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ABSTRACT
We present Sunlight, a system that detects the causes of target-

ing phenomena on the web – such as personalized advertisements,
recommendations, or content – at large scale and with solid statisti-
cal confidence. Today’s web is growing increasingly complex and
impenetrable as myriad of services collect, analyze, use, and ex-
change users’ personal information. No one can tell who has what
data, for what purposes they are using it, and how those uses affect
the users. The few studies that exist reveal problematic effects –
such as discriminatory pricing and advertising – but they are either
too small-scale to generalize or lack formal assessments of confi-
dence in the results, making them difficult to trust or interpret.

Sunlight brings a principled and scalable methodology to per-
sonal data measurements by adapting well-established methods from
statistics for the specific problem of targeting detection. Our method-
ology formally separates different operations into four key phases:
scalable hypothesis generation, interpretable hypothesis formation,
statistical significance testing, and multiple testing correction. Each
phase bears instantiations from multiple mechanisms from statis-
tics, each making different assumptions and tradeoffs. Sunlight of-
fers a modular design that allows exploration of this vast design
space. We explore a portion of this space, thoroughly evaluating
the tradeoffs both analytically and experimentally. Our exploration
reveals subtle tensions between scalability and confidence. Sun-
light’s default functioning strikes a balance to provide the first sys-
tem that can diagnose targeting at fine granularity, at scale, and with
solid statistical justification of its results.

We showcase our system by running two measurement studies
of targeting on the web, both the largest of their kind. Our studies –
about ad targeting in Gmail and on the web – reveal statistically jus-
tifiable evidence that contradicts two Google statements regarding
the lack of targeting on sensitive and prohibited topics.
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1 Introduction
In a 1913 paper [7], Louis Brandeis, the proponent of modern

views of individual rights to privacy, stated: “Sunlight is said to
be the best of disinfectants; electric light the most efficient po-
liceman.” Unfortunately, today’s Web is a very dark and complex
ecosystem driven to a large extent by the massive collection and
monetization of personal data. Myriad of Web services, mobile
applications, and third parties are collecting large amounts of in-
formation from our daily online interactions, such as our website
visits, clicks, emails, documents, and pictures. At a surface level,
end-users and researchers alike largely understand that these com-
panies may be using this information to target advertisements, cus-
tomize recommendations, personalize news feeds, and even fine-
tune prices. Indeed, the companies’ own terms of service often
stipulate such uses. But at a concrete level, neither end-users nor
researchers – nor individual companies (as we argue) – understand
how specific personal data flows through the complex web ecosys-
tem, how it is being used (or abused) in practice by parties that
interact with it, and how those uses affect the users.

Questions about the targeting on the web abound: Are our chil-
dren’s online activities being targeted, and if so what kinds of prod-
ucts are they being offered? Are people being targeted because
their browsing patterns suggest that they might be vulnerable (e.g.,
sick, depressed, or in financial difficulty)? Are such inferences be-
ing used to increase insurance premiums, deny housing, or place
potentially damaging products, such as alcoholic products or risky
mortgage deals? In other words, is our data being used without
our knowledge or consent in ways that affect us? Today, we lack
believable, at-scale answers to such questions.

A good way to shed light on large, complex systems is to mea-
sure them at scale using scientific methods and tools. Indeed, a
number of measurement studies have emerged in recent years, which
attempt to answer questions about how personal data is being used
on the web [2, 6, 8, 15, 16, 19–22, 27, 29]. We reviewed 12 of these
studies and found a significant gap in scalable experimental method-
ologies. Generally speaking, prior studies conduct tightly con-
trolled experiments that vary personal data inputs (such as location,
search terms, or profile interests) one at a time and observe the ef-
fect on service outputs (such as ads, recommendations, or prices)
compared to a control group. Unfortunately, we find the method-
ologies employed by prior studies either difficult to scale or lacking
formal notions of confidence, which make their results difficult to
trust, interpret, and generalize. Consequently, the scale and scope
of what we can assert today about data use on the web is limited,
and our capacity to exert oversight on this large, complex, and ever-
changing ecosystem is virtually non-existent.

This paper argues that shedding light into the web’s complex
data ecosystem requires the development of robust experimental



methodologies, as well as infrastructures that implement them, that
can be used to answer broad classes of questions at large scale and
with interpretable, trustworthy, statistical justification of the results.
We present Sunlight, a new methodology, plus a system that imple-
ments it, that achieves these goals in the context of one important
class of questions: those that require a fine-grained measurement
of the causes of targeting phenomena on the web. All the questions
raised at the start of this section can be addressed with Sunlight.

The Sunlight methodology builds upon robust statistical meth-
ods to support scalable, trustworthy, and interpretable results. Our
key innovation is to formally separate various operations into mul-
tiple interacting stages organized in a pipeline and identifying all
the right building blocks from statistics and machine learning to
leverage at each stage of the pipeline. The Sunlight pipeline an-
alyzes the data collected from an experiment that tries many dif-
ferent inputs at once, placing them at random in a small number
of user accounts (logarithmic in the number of inputs) and collect-
ing outputs from each account. The Sunlight pipeline analyzes the
data to reveal which specific input likely caused which output. The
first stage, scalable hypothesis generation, creates a set of plausible
targeting hypotheses regarding which specific inputs correlate with
which outputs. It leverages sparsity properties to support the simul-
taneous estimation of the effect of multiple inputs on the outputs,
a consequence of the same phenomenon that underlies compressed
sensing [9]. If needed, the second stage, interpretable hypothe-
sis formation, converts the targeting hypotheses to an interpretable
form that Sunlight users (such as auditors or researchers) can read-
ily understand. The third stage, hypothesis testing, establishes the
statistical significance of the interpretable, plausible targeting hy-
potheses by testing their veracity in a separate, testing dataset ini-
tially carved out from the collected data but never used until this
stage. In some circumstances, specialized tests can establish causa-
tion and not just correlation between the inputs and the outputs. Fi-
nally, the fourth stage, multiple testing correction, accounts for the
testing of many hypotheses on the same dataset, which increases
the chance of any individual hypothesis being wrong. The end re-
sult are validated, interpretable hypotheses about which inputs are
targeted by each output, along with a statistical significance score
(a p-value) for each hypothesis.

