_{k}+Z_{i} \\
& \text { - } \theta_{1}, \ldots, \theta_{k} \in \Theta \subseteq S^{d-1}: k \text { parameter vectors } \\
& \text { - }\left(i_{1}, i_{2}, \ldots, i_{k}\right) \text { entry of } \theta_{1} \otimes \theta_{2} \otimes \cdots \otimes \theta_{k} \text { is } \\
& \theta_{1}\left(i_{1}\right) \theta_{2}\left(i_{2}\right) \cdots \theta_{k}\left(i_{k}\right)
\end{aligned}
$$

- Data model: iid random order- k tensors X_{1}, \ldots, X_{N} in $\otimes^{k} \mathbb{R}^{d}$

$$
X_{i}=\lambda \theta^{\otimes k}+Z_{i}
$$

- $\theta \in \Theta \subseteq S^{d-1}$: parameter vector to estimate (up to sign) within ℓ_{2} error 0.01
- $\lambda^{2}>0$: signal-to-noise ratio per data point
- Z_{i} : order- k tensor of d^{k} iid $\mathrm{N}(0,1)$ random variables
- $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ entry of $\theta^{\otimes k}$ is $\theta\left(i_{1}\right) \theta\left(i_{2}\right) \cdots \theta\left(i_{k}\right)$
- Motivations:
- $k=2$: model problem for studying PCA ("spiked Wigner model")
- $k \geq 3$: model problem for studying tensor-based method-of-moments
- Sample complexity? Computational complexity?

Statistical-to-computational gap

Information-theoretic lower bound:
No algorithm works with $N \lesssim d / \lambda^{2}$

Known poly-time algorithms:
[MR'14, HSS'15, ZT'15, HSSS'16, ...]
Require $N \gtrsim d^{k / 2} / \lambda^{2}$
$k \geq 3$: Reasons to believe hardness?

- Failure of specific poly-time algorithms [MR'14, BAGJ'20, HKPRSS'17]
- Hypergraphic Planted Clique [ZX'18; BB'20]
- Hard in SQ model [Dㅏㅓ'21; BBHLS'21]
$k=2$: Data X_{1}, \ldots, X_{N} are matrices
Solution: Find top eigenvector/singular vectors
- $\log d$ iterations of power method
- Just need $N \gtrsim d / \lambda^{2}$
- No gap between impossible \& easy regimes!

Our results

- We show that existing poly-time algorithms for Tensor PCA are on Pareto frontier in terms of run-time, sample size, and memory size
- Theorem [Dudeja \& H .2022 2 : Every algorithm for $\operatorname{TPCA}\left(d, k, \lambda^{2}\right)$ that accurately estimates the parameters must use

$$
\text { memory size } \times \text { sample size } \times \text { time } \gtrsim \frac{d^{\lceil(k+1) / 2\rceil}}{\lambda^{2}}
$$

- For Asymmetric Tensor PCA, get lower bound of d^{k} / λ^{2}
- Similar results for related problems, including "Parallel Pancakes"
- Current best poly-time algorithms match these lower bounds

3. Memory-bounded algorithms

Memory-bounded algorithms

Template for (B, N, T) algorithm

- Initialize memory state $\in\{0,1\}^{B}$
- For iteration $t=1,2, \ldots, T$:
- For data point $i=1,2, \ldots, N$:
- state \leftarrow update $_{t, i}\left(\right.$ state $\left.X_{i}\right)$
- Return $\hat{\theta}$ (state)

Example: MLE via exhaustive search where $\bar{X}=\left(X_{1}+\cdots+X_{N}\right) / N$

- $\left\langle\bar{X}, \hat{\theta}^{\otimes k}\right\rangle=\sum_{i=1}^{N}\left\langle X_{i} / N, \hat{\theta}^{\otimes k}\right\rangle$
- For fixed $\hat{\theta}$, can compute sum in single pass over data (= 1 "iteration")
- State tracks best obj. value and best $\hat{\theta}$
- Memory size required: $B=O(d)$
- Sample size required: $N=O(d)$
- Iterations: $T=2^{d} \quad\left(\Theta=\{ \pm 1 / \sqrt{d}\}^{d}\right)$

