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Outline

• Main result: "Memory size × Sample size × Time" lower bounds for 
Tensor PCA and related problems
• Talk outline:

1. Motivation from statistical modeling
2. Tensor PCA and our lower bounds
3. Memory-bounded algorithms for Tensor PCA
4. High-level proof ideas



1. Motivation



Fitting statistical models to multivariate data

• Statistical model: e.g., mixture of Gaussians
𝑌!, … , 𝑌" ∼##$ 𝑤!N 𝜇!, Σ! +𝑤%N 𝜇%, Σ% +⋯

• Model fitting: Find model parameters 𝑤!, 𝜇!, Σ!, 𝑤%, 𝜇%, Σ%, … of 
probability distribution that "best fits the data" 𝑦!, … , 𝑦" ∈ ℝ&



How to estimate parameters?
How should I choose the 
model parameters to fit 
my multivariate data?

Maximum Likelihood 
EsOmaOon (MLE)!

But likelihood is NP-hard 
to optimize …

[Tosh & Dasgupta, '18; …]

That's in the worst case. 
Your data may be nicer …

You're right---local search 
works well sometimes!
[Dasgupta & Schulman, '07;

Xu, H., Maleki, '16; …]

Oops, local search can fail 
even on "best case" data.

[Jin, Zhang, Balakrishnan, 
Wainwright, Jordan, '16]



Method of moments

Have you tried the "method of moments"?

Like PCA? Yes, but it can be uninformative!
[Achlioptas & McSherry, '05]

You can look beyond the 2nd moment …
[Pearson, '94; …; Kalai, Moitra, Valiant, '10; …]



Spherical Gaussians [Vempala & Wang, '02]

𝑌 ∼
1
2
N −𝜇, 𝐼& +

1
2
N 𝜇, 𝐼&

2nd moment matrix reveals 𝜇
𝔼 𝑌𝑌' = 𝐼& + 𝜇𝜇'

Top eigenvector of 𝔼 𝑌𝑌' is ∝ 𝜇
"Principal Components Analysis (PCA)"

𝜇

−𝜇



Parallel Pancakes

𝑌 ∼
1
2
N −𝜇, 𝐼& − 𝜇𝜇' +

1
2
N 𝜇, 𝐼& − 𝜇𝜇'

2nd moment matrix is not useful
𝔼 𝑌𝑌' = 𝐼&

But 4th moment tensor reveals 𝜇

𝔼 𝑌⊗) − Sym 𝐼& ⊗ 𝐼& = −
1
8
𝜇⊗)

Problem: All known poly-time algorithms for estimating 𝜇 this way 
require 𝑛 ≳ 𝑑%, even though MLE only needs 𝑛 ≳ 𝑑

Does computa,onal tractability come with a sta,s,cal cost?

2 𝜇 < 2

𝜇

−𝜇



2. Tensor PCA



Tensor PCA [Montanari & Richard, '14]

• Data model: iid random order-𝑘 tensors 𝑋!, … , 𝑋* in ⨂+ℝ&
𝑋, = 𝜆 𝜃⊗+ + 𝑍,

• 𝜃 ∈ Θ ⊆ 𝑆%&': parameter vector to estimate (up to sign) within ℓ( error 0.01
• 𝜆( > 0: signal-to-noise ratio per data point
• 𝑍): order-𝑘 tensor of 𝑑* iid N(0,1) random variables
• (𝑖', 𝑖(, … , 𝑖*) entry of 𝜃⊗* is 𝜃 𝑖' 𝜃 𝑖( ⋯𝜃 𝑖*

• Motivations:
• 𝑘 = 2: model problem for studying PCA ("spiked Wigner model")
• 𝑘 ≥ 3: model problem for studying tensor-based method-of-moments

• Sample complexity? Computational complexity?

Asymmetric Tensor PCA:
𝑋! = 𝜆 𝜃"⊗𝜃#⊗⋯⊗𝜃$ + 𝑍!