Sunlight implements this methodology in a modular way, which
supports both the instantiation and the evaluation of each stage
based on multiple building blocks from statistics and machine learn-
ing. We find that different mechanisms lead to different trade-offs
between the scale of and the confidence in the results, hence Sun-
light lets its users choose end-to-end pipelines that best fit their
needs. Development of effective such pipelines from existing build-
ing blocks is surprisingly challenging, as different mechanisms in-
teract in unexpected ways in the pipeline. For example, our de-
tailed evaluation of various Sunlight pipelines reveals counterintu-
itive inversions of recall near the start of the pipeline and at the
end. Indeed, substituting a mechanism for generating hypotheses
in Stage 1 with one that has higher recall but lower precision, may
ultimately lower the recall at the end of the pipeline. The reason is
that the multiple testing correction at Stage 4 tends to favor those
mechanisms that generate fewer but more accurate hypotheses.

This paper discusses and evaluates the inherent trade-offs in web
transparency measurement designs, bringing the following contri-
butions to this emerging research topic:

1. A review of 12 recent articles on web transparency measure-
ment and tools, which highlights the need for new, princi-
pled methodologies for scalable and trustworthy web trans-
parency measurements. (§2)

2. The first methodology for detecting targeting in large-scale
experiments with interpretable and statistically justifiable re-
sults. While our methodology focuses on our specific prob-
lem – fine-grained targeting detection – we believe that its
conceptual bearings are relevant to other web transparency
problems (e.g., price discrimination studies at scale). (§3)

3. The first system that implements this methodology to detect
targeting at fine granularity, at scale, and with solid statistical
justification of its results. Sunlight is modular, allows broad
design space explorations, and customization of its pipeline
to strike varied trade-offs of confidence and scale. (§4)

4. A detailed evaluation of Sunlight with comparisons of multi-
ple design options and prior art. Our evaluation methodology
is new in itself, and (we believe) a useful starting point for fu-
ture transparency infrastructures, an area that currently lacks
rigorous evaluations. Our results reveal a trade-off between
the statistical confidence and number of targeting hypotheses
that can be made. They also show that favoring high preci-
sion algorithms can yield better recall at high confidence, and
that scaling output numbers may require to accept lower sta-
tistical guarantees to find sufficient hypotheses. (§6)

5. Results from analyzing targeting of tens of thousands of ads
in two ecosystems: Gmail and the broader Web. Results re-
veal a large and diverse collection of ads targeting websites
across many categories, including ads that appear to contra-
dict explicit statements made by Google about targeting on
sensitive topics, as well as advertising network policies about
ads facilitating recreational drug use. (§5 and §7).

6. Sunlight’s source code and datasets. (https://columbia.
github.io/sunlight/)

2 Motivation
At an abstract level, our work is motivated by our desire to un-

derstand how to build principled, scalable infrastructures that can
bring visibility to today’s dark data-driven web. Such infrastruc-
tures must be able to detect data flows at great scale and in complex,
heterogeneous environments, and provide trustworthy assessments
about these data flows. We believe there is urgent need for such
infrastructures (which we term generically web transparency in-
frastructures), yet we find limited progress in the related literature.

At a concrete level, this paper describes our experience building
one such scalable and trustworthy1 infrastructure, Sunlight, which
aims to discover data flows in a specific context: detecting the
causes of targeting phenomena at fine granularity from controlled
experiments with differentiated inputs. This section begins by mo-
tivating the need for targeting detection systems in particular, after
which it motivates the broader need for scale and confidence in web
transparency infrastructures.
2.1 The Targeting Detection Problem

Targeting is a pervasive phenomenon on the web and involves
the use of a user’s personal data (inputs) to tailor some content
(output), such as an ad, a recommendation, a price, search results,
or news. Sunlight aims to identify the likely causes of each targeted
output in the context of controlled experiments that test many in-
puts at once. Numerous use cases exist that could leverage such
functionality. For example, researchers could use it to study tar-
geting at larger scale than was possible before. We provide results
from our own case studies of ad targeting in Gmail and on the web
in §7. Following are two other example use cases that broaden the
scope and help underscore Sunlight’s design requirements.
1In this paper, the term trustworthy refers strictly to the level of
confidence (in a statistical sense) one can have in the results of an
investigation assuming the non-malicious service model in §3.3.