Algorithm for Asymmetric Tensor PCA (k=4)

Matricization algorithm [MR'14]

- Let $A=\operatorname{reshape}(\bar{X}) \in \mathbb{R}^{d^{2} \times d^{2}}$
- $(\hat{u}, \hat{v})=$ top singular vectors of A
- $\left(\hat{\theta}_{1}, \hat{\theta}_{2}, \hat{\theta}_{3}, \hat{\theta}_{4}\right)=($ something $w / \hat{u}, \hat{v})$

Sample size requirement

$$
N=\frac{d^{2}}{\lambda^{2}}
$$

Recall:

$$
\bar{X} \sim \lambda \theta_{1} \otimes \theta_{2} \otimes \theta_{3} \otimes \theta_{4}+\frac{1}{\sqrt{N}} Z
$$

Matricization:

$$
\begin{gathered}
A \sim \lambda u \otimes v+\frac{1}{\sqrt{N}} \operatorname{reshape}(Z) \\
u=\operatorname{vec}\left(\theta_{1} \otimes \theta_{2}\right), v=\operatorname{vec}\left(\theta_{3} \otimes \theta_{4}\right)
\end{gathered}
$$

$$
\operatorname{ATPCA}\left(d, 4, \lambda^{2}\right) \rightarrow \operatorname{ATPCA}\left(d^{2}, 2, \lambda^{2}\right)
$$

Power method impl.
Memory size: $B=d^{2}$
Iterations: $T=\log d$

Total resources

$$
B N T=\frac{d^{4}}{\lambda^{2}} \log d
$$

Phase diagram for Asymmetric Tensor PCA

- "Overparameterized" algorithms with $B=d^{2}$

Need for overparameterization in ATPCA

- Insufficiently overparameterized algorithms with $B=d^{b}$ and $b<2$

4. Proof ideas

Proof strategy: communication complexity

- Reduction from distributed estimation in blackboard model [Shamir, '14; Dagan \& Shamir, '18]
- (B, N, T) algorithm \rightarrow protocol where each of N machines writes $B T$ bits
- We prove new communication lower bounds for Tensor PCA

$$
(B, N, T) \text { algorithm }
$$

- Initialize memory state $\in\{0,1\}^{B}$
- For iteration $t=1,2, \ldots, T$:
- For data point $i=1,2, \ldots, N$:
- state \leftarrow update $_{t, i}\left(\right.$ state,$\left.X_{i}\right)$
- Return $\hat{\theta}$ (state)

Lower bound via Fano's inequality

- Key quantity: Hellinger information [Chen, Guntuboyina, Zhang, '16]

$$
I_{\mathrm{h}}(\theta ; Y)=\inf _{Q} \int \mathrm{~h}^{2}\left(P_{\theta} ; Q\right) \pi(\mathrm{d} \theta)
$$

- $\mathrm{h}^{2}(\because ;)$ is squared Hellinger distance
- π is a prior distribution for parameter θ
- P_{θ} is distribution of protocol transcript Y given θ
- If $I_{\mathrm{h}}(\theta ; Y) \rightarrow 0$ as $d \rightarrow \infty$, then for large enough d, every protocol fails in average case sense with $\theta \sim \pi$ (and hence also for worst θ)
- We prove $I_{\mathrm{h}}(\theta ; Y) \rightarrow 0$ if total communication $\ll \frac{d^{[(k+1) / 2]}}{\lambda^{2}}$ bits

Hellinger information bound

- New Hellinger information bound (simplified):

$$
I_{\mathrm{h}}(\theta ; Y) \lesssim \sum_{i=1}^{N} \mathbb{E}_{0}\left[\int\left(\mathbb{E}_{0}\left[\left.\frac{\mathrm{~d} \mu_{\theta}}{\mathrm{d} \mu_{0}}\left(X_{i}\right)-1 \right\rvert\, Y\right]\right)^{2} \pi(\mathrm{~d} \theta)\right]
$$