• 𝜃", … , 𝜃$ ∈ Θ ⊆ 𝑆%&": 𝑘 parameter vectors
• 𝑖", 𝑖#, … , 𝑖$ entry of 𝜃"⊗𝜃#⊗⋯⊗𝜃$ is 
𝜃" 𝑖" 𝜃#(𝑖# )⋯𝜃$(𝑖$ )



StaAsAcal-to-computaAonal gap

logd N
hard? easyimpossible

1 k/2
logd N

Known poly-time algorithms:
[MR'14, HSS'15, ZT'15, HSSS'16, …]
Require 𝑁 ≳ 𝑑$/#/𝜆#

Information-theoretic lower bound:
No algorithm works with 𝑁 ≲ 𝑑/𝜆#

𝑘 = 2: Data 𝑋", … , 𝑋( are matrices
Solution: Find top eigenvector/singular vectors
• log 𝑑 iterations of power method
• Just need 𝑁 ≳ 𝑑/𝜆#
• No gap between impossible & easy regimes!

𝑘 ≥ 3: Reasons to believe hardness?
• Failure of specific poly-time algorithms 

[MR'14, BAGJ'20, HKPRSS'17]
• Hypergraphic Planted Clique [ZX'18; BB'20]
• Hard in SQ model [DH'21; BBHLS'21]



Our results

• We show that existing poly-time algorithms for Tensor PCA are on 
Pareto frontier in terms of run-time, sample size, and memory size

• Theorem [Dudeja & H., 2022]: Every algorithm for TPCA(𝑑, 𝑘, 𝜆%) that 
accurately estimates the parameters must use

memory size × sample size × time ≳
𝑑 (+I!)/%

𝜆%

• For Asymmetric Tensor PCA, get lower bound of 𝑑*/𝜆(
• Similar results for related problems, including "Parallel Pancakes"
• Current best poly-time algorithms match these lower bounds



3. Memory-bounded algorithms



Memory-bounded algorithms

Template for (𝑩,𝑵, 𝑻) algorithm
• Initialize memory state ∈ 0,1 ,

• For iteration 𝑡 = 1,2, … , 𝑇:
• For data point 𝑖 = 1,2, … ,𝑁:
• state ← update-,)(state, 𝑋))

• Return I𝜃 state

Example: MLE via exhaustive search
argmax/0∈2 N𝑋, I𝜃⊗*

where N𝑋 = (𝑋' +⋯+ 𝑋3)/𝑁
• N𝑋, I𝜃⊗* = ∑)4'3 𝑋)/𝑁, I𝜃⊗*

• For fixed I𝜃, can compute sum in single 
pass over data (= 1 "iteration")
• State tracks best obj. value and best I𝜃
• Memory size required: 𝐵 = 𝑂(𝑑)
• Sample size required: 𝑁 = 𝑂(𝑑)
• Iterations: 𝑇 = 2% (Θ = ±1/ 𝑑

!
)



Algorithm for Asymmetric Tensor PCA (k=4)

Matricization algorithm [MR'14]

• Let 𝐴 = reshape N𝑋 ∈ ℝ%!×%!

• V𝑢, V𝑣 = top singular vectors of 𝐴
• I𝜃', I𝜃(, I𝜃<, I𝜃= = (something w/ V𝑢, V𝑣)

Recall:
N𝑋 ∼ 𝜆 𝜃'⊗𝜃(⊗𝜃<⊗𝜃= +

1
𝑁
𝑍

Matricization:

𝐴 ∼ 𝜆 𝑢 ⊗ 𝑣 +
1
𝑁
reshape(𝑍)

𝑢 = vec 𝜃'⊗𝜃( , 𝑣 = vec 𝜃<⊗𝜃=

ATPCA(𝑑, 4, 𝜆() → ATPCA(𝑑(, 2, 𝜆()

Sample size requirement

𝑁 ≍
𝑑(

𝜆(

Total resources

𝐵𝑁𝑇 ≍
𝑑=

𝜆(
log 𝑑

Power method impl.
Memory size: 𝐵 ≍ 𝑑(
Iterations: 𝑇 ≍ log 𝑑

>𝑋
𝐴



• "Overparameterized" algorithms with 𝐵 ≍ 𝑑%

Phase diagram for Asymmetric Tensor PCA

log! 𝑁

log! 𝑇

1 2

1

impossible easyhard?

0
0

Region ruled out by 
our lower bound

Matricization algorithm



• Insufficiently overparameterized algorithms with 𝐵 ≍ 𝑑J and 𝑏 < 2

Need for overparameterization in ATPCA

log! 𝑁

log! 𝑇

1 2

3 − 𝑏

impossible easyhard?