https://columbia.github.io/sunlight/
https://columbia.github.io/sunlight/


Example 1: Ann, a federal trade commission researcher specializ-
ing in COPPA enforcement, plans to investigate whether and how
advertisers target children. She hypothesizes that advertisers lever-
age information amassed by web trackers to bid for users with
browsing histories characteristic of children. Ann wants to run a
large-scale study to both quantify the amount of children-oriented
targeting, and find specific instances of what might be deemed
as inappropriate or illegal targeting (e.g., targeting pornographic
movies at teenagers or promoting unhealthy eating habits to young
children). The number of websites dedicated to children is large,
and there are even more neutral websites frequented by both chil-
dren and adults on which targeted ads might appear. Ann fully ex-
pects that child-based targeting will be rare events, hence running
her experiment at large scale is vital. For any case of inappropriate
or illegal targeting, Ann plans to investigate through legal means
(e.g., interview the advertiser) to determine whether the targeting
was intentional or purely algorithmic. Such investigations are ex-
pensive, so Ann requires high confidence in an experimental finding
to justify her investigative effort.
Example 2: Bob, a tech-savvy investigative journalist, wishes to
investigate how coupons are targeted at users. Coupon services
aim to provide product discounts to users who are likely to be in-
terested in a particular product but may need some incentive to do
so. A wide variety of types of information could feed into the tar-
geting decision, including web history, tweets, and Facebook likes.
Bob would like to try many different activities and see which ones
are targeted by coupons. In addition to requiring high confidence
in the results, Bob needs the results to also be easily interpretable
so that he and his readers can understand and reason about the im-
plications of the targeting. Ideally, whatever statements he makes
in his articles should be directly validated on the datasets and have
an associated confidence level that he can understand and poten-
tially communicate to his audience. For example, he imagines
statements such as the following to be appropriate for communi-
cation with his readers: “In our experiments, profiles that tweeted
about weight loss or diets were much more likely to be offered Mc-
Donald’s coupons than those without such tweets. This result was
very unlikely (0.01% chance) to have been observed if such tweets
were not targeted by McDonald’s.”
2.2 Limitations of Prior Approaches

The preceding examples illustrate the need for a generic system
that supports targeting investigations by identifying not only the
fact of targeting but also the likely cause of each targeted output
at fine granularity (specific inputs). The experiments must run at
large scale and any results must be statistically justifiable and in-
terpretable. We know of no prior system that satisfies all these
properties. Indeed, when turning to prior literature on measure-
ments and tools for web transparency to guide our own design, we
discovered significant mismatches at all levels.

We examined the methodologies used by 12 web transparency
measurements and tools to study various aspects of data use, in-
cluding: personalization in search engines [15,29], news and prod-
uct recommendations [16], and online pricing [16, 20, 21, 27]; tar-
geting in advertising on the web [2,8,18,19] and in mobile apps [6,
22]. We make several observations.
• Generic, reusable methodologies are scarce: Until 2014 the ap-
proach was to investigate specific questions about web targeting
and personalization by developing purpose-specific, small-scale ex-
perimental methodologies. This resulted in much redundancy be-
tween investigations, and typically in small-scale, one-off exper-
iments. In 2014, our team developed XRay [18], the first generic
and scalable system design that provides reusable algorithmic build-
ing blocks in support of many targeting investigations. Follow-

ing XRay, AdFisher [8] introduced in 2015 a generic, statistically
sound methodology for small-scale targeting investigations. (See
§8 for further discussion of XRay and AdFisher.)
• Scalability is often disregarded: Most prior works disregard scal-
ability as a core design goal [2, 6, 8, 15, 16, 19–22, 27, 29]. Gen-
erally speaking, the approach is to observe data flows by varying
one input at a time in successive experiments. This independent
treatment of inputs limits the forms of personalization (e.g., based
on location, cookie profile, or some system-specific attributes) that
can be detected by the approach. Extending such approaches to
scale to many inputs and hypotheses appears difficult. For exam-
ple, AdFisher builds a separate classifier for each input and vali-
dates its effect with experimental data. To investigate targeting on
combinations of multiple inputs, one must build a classifier and run
a separate experiment for each such combination – an exponential
approach that does not scale. XRay is the only prior system that
incorporates scalability with many inputs into its design.
• Confidence assessments are often missing: Most prior works lack
robust statistical justification for their results [2,6,15,16,18–22,27,
29]. Many works use case-by-case, comparative metrics, where the
variation in different conditions is compared to that of a control
group (e.g., observed price differences [20, 21, 27], fraction of in-
consistent search results [29], Jaccard Index and edit distance [15],
normalized discount cumulative gain [16]), but do not report any
assessments of statistical confidence or reliability. Other works de-
tect targeting by running basic statistical tests, typically to reject
that a given input seen conditionally on a given output is distributed
uniformly [2, 6, 22]. Running these tests multiple times requires a
careful correction step, an aspect that is usually ignored. Finally,
our own prior system, XRay [18], provides no confidence on an
individual finding basis; its predictions are only shown to become
asymptotically accurate overall as XRay is applied to larger and
larger systems. This makes individual results hard to trust and in-
terpret. In terms of statistical rigor, the most mature approach is
AdFisher [8] which, for a given input, builds a specific classifier
and validates its effect with statistical confidence.
• Limited evaluation and design space exploration: Most prior
work lack a rigorous evaluation of the proposed tools and asso-
ciated design space. In web transparency, evaluation is extremely
challenging because ground truth of targeting effects is unknown.
Manual assessment is sometimes used in prior work [8, 18], but it
is, in our experience, extremely prone to error (see §6.6). Inability
to quantify the accuracy (precision, recall) of an algorithm makes it
difficult to explore the design space and understand its trade-offs.
This paper seeks to fill in the preceding gaps by presenting: (1)
The first generic web transparency methodology that provides both
scalability and robust statistical confidence for individual inferences.
(2) An implementation of this methodology in Sunlight. Sunlight’s
design is inspired by XRay and AdFisher, but improves both in sig-
nificant ways (see §8 for detailed comparison). (3) An approach for
evaluating the design space of a transparency system like Sunlight.
We next begin by describing Sunlight’s methodology.

