
We are most grateful to the reviewers for their careful reading of our paper and for their comments.1

We agree with the reviewers that the setting depicted in Figure 1 is simplistic. It is definitely not a focus of the paper.2

We believe our paper stands on its own without it. Of course, if the reviewers have a suggestion for a different figure, it3

would be most welcome.4

Reviewer 3 has a concern about novelty. However, the concern appears to be based on an incorrect premise that the5

main technical ideas of our paper are published in the prior work of Muthukumar et al. [2020]. On the contrary:6

1. The key lemma (Lemma 1) is entirely new, as are the main proof techniques for the main theorems. These new7

techniques obtain significantly improved conditions for all training points becoming support vectors.8

2. The results for the Haar model and the converse result are also entirely new. Muthukumar et al. [2020] has no results9

for these cases.10

3. The only results from Muthukumar et al. [2020] that are quantitatively comparable to ours (1) are restricted to11

independent and isotropic features, and (2) apply only to the “fixed labels” setting. (See Section 2.2 for descriptions12

of the data models.)13

Reviewer 3 also has a concern about significance due to the focus on hard-margin SVM (as opposed to soft-margin14

SVM) and the distributional assumptions. Indeed, these are essential ingredients of our result, but we don’t see them as15

major limitations, as we explain below.16

1. The hard-margin SVM is of particular interest because it is the limiting solution that arises from gradient-based17

optimization on the cross-entropy loss on separable training data [Ji and Telgarsky, 2019, Soudry et al., 2018].18

2. While the theory of distribution-free learning has been a major achievement in machine learning [Vapnik, 1982,19

Valiant, 1984], it is not able to explain the generalization behavior of several important machine learning algorithms,20

including those that produce predictive models that interpolate training data. Indeed, it has long been known that21

distribution-free learnability is characterized by the VC dimension of the hypothesis class [Vapnik and Chervonenkis,22

1971, Blumer et al., 1989], but the VC dimension of linear classifiers in the regime we consider is Ω(n log n), where23

n is the sample size. Hence, in this regime, distribution-free generalization bounds are uninformative.24

The theoretical study of generalization since (at least) the late 1990s has largely shifted to understanding the role of25

distribution-specific properties (e.g., margins, benign distributions) in order to better understand the behavior of26

machine learning algorithms. For a variety of examples in the context of SVMs and related algorithms, see [Bartlett27

and Shawe-Taylor, 1999, Kalai et al., 2008, Talwar, 2020]. Our work “follows in the footsteps” of these prior works28

in order to study interpolation in very high-dimensional feature spaces.29

We are grateful for the opportunity to provide these clarifications, and we hope that the concerns of Reviewer 3 are30

adequately addressed by these remarks.31
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