0
0

2 − 𝑏

4 − 𝑏

Region ruled out by 
our lower bound



4. Proof ideas



Proof strategy: communication complexity

Public Blackboard

𝑋" 𝑋# 𝑋$⋯

(𝑩,𝑵, 𝑻) algorithm
• IniZalize memory state ∈ 0,1 ,

• For iteraZon 𝑡 = 1,2, … , 𝑇:
• For data point 𝑖 = 1,2, … ,𝑁:
• state ← update-,)(state, 𝑋))

• Return I𝜃 state

• Reduction from distributed estimation in blackboard model
[Shamir, '14; Dagan & Shamir, '18]
• (𝐵,𝑁, 𝑇) algorithm → protocol where each of 𝑁 machines writes 𝐵𝑇 bits

• We prove new communication lower bounds for Tensor PCA



Lower bound via Fano's inequality

• Key quantity: Hellinger information [Chen, Guntuboyina, Zhang, '16]

𝐼K 𝜃; 𝑌 = inf
L
Wh% 𝑃M; 𝑄 𝜋 d𝜃

• h((⋅;⋅) is squared Hellinger distance
• 𝜋 is a prior distribution for parameter 𝜃
• 𝑃0 is distribution of protocol transcript 𝑌 given 𝜃

• If 𝐼K 𝜃; 𝑌 → 0 as 𝑑 → ∞, then for large enough 𝑑, every protocol 
fails in average case sense with 𝜃 ∼ 𝜋 (and hence also for worst 𝜃)

• We prove 𝐼K 𝜃; 𝑌 → 0 if total communication ≪ & ("#$)/'

N'
bits



Hellinger information bound

• New Hellinger information bound (simplified):

𝐼K 𝜃; 𝑌 ≲b
,O!

*
𝔼P W 𝔼P

d𝜇M
d𝜇P

𝑋, − 1 𝑌
%
𝜋 d𝜃

• 𝔼K regards 𝑋', … , 𝑋3 as iid from null distribution 𝜇K
• 𝜇0 is sampling distribution with parameter 𝜃 ∈ Θ

• What info does transcript 𝑌 have about (centered) likelihood ratios?
d𝜇M
d𝜇P

𝑋, − 1
M∈Q

• Need to bound squared "2-norm" of centered likelihood ratio process



Linearization and concentration

• Linearization of "2-norm" 𝑣 R = ∫ 𝑣 𝜃 %𝜋 d𝜃 :

𝔼P
d𝜇M
d𝜇P

𝑋, − 1 𝑌
R
= sup

‖T‖(O!
𝑣, 𝔼P

d𝜇M
d𝜇P

𝑋, − 1 𝑌
R

= sup
‖T‖(O!

𝔼P 𝑣, d𝜇Md𝜇P
𝑋, − 1

R
𝑌

• Bound conditional expectation using concentration [Han, Özgür, Weissman, '18]

Centered likelihood raZo has mean zero,
… but here we condiZon on 𝑌



Related toy problem

• Suppose 𝑍 ∼ N 0,1 and 𝑌 = 𝑌 𝑍 is arbitrary function of 𝑍 taking at 
most 𝑀 possible values
• Question: How large can 𝔼 𝑍 𝑌 (say, in expectation)?

• Answer: 𝑂 log𝑀
• For event 𝐸, how 𝔼 𝑍 𝐸 depend on Pr(𝐸)?
• Which event 𝐸 with Pr 𝐸 = 𝛿 maximizes 𝔼 𝑍 𝐸 ?
• Consider tail event 𝐸 = 𝑍 > Φ&'(𝛿)



In closing…

• In lieu of proving exponential lower bounds for Tensor PCA:
• We show that current algorithms are unimprovable without worsening some 

"natural" resource complexity (memory size, sample size, time)
• Shed light on computational + statistical benefits of overparameterization
• New communication complexity tools for distributed estimation lower bounds

• Open problems:
• Algorithms achieving other points on Pareto frontier?
• Lower bounds for learning problems with higher SNR?