3 The Sunlight Methodology
A core contribution in Sunlight is the development of a princi-

pled methodology for web targeting investigations, which follows
what we believe are important principles to follow when building
infrastructures for other types of web transparency investigations.
3.1 Design Principles
• Design for scale and generality. The web is big; the number of
services and third-parties that could be targeting the users is gigan-
tic. The kinds of personal data they could be using as inputs of their
targeting are many and diverse. The number of service outputs that
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(1) scalable hypothesis generation, (2) interpretable hypothesis formation,
(3) hypothesis testing, and (4) multiple test correction.

could be targeted at the users is immense. Reliability and trust in an
investigation’s results depend not only on the methodologies used
but also on the scale at which conclusions are reached. Sunlight
must thus support large-scale investigations, both in terms of the
number of inputs being tracked and in terms of the number of out-
puts, as well as – to the extent possible – in terms of the services
to which it is applied. This last goal requires us to minimize the
assumptions we make about the inspected service(s).
• Provide robust statistical justification for all inferences. Trust-
worthiness in the results is key to an investigation, hence Sunlight
must provide robust confidence assessments for its inferences. The
metrics must be understandable and broadly accepted by the com-
munity. Where possible, Sunlight should be able to make causal
claims about its inferences, and not simply correlations, which are
more difficult to reason about. Enforcing high confidence for all
findings may result in missing some. We believe that correct find-
ings are preferable to complete findings. Sunlight hence attempts
to limit such effects, but given a choice favors precision over recall.
• Ensure interpretability of inferences. A key challenge with many
machine learning or statistics mechanisms is that their inferences
are often not easily interpretable, and post hoc interpretations may
not have been statistically validated. Interpretability is a critical
aspect of a transparency system as people are the consumers of the
system’s output. Sunlight explicitly integrates a rudimentary but
effective technique to ensure that its inferences are interpretable
and statistically validated in these interpretable forms.

To the best of our knowledge, Sunlight is the first web trans-
parency system to closely follow all these principles. It can cur-
rently run on hundreds of virtual machines to process data from
targeting experiments, and precisely detects targeting of tens of
thousands of Gmail and web ads, testing hundreds of inputs simul-
taneously. It minimizes the assumptions it makes about the services
and provides statistically significant and interpretable results.
3.2 Methodology

Fig.1 shows the Sunlight methodology. It consists of a pipeline
with four data analysis stages. Those stages depend on experimen-
tal data from an initial data collection step determined by the inves-
tigator. Data collection begins with the creation of several fictitious
user profiles, each with randomly-assigned input attributes (called
inputs) which are potentially visible to an ad targeting mechanism.
For instance, an input may indicate the presence of a particular e-
mail in the user profile’s webmail inbox, or that the user profile
was used to visit a particular website. Then, each user profile is
used to measure several potential effects of targeting mechanisms
(outputs), such as specific ad displays shown on browser visits to
a news website or webmail service. The inputs should be speci-
fied a priori, and for various reasons which we discuss later, it will
be desirable that the random assignment of input values be statisti-
cally independent (across different inputs and across different user
profiles); the outputs may be specified generically (e.g., all possi-
ble ads displayed in ten refreshes of cnn.com), so that the set of

outputs is only determined post hoc. The end result is a data set
comprised of inputs and output measurements for each profile.

At its core, the Sunlight methodology analyzes the collected data
set using a sample-splitting approach (sometimes called the “hold-
out method” in machine learning) to generate and evaluate target-
ing hypotheses. The profiles in the data set are randomly split into
a training set and a testing set. In Stage 1 (Scalable Hypothesis
Generation), we apply scalable classification and regression meth-
ods to the training set to generate prediction functions that can ex-
plain the output measurements for a user profile (e.g., indicator of
whether a particular ad was displayed to the user) using the pro-
file’s input attributes. We focus on scalable methods that generate
simple functions of a small number of inputs so that they are readily
interpretable as targeting hypotheses, and take explicit measures in
Stage 2 (Interpretable Hypothesis Formation) to ensure this if
necessary. In addition, we discard any prediction functions that fail
some simple sanity checks so as to reduce the number of targeting
hypotheses; this again is performed just using the training set. At
the end of Stage 2, we have a filtered collection of interpretable
targeting hypotheses generated using only the training set.

In Stage 3 (Hypothesis Testing), each such hypothesis is then
evaluated on the testing set using a statistical test to generate a
measure of confidence in the targeting hypothesis—specifically, a
p-value. The p-value computations may make use of the known
probability distributions used to assign input values in the test set
profiles, and each targeting hypothesis’ p-value should be valid un-
der minimal assumptions. Because such statistical tests may be
conducted for many targeting hypotheses (e.g., possibly several tar-
geted ads), we finally apply a correction to these confidence scores
in Stage 4 (Multiple Testing Correction) so that they are simulta-
neously valid. We may then filter the targeting hypotheses to just
those with sufficiently high confidence scores, so that the end result
is a statistically-validated set of interpretable targeting hypotheses.
3.3 Threat Model and Assumptions

Like all prior transparency systems of which we are aware, we
assume that Web services, advertisers, trackers, and any other par-
ties involved in the web data ecosystem, do not attempt to frustrate
Sunlight’s targeting detection. In the future, we believe that robust-
ness against malicious adversaries should become a core design
principle, but this paper does not provide such progress. Moreover,
we assume that the users leveraging Sunlight are tech-savvy and
capable of developing the measurement data collection necessary
to collect the data. Sunlight enables targeting detection given the
experimental datasets obtained through independent means.

While Sunlight can establish correlation and even causation in
some circumstances between particular inputs and targeted outputs
(within some confidence level), it cannot attribute targeting deci-
sions to particular parties (e.g., advertisers, ad networks, trackers,
etc.), nor can it distinguish between intentional targeting (e.g., ad-
vertisers choosing to target users in a particular category) versus
algorithmic decisions (e.g. an unsupervised algorithm decides to
target a particular population of users based on patterns of prior
ad clicks). Moreover, because Sunlight’s correlations and causa-
tions are obtained from controlled experiments with synthetic user
profiles, its findings are not guaranteed to be representative of the
targeting on the real population. Finally, while Sunlight can detect
certain combined-input targeting, it cannot detect all forms of tar-
geting, but rather only targeting on disjunctive (OR) combinations
of a limited number of controlled inputs.