- \mathbb{E}_{0} regards X_{1}, \ldots, X_{N} as iid from null distribution μ_{0}
- μ_{θ} is sampling distribution with parameter $\theta \in \Theta$
- What info does transcript Y have about (centered) likelihood ratios?

$$
\left(\frac{\mathrm{d} \mu_{\theta}}{\mathrm{d} \mu_{0}}\left(X_{i}\right)-1\right)_{\theta \in \Theta}
$$

- Need to bound squared "2-norm" of centered likelihood ratio process

Linearization and concentration

- Linearization of "2-norm" $\|v\|_{\pi}=\sqrt{\int v(\theta)^{2} \pi(\mathrm{~d} \theta)}$:

$$
\begin{aligned}
& \left\|\mathbb{E}_{0}\left[\left.\frac{\mathrm{~d} \mu_{\theta}}{\mathrm{d} \mu_{0}}\left(X_{i}\right)-1 \right\rvert\, Y\right]\right\|_{\pi}=\sup _{\|v\|_{\pi=1}}\left\langle v, \mathbb{E}_{0}\left[\left.\frac{\mathrm{~d} \mu_{\theta}}{\mathrm{d} \mu_{0}}\left(X_{i}\right)-1 \right\rvert\, Y\right]\right\rangle_{\pi} \\
& =\sup _{\|v\|_{\pi}=1} \mathbb{E}_{0}\left[\left.\left\langle v, \frac{\mathrm{~d} \mu_{\theta}}{\mathrm{d} \mu_{0}}\left(X_{i}\right)-1\right\rangle_{\pi} \right\rvert\, Y\right] \\
& \text { Centered likelihood ratio has mean zero, } \\
& \text {... but here we condition on } Y
\end{aligned}
$$

- Bound conditional expectation using concentration [Han, Özgür, Weissman, '18]

Related toy problem

- Suppose $Z \sim \mathrm{~N}(0,1)$ and $Y=Y(Z)$ is arbitrary function of Z taking at most M possible values
- Question: How large can $|\mathbb{E}[Z \mid Y]|$ (say, in expectation)?
- Answer: $O(\sqrt{\log M})$
- For event E, how $|\mathbb{E}[Z \mid E]|$ depend on $\operatorname{Pr}(E)$?
- Which event E with $\operatorname{Pr}(E)=\delta$ maximizes $|\mathbb{E}[Z \mid E]|$?
- Consider tail event $E=\left\{Z>\Phi^{-1}(\delta)\right\}$

In closing...

- In lieu of proving exponential lower bounds for Tensor PCA:
- We show that current algorithms are unimprovable without worsening some "natural" resource complexity (memory size, sample size, time)
- Shed light on computational + statistical benefits of overparameterization
- New communication complexity tools for distributed estimation lower bounds
- Open problems:
- Algorithms achieving other points on Pareto frontier?
- Lower bounds for learning problems with higher SNR?

Algorithm for Tensor PCA ($k=4$)

Partial trace algorithm [HSSS'16]

- Let $A \in \mathbb{R}^{d \times d}$ be matrix given by

$$
A_{i, j}=\sum_{l=1}^{d} \bar{X}_{i, j, l, l}
$$

- Return $\hat{\theta}=$ top eigenvector of A

Recall:

$$
\bar{X} \sim \lambda \theta^{\otimes 4}+\frac{1}{\sqrt{N}} Z
$$

Partial trace matrix:

$$
A \sim \lambda \theta^{\otimes 2}+\frac{1}{\sqrt{N}} \sqrt{d} Z^{\prime}
$$

SNR reduced from λ^{2} to λ^{2} / d

$$
\operatorname{TPCA}\left(d, 4, \lambda^{2}\right) \rightarrow \operatorname{TPCA}\left(d, 2, \lambda^{2} / d\right)
$$