Thank you!
arXiv:2204.07526





Algorithm for Tensor PCA (k=4)

Partial trace algorithm [HSSS'16]

• Let 𝐴 ∈ ℝ%×% be matrix given by

𝐴),L =m
M4'

%
N𝑋),L,M,M

• Return I𝜃 = top eigenvector of 𝐴

Recall:
N𝑋 ∼ 𝜆 𝜃⊗= +

1
𝑁
𝑍

ParZal trace matrix:

𝐴 ∼ 𝜆 𝜃⊗( +
1
𝑁

𝑑 𝑍′

SNR reduced from 𝜆( to 𝜆(/𝑑

TPCA(𝑑, 4, 𝜆() → TPCA(𝑑, 2, 𝜆(/𝑑)

Sample size requirement

𝑁 ≍
𝑑

𝜆(/𝑑
=
𝑑(

𝜆(

Power method impl.
Memory size: 𝐵 ≍ 𝑑
Iterations: 𝑇 ≍ log 𝑑

Total resources

𝐵𝑁𝑇 ≍
𝑑<

𝜆(
log 𝑑

>𝑋 𝐴



• Linear memory algorithms with 𝐵 ≍ 𝑑

Phase diagram for Tensor PCA

log! 𝑁

log! 𝑇

1 2

1

impossible easyhard?

0
0

Region ruled out by 
our lower bound

Partial trace algorithm



Frameworks for communication lower bounds

• Prior works study "hide-and-seek" variant of estimation problem 
[Shamir, '14; Han, Özgür, Weissman, '18; Acharya, Canonne, Sun, Tyagi, '22]
• Nature chooses 𝜃 ∼ 𝜋 and 𝐽 ∈ [𝑑] uniformly at random
• Data is drawn from 𝜇0 and distributed to the parties
• Parameter 𝜃 is revealed to all parties except with 𝐽-th component re-

randomized (and 𝐽 is kept hidden)
• Hide-and-seek problem is solved with 𝑂(𝑁𝑑) communication
• Each party sends likelihoods of all 𝑂(𝑑) possibilities given own datum
• Cannot use this to prove lower bounds of 𝑑 (*O')/( bits (except if 𝑘 = 2)



Using structure of blackboard protocols

• Leverage special structure of blackboard protocols [Bar-Yossef et al, '04]

• In 𝑃M
, , get transcript 𝑌 using 𝑋, ∼ 𝑃M and 𝑋U ∼ 𝑃P for all 𝑗 ≠ 𝑖:

h% 𝑃M; 𝑃P ≲b
,O!

*
h% 𝑃M

, , 𝑃P
• Moreover:

h% 𝑃M
, , 𝑃P = 𝔼P 𝔼P

d𝜇M
d𝜇P

𝑋, − 1 𝑌
%



Solution to toy problem

• For any 𝜆 ∈ (0,0.5),

𝔼 exp 𝜆𝑍! = 1 − 2𝜆 "#/! = 𝑂(1)

• So, conditional on event 𝑌 = 𝑦,
𝔼 exp 𝜆𝑍! 𝑌 = 𝑦 = 𝑂 1 /Pr 𝑌 = 𝑦

• By Jensen's inequality and convexity of 𝑡 ↦ exp 𝜆𝑡! ,
exp 𝜆𝔼 𝑍 𝑌 = 𝑦 ! ≤ 𝑂 1 /Pr 𝑌 = 𝑦

• Rearrange: 𝔼 𝑍 𝑌 = 𝑦 ! ≤ 𝑂 log 1/ Pr 𝑌 = 𝑦



Comparison to [Raz, '16]

• [Raz, '16]: Every algorithm for learning 𝑑-bit parity functions requires 
either Ω 𝑑% bits of memory or 2V & samples
• Streaming setup: random example is either stored in memory or gone forever
• Time = sample size

• Our setup:
• We don't count data set towards memory cost

• Only charge for additional "working memory"
• [Kong, '18]: 𝑑-bit parities can be learned with 𝑂(𝑑) samples, 𝑂(𝑑) bits of working 

memory, and poly(𝑑) passes through data
• We allow for multiple passes through data set
• But we require noise, and cannot imply exponential complexity



Parallel Pancakes

𝑌 ∼
1
2
N −𝜇, 𝐼& − 𝜇𝜇' +

1
2
N 𝜇, 𝐼& − 𝜇𝜇'

Assume 𝜆% ≔ 𝜇 Z < 𝑑[!P

If algorithm computes estimate o𝜇 satisfying

𝔼
o𝜇, 𝜇

o𝜇 % 𝜇 %
≫

1
𝑑

then it must use

memory size × sample size × time ≳
𝑑\

𝜆%

2 𝜇 < 2

𝜇

−𝜇