Given all of these constraints, Sunlight is best used in contexts
where its results inform and provide believable justification for sub-
sequent investigations through independent means aimed at estab-
lishing the “truth.” Our scenarios in §2.1 fall into this category.

cnn.com
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4 The Sunlight System
Sunlight instantiates the preceding methodology to detect, val-

idate, and report the likely causes of targeting phenomena on the
web. This raises three significant challenges. First, at each stage,
unique aspects of our domain require careful modeling of the prob-
lem to map them onto appropriate statistical mechanisms. Second,
across stages, mechanisms may interact in subtle ways and require
careful and challenging co-designs. For example, as §6 shows, a
design choice to use a permissive classification at Stage 1 (high
recall but low precision, as proposed in XRay [18]) results in sig-
nificant penalty due to correction in Stage 4 and failure to validate
many true hypotheses (i.e., poor recall at the end of the Sunlight
pipeline). In contrast, a stricter Stage 1 method that we devel-
oped for Sunlight (§4.1), which has comparatively lower recall but
higher precision in it of itself results in better recall at the end of
the Sunlight pipeline. Thus, a second key contribution in this paper
is to identify the key requirements that must be met by the mech-
anisms we use at each stage of the pipeline and combine them in
ways that provide scalability, confidence, and interpretability.

To address these challenges, we have designed Sunlight to be
modular. It allows both the instantiation of multiple pipelines and
the evaluation and comparison at different levels of the pipeline.
This provides two benefits. First, it lets us explore the design space
and choose the best combination of mechanisms for our problem.
Second, it lets our users – researchers and investigators – adapt
Sunlight to their own needs. For example, some mechanisms pro-
vide confidence at scale while others provide superior statistical
guarantees; with Sunlight users can make the choices they prefer.
Fig.2 lists the mechanisms we currently support at each stage, some
of them which we imported from prior literature, others we devel-
oped to address limitations of prior mechanisms. We next describe
the mechanisms at each stage.

4.1 Stage 1: Scalable Hypothesis Generation
We generate interpretable targeting hypotheses by applying clas-

sification and regression methods to the training set; the hypothe-
ses are formulated as interpretable functions of a profiles’ input
attributes that can explain the corresponding output measurements.
In machine learning parlance, we train predictors of the outputs
based on the inputs (as input variables). To ensure that the hypothe-
ses are interpretable, we explicitly seek predictors that only depend
on a few inputs, and that only have a simple functional form. To this
end, we restrict attention to hypotheses about the output that can be
represented as a disjunction formula over at most k inputs for some
small integer number k (here we also assume for simplicity that in-
puts and outputs are binary-valued). This class of small disjunction
formulae is one of the simplest classes of natural and interpretable

hypotheses; our focus on this class here serves as a starting point
for building up techniques for other hypothesis classes.

Even with the restriction to the simple class of disjunction for-
mulae, we face formidable computational challenges. Finding the
most accurate such disjunction on an arbitrary training set is gen-
erally computationally intractable in very strong senses [11], with
brute force enumeration requiring Ω(dk) time for d inputs. There-
fore, we can only hope to find accurate small disjunction hypothe-
ses that have additional special structure. In some cases, we can
use a two-step greedy approach to find such disjunction hypothe-
ses: (i) we first use scalable classification and regression methods
to order the inputs by some measure of relevance—e.g., by their av-
erage correlation with the output across user profiles in the training
set (this stage); then (ii) we use this ordering over inputs to greed-
ily construct a disjunction with sufficiently high accuracy on the
training set (Stage 2). Under other conditions, it may be possible
to directly form small disjunction hypotheses. We discuss some of
these approaches in more detail below.
Sparse regression. Our first technique for ordering inputs is based
on linear regression. In our application, each of the d inputs is
regarded as a (boolean) predictive variable, and our goal is to find a
linear combination of these d variables x = (x1, x2, . . . , xd) that
predicts an associated output measurement. The coefficients w =
(w1, w2, . . . , wd) used to form the linear combination 〈w,x〉 =∑d

i=1 wixi are called the regression coefficients, and these can be
regarded as a measure of association between the inputs and the
output. These coefficients are estimated from a collection of d-
dimensional data vectors, which in our setting are the vectors of
input attributes for each profile in the training set.

We use a sparse linear regression method called Lasso [26] to es-
timate the regression coefficients w. Lasso is specifically designed
to handle the setting where the number of inputs may exceed the
number n of data vectors (i.e., user profiles) in the training set, as
long as the number of non-zero regression coefficients is expected
to be small—i.e., the coefficient vector is sparse. This sparsity as-
sumption entails that only a few inputs are, in combination, cor-
related with the output. Under certain conditions on the n data
vectors (which we ensure are likely to be satisfied by construction
of our user profiles), Lasso accurately estimates the coefficients as
long as n ≥ O(k log d), where k is the number of non-zero coeffi-
cients [4]—i.e., the number of input variables potentially correlated
with the output. In fact, this collection of O(k log d) input vectors
supports the simultaneous estimation of multiple coefficient vec-
tors for different outputs (e.g., different ads), a consequence of the
same phenomenon that underlies compressed sensing [9].

Linear regression permits the use of additional variables for un-
controlled factors (e.g., time-of-day, IP address of machine used
to collect data) to help guard against erroneous input/output asso-
ciations that could otherwise be explained by these factors. For
instance, some ads may be shown more during work hours to target
office workers, but the time-of-day in which data is collected for
certain profiles could inadvertently be correlated with some inputs.
Including time-of-day as a variable in the regression model helps
suppress these unwanted associations.