Sample size requirement

$$
N=\frac{d}{\lambda^{2} / d}=\frac{d^{2}}{\lambda^{2}}
$$

Power method impl.
Memory size: $B=d$
Iterations: $T=\log d$

Total resources

$$
B N T=\frac{d^{3}}{\lambda^{2}} \log d
$$

Phase diagram for Tensor PCA

- Linear memory algorithms with $B=d$

Frameworks for communication lower bounds

- Prior works study "hide-and-seek" variant of estimation problem [Shamir, '14; Han, Özgür, Weissman, '18; Acharya, Canonne, Sun, Tyagi, '22]
- Nature chooses $\theta \sim \pi$ and $J \in[d]$ uniformly at random
- Data is drawn from μ_{θ} and distributed to the parties
- Parameter θ is revealed to all parties except with J-th component rerandomized (and J is kept hidden)
- Hide-and-seek problem is solved with $O(N d)$ communication
- Each party sends likelihoods of all $O(d)$ possibilities given own datum
- Cannot use this to prove lower bounds of $d^{[(k+1) / 2]}$ bits (except if $k=2$)

Using structure of blackboard protocols

- Leverage special structure of blackboard protocols [Bar-Yossef et al, '04]
- In $P_{\theta}^{(i)}$, get transcript Y using $X_{i} \sim P_{\theta}$ and $X_{j} \sim P_{0}$ for all $j \neq i$:

$$
\mathrm{h}^{2}\left(P_{\theta} ; P_{0}\right) \lesssim \sum_{i=1}^{N} \mathrm{~h}^{2}\left(P_{\theta}^{(i)}, P_{0}\right)
$$

- Moreover:

$$
\mathrm{h}^{2}\left(P_{\theta}^{(i)}, P_{0}\right)=\mathbb{E}_{0}\left[\mathbb{E}_{0}\left[\left.\frac{\mathrm{~d} \mu_{\theta}}{\mathrm{d} \mu_{0}}\left(X_{i}\right)-1 \right\rvert\, Y\right]^{2}\right]
$$

Solution to toy problem

- For any $\lambda \in(0,0.5)$,

$$
\mathbb{E}\left[\exp \left(\lambda Z^{2}\right)\right]=(1-2 \lambda)^{-1 / 2}=O(1)
$$

- So, conditional on event $Y=y$,

$$
\mathbb{E}\left[\exp \left(\lambda Z^{2}\right) \mid Y=y\right]=O(1) / \operatorname{Pr}(Y=y)
$$

- By Jensen's inequality and convexity of $t \mapsto \exp \left(\lambda t^{2}\right)$,

$$
\exp \left(\lambda \mathbb{E}[Z \mid Y=y]^{2}\right) \leq O(1) / \operatorname{Pr}(Y=y)
$$

- Rearrange: $\mathbb{E}[Z \mid Y=y]^{2} \leq O(\log (1 / \operatorname{Pr}(Y=y)))$

Comparison to [Raz, '16]

- [Raz, '16]: Every algorithm for learning d-bit parity functions requires either $\Omega\left(d^{2}\right)$ bits of memory or $2^{\Omega(d)}$ samples
- Streaming setup: random example is either stored in memory or gone forever
- Time = sample size
- Our setup:
- We don't count data set towards memory cost
- Only charge for additional "working memory"
- [Kong, '18]: d-bit parities can be learned with $O(d)$ samples, $O(d)$ bits of working memory, and poly (d) passes through data
- We allow for multiple passes through data set
- But we require noise, and cannot imply exponential complexity

Parallel Pancakes

$Y \sim \frac{1}{2} \mathrm{~N}\left(-\mu, I_{d}-\mu \mu^{\top}\right)+\frac{1}{2} \mathrm{~N}\left(\mu, I_{d}-\mu \mu^{\top}\right)$
Assume $\lambda^{2}:=\|\mu\|^{8}<d^{-10}$
If algorithm computes estimate $\hat{\mu}$ satisfying

$$
\mathbb{E}\left[\frac{\langle\hat{\mu}, \mu\rangle}{\|\hat{\mu}\|_{2}\|\mu\|_{2}}\right] \gg \frac{1}{\sqrt{d}}
$$

then it must use
memory size \times sample size \times time $\gtrsim \frac{d^{3}}{\lambda^{2}}$