We also consider the use of a generalized linear model called
logistic regression, which is especially suited for binary outputs.
This model posits that Pr[output = 1] = g(〈x,w〉), where g(z) =
1/(1 + e−z). To estimate regression coefficients in this model,
we use a variant of Lasso called L1-regularized logistic regres-
sion [23], whose effectiveness has been established in several em-
pirical studies across multiple domains (e.g., [5, 28]). As in Lasso,
we are able to regard the inputs with large estimated coefficients as
likely to be relevant in predicting the output (and this would not be



Figure 3: Interpretable vs. raw hypothesis. (Left) Targeting hypothe-
sis formulated as disjunction of inputs. (Right) Raw hypothesis based on
logistic regression parameters.

the case if we used unregularized or L2-regularized logistic regres-
sion, at least in this n� d regime).
Methods from XRay [18]. For direct comparison to prior art, we
also implement two algorithms used in XRay [18] to identify in-
puts that may be triggering targeting outputs. While the algorithms
are shown to be asymptotically exact, the system provides no sta-
tistical confidence or guarantee for individual inferences. The first
algorithm is Set Intersection, which orders inputs by the fraction
of profiles where the output is present they are covering. In other
words, the best candidates for targeted inputs are the one present in
the largest fraction of the profiles with the output. The second algo-
rithm from XRay is a Bayesian algorithm, which uses a particular
generative model for the targeting to compute posterior probabili-
ties that each input is targeted by an output. The algorithm orders
the inputs by these probabilities.
4.2 Stage 2: Interpretable Hypothesis Formation

Given an ordering over the inputs, we form disjunctions of inputs
in a greedy fashion. Specifically, we first consider a singleton dis-
junction with the first input on the list, then a disjunction of the first
two inputs on the list, and so on. We proceed as long as the training
accuracy of the disjunction (in predicting the output for profiles in
the training set) is sufficiently high; the criterion we use to deter-
mine this threshold is just a heuristic, but is similar to the hypoth-
esis test used in the testing stage (§4.3). The largest sufficiently
accurate disjunction is then taken (together with the associated out-
put) as a targeting hypothesis. For some outputs, it is possible that
even the singleton disjunction lacks high-enough accuracy; in such
cases no hypothesis is formed.

Fig.3 shows an example of this transformation for a hypothesis
based on logistic regression. The leftside hypothesis says a profile
is targeted if it has at least one of the shown inputs; the rightside
hypothesis says a profile is targeted if the sum of coefficients for the
inputs in the profile is greater than zero. The latter appears more
difficult to interpret than the former.

An alternative is to forgo interpretability and seek out out any
kind of potential association between inputs and outputs. For in-
stance, we could look for associations between arbitrary functions
of inputs and outputs by using richer classes of prediction functions
beyond simple disjunctions (e.g., arbitrary linear threshold func-
tions), as well as by using other flexible measures of association
(e.g., [14]). Such associations may be much easier to detect and
statistically validate, but they may not be readily interpretable nor
easy to reason about in a follow-up studies.

An important and subtle note is that if interpretability is impor-
tant, then any transformation needed for interpretation should be
applied at this stage. For example, an intuitive but incorrect way
of interpreting a result from Sunlight would be to generate raw hy-
potheses, validate them in Stages 3 and 4, and then “interpret” those
with low enough p-values. That would result in potentially mislead-
ing conclusions. For example, just because a hypothesis based on
a logistic model can be validated with low p-values, it does not fol-
low that the corresponding disjunctive version of that hypothesis is

also statistically significant. For this reason, the Sunlight method-
ology critically includes this explicitly interpretability stage, which
reminds a developer to transform her hypothesis early for inter-
pretability so the p-values can be computed for that hypothesis.
4.3 Stage 3: Hypothesis Testing

The second stage of the analysis considers the targeting hypothe-
ses (disjunctions of inputs and an associated output) generated from
the first stage and provides a confidence score for each hypothesis.
The score, a p-value, comes from an exact statistical test that de-
cides between a null hypothesis H0 that the disjunction of inputs is
independent of the associated output, and an alternative hypothesis
H1 that the disjunction of inputs is positively correlated with the
output. A small p-value—≤0.05 by convention—implies that our
observations on the data (discussed below) are unlikely to be seen
under H0; it lends confidence in rejecting H0 and accepting H1

and the validity of the targeting hypothesis.
Computing p-values. The test is based on computing a test statis-
tic on the testing set (i.e., the subset of profiles that were not used
to generate targeting hypotheses). A critical assumption here is
that the profiles (and specifically, the outputs associated with each
profile) are statistically independent, and hence the selected dis-
junction is also independent of the profiles in the testing set. The
specific test statistic T we use is an association measure based on
Pearson’s correlation: we compute T using the profiles from the
testing set, and then determine the probability mass of the interval
{t ∈ R : t ≥ T} under H0. This probability is precisely the
p-value we seek. Because the distribution of the inputs for each
profile is known (and, in fact, controlled by us), it is straightfor-
ward to determine the exact distribution of T under H0. For exam-
ple, when the inputs for each profile are determined with indepen-
dent but identically distributed coin tosses, the p-value computation
boils down to a simple binomial tail calculation.

More specifically, suppose the inputs are independent and iden-
tically distributed binary random variables with mean α ∈ (0, 1).
Consider a disjunction of k inputs and a particular (binary-valued)
output. Let N be the number of profiles for which the output is 1,
and let B be the number of profiles for which both the disjunction
and the output are 1. If N = 0, then the p-value is 1. Otherwise,
the p-value is

∑N
i=B

(
N
i

)
αi
k(1−αk)N−i where αk = 1−(1−α)k.

Use of p-value in Stage 2. As previously mentioned, we also use
this p-value computation in Stage 2 as a rough heuristic for decid-
ing which disjunctions to keep and pass on to Stage 3. However, we
stress that these Stage 2 p-value computations are not valid because
the disjunctions are formed using the profiles from the training set,
and hence are not independent of these same training set profiles.
The validity of the Stage 3 p-values, which are based on the testing
set, relies on the independence of the disjunction formulae and the
testing set profiles themselves.
Independence assumption. It is possible to weaken the inde-
pendence assumption by using different non-parametric statistical
tests, as is done in [8]. Such tests are often highly computationally
intensive and have lower statistical power to detect associations.
We opt to admit the assumption of independence in favor of ob-
taining more interpretable results under the assumption; gross vi-
olations may be identified in follow-up studies by an investigator,
which we anyway recommend in all cases.
Causal effects. Under the alternative hypothesis of a positive cor-
relation between a disjunction of inputs and an output, it is possible
to draw a conclusion about the causal effect of the inputs on the
output. Specifically, if the input values are independently assigned
for each user profile, then a positive correlation between a given
disjunction of inputs and an output translates to a positive average



causal effect [24]. This independent assignment of input values can
be ensured in the creation of the user profiles.
4.4 Stage 4: Multiple Testing Correction

In the final stage of our analysis methodology, we appropriately
adjust the p-values for each of our targeting hypotheses to correct
for the multiple testing problem. As one simultaneously considers
more and more statistical tests, it becomes more and more likely
that the p-value for some test will be small just by chance alone
even when the null hypothesis H0 is true. If one simply rejects H0

whenever the stated p-value is below 0.05 (say), then this effect
often leads to erroneous rejections of H0 (false rejections).

This multiple testing problem is well-known and ubiquitous in
high-throughput sciences (e.g., genomics [10]), and several statisti-
cal methods have been developed to address it. A very conservative
correction is the Holm-Bonferroni method [17], which adjusts the
p-values (generally making them larger them by some amount) in
a way so that the probability of any false rejection of H0 (based on
comparing adjusted p-values to 0.05) is indeed bounded above by
0.05. While this strict criterion offers a very strong guarantee on the
resulting set of discoveries, it is often overly conservative and has
low statistical power to make any discoveries at all. A less conser-
vative correction is the Benjamini-Yekutieli procedure [3], which
guarantees that among the adjusted p-values that are less than 0.05,
the expected fraction that correspond to false discoveries (i.e., false
rejections of H0) is at most 0.05. Although this guarantee on the
expected false discovery rate is weaker than what is provided by the
Holm-Bonferroni method, it is widely accepted in applied statistics
as an appropriate and preferred correction for exploratory studies.

With either correction method, the adjusted p-values provide a
more accurate and calibrated measure of confidence relative to the
nominal 0.05 cut-off. We can either return the set of targeting hy-
potheses whose p-values fall below the cut-off, or simply return
the list of targeting hypotheses ordered by the p-values. Either
way, the overall analysis produced by this methodology is highly-
interpretable and statistically justified.
4.5 Prototype

We implemented Sunlight in Ruby using statistical routines (e.g.,
Lasso) from R, a programming environment for statistical comput-
ing.The analysis is built around a modular pipeline that lists the
algorithms to use for each stage, and each algorithm implements a
basic protocol to communicate with the next stage.
Default Pipeline. Fig.2 shows the default pipeline used by Sun-
light. In Stage 1, we use sparse logistic regression (Logit) to esti-
mate regression coefficients that give an ordering over the inputs.
In Stage 2, we select a disjunction (i.e., an “OR” combination)
with the best predictive accuracy from ordered inputs from Stage
1, and discard inaccurate hypotheses as determined using heuristic
p-value computations. Stage 3 computes the p-values for the sta-
tistical test of independence on the test data. Finally, our Stage 4
implementation computes both the Benjamini-Yekutieli (BY) and
Holm-Bonferroni (Holm) corrections, though our default recom-
mendation is the BY correction. Finally, we recommend p-values
< 0.05 for good confidence.

In §6, we show that these defaults strike a good balance between
the scalability and the confidence of these hypotheses. Using these
defaults, our targeting experiments on Gmail and on the web pro-
duced the largest number of high confidence hypotheses, and we
have manually inspected many of these hypotheses to validate the
results. We describe these measurements next.

5 Sunlight Use Cases
To showcase Sunlight, we explored targeting in two ad ecosys-

tems with two experiments, on Gmail ads and ads on the web re-

spectively. We used the datasets generated from these experiments
for two purposes: (1) to evaluate Sunlight and compare its perfor-
mance to prior art’s (§6) and (2) to study a number of interesting
aspects about targeting in these ecosystems (§7). As foreshadow-
ing for our results, both experiments revealed contradictions of sep-
arate statements from Google policies or official FAQs. While our
use cases refer exclusively to ad targeting detection, we stress that
our method is general and (intuitively) should be applicable to other
forms of targeting and personalization (e.g., §6.2 shows its effec-
tiveness on Amazon’s and YouTube’s recommendation systems).

Figure 4: Sample targeted ads from the 33-day Gmail experiment.



5.1 Gmail Ads
As a first example of personal data use, we turn to Gmail which,

until November last year, offered personalized advertisements tai-
lored to a user’s email content. We selectively placed more than
300 emails containing single keywords or short phrases to encode
a variety of topics, including commercial products (e.g. TV, cars,
clothes) and sensitive topics (e.g., religion, sexual orientation, health)
into 119 profiles. The emails were manually written by us by se-
lecting topics and writing keywords related to this topic. The first
column of Figure 4 shows examples of emails we used. The topics
were selected from the AdSense categories [12], with other sensi-
tive forbidden by the AdWords policies [13].

The profiles were Gmail accounts created specifically to study
Gmail targeting. Because creating Gmail accounts is costly, some
accounts were reused from previous studies, and already contained
some emails. The emails relevant to this study were different,
and assigned independently from previous emails, so our statistical
guaranties still hold. To perform the independent assignment each
email was sent to each account with a given probability (in this case
0.2). Emails were sent from 30 other Gmail accounts that did not
otherwise take part in the study. No account from the study sent an
email to another account of the study. Finally we collected targeted
ads by calling Google’s advertising endpoints the same way Gmail
does, looping over each email and account ten times.

Our goal was to study (1) various aspects related to targeted ad-
vertisements, such as how frequent they are and how often they
appear in the context of the email being targeted (a more obvious
form of targeting) versus in the context of another email (a more
obscure form of targeting) and (2) whether advertisers are able to
target their ads to sensitive situations or special groups defined by
race, religion etc. We collected targeting data for 33 days, from
Oct. 8 to Nov. 10, 2014 when Google abruptly shut down Gmail
ads. One might say that we have the last month of Gmail ads. 2

Before Google disabled Gmail ads, we collected 24,961,698 im-
pressions created collectively by 19,543 unique ads. As expected,
the distribution of impressions per ad is skewed: the median ads
were observed 22 times, while the top 25/5/1% of ads were ob-
served 217/4,417/20,516 times. We classify an ad as targeted if its
statistical confidence is high (corrected p-value< 0.05 with Sun-
light’s default pipeline). In our experiment, 2890 unique ads (15%
of all) were classified as targeted. While we observe that ads classi-
fied as targeted are seen more often (1159 impressions for the me-
dian targeted ads), this could be an artifact as most ads seen only
occasionally present insufficient evidence to form hypotheses.

Figure 4 shows some examples of ads Sunlight identified as tar-
geted, along with the content of the emails they targeted, the cor-
rected p-values, and information about the context where the im-
pressions appeared. Some ads show targeting on single inputs while
others show targeting on combinations of emails. We selected these
examples by looking at all ads that were detected as targeting the
sensitive emails we constructed, and choosing representative ones.
When multiple interesting examples were available, we chose those
with a lot of data, or that we detected across multiple days, as we
are more confident in them.

Notably, the examples show that information about a user’s health,
race, religious affiliation or religious interest, sexual orientation,
or difficult financial situation, all generate targeted advertisements.
Our system cannot assign intention of either advertisers or Google
for the targeting we found, but this appears to contradict a statement
in an official-looking Gmail Help page: 3

2Gmail now has email “promotions;” we did not study those.
3The page containing this statement used to be accessible through
a user’s own account (Gmail - Help - Security & privacy - Privacy

Targeted	  website ads	  Title	  &	  text	   Results
drugs.com Nasalcrom p-‐value	  =	  2.5e-‐5

374	  impressions
in 73 profiles
41%	  in	  context

hightimes.com AquaLab	  Technologies p-‐value	  =	  2.6e-‐13
1714	  impressions
in 76 profiles
99%	  in	  context

foxnews.com IsraelBonds.com p-‐value	  =	  0.0041
71	  impression
in 45 accounts
100%	  in	  context

huffingtonpost.com Stop	  The	  Tea	  Party p-‐value	  =	  0.010
97	  impressions
in 37 profiles
100%	  in	  context

economist.com The	  Economist p-‐value	  =	  0.00066
151	  impressions
in 77 profiles
0%	  in	  context

pcgamer.com Advanced	  PCs	  Digital	  Storm p-‐value	  =	  0.035
(games) 575	  impressions

in 129 profiles
66%	  in	  context

soberrecovery.com Elite	  Rehab p-‐value	  =	  6.8e-‐6
(rehab) 5486	  impressions

82 profiles
99%	  in	  context
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Invest in Israel
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Starting at $699
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Great Minds Like a Think - 
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Figure 5: Sample targeted ads from the display-ads experiment (also
called Website experiment).

Only ads classified as Family-Safe are displayed in Gmail.
We are careful about the types of content we serve ads against.
For example, Google may block certain ads from running
next to an email about catastrophic news. We will also not tar-
get ads based on sensitive information, such as race, religion,
sexual orientation, health, or sensitive financial categories.

– support.google.com/mail/answer/6603.

While our results do not imply that this targeting was intentional
or explicitly chosen by any party involved (Google, advertisers,
etc.), we believe they demonstrate the need for investigations like
the ones Sunlight supports. We also point out that those violations
are needles in a haystack. Several topics we included in our ex-
periment (e.g., fatal diseases and loss) generated not a single ad
classified as targeted.

§7 presents further results about targeting on Gmail.

5.2 Display Ads on the Web
As a second example of personal data use, we look at targeting of

arbitrary ads on the web on users’ browsing histories. This experi-
ment is not specifically related to Google, though Google is one of
the major ad networks that serve the ads we collect. Similar to the
Gmail use case, our goal is to study aspects such as frequency of
targeted ad impressions, how often they appear in the context of the
website being targeted versus outside, and whether evidence of tar-
geting on sensitive websites (e.g., health, support groups, etc.) ex-
ists. We populate 200 browsing profiles with 200 input sites chosen
randomly from the top 40 sites across 16 different Alexa categories,
such as News, Home, Science, Health, and Children/Teens. Each
website is randomly assigned to each profile with a probability 0.5.
For each site, we visit the top 10 pages returned from a site-specific
search on Google. We use Selenium [25] for browsing automation.
We collect ads from the visited pages using a modified version of
AdBlockPlus [1] that detects ads instead of blocking them. After
collecting data, we use Sunlight’s default pipeline and a p-value
< 0.05 to assess targeting.

policies) and its look and feel until 12/24/2014 was more official
than it currently is. The 2014 version is available on archive.org
(https://web.archive.org/web/20141224113252/https:
//support.google.com/mail/answer/6603).

support.google.com/mail/answer/6603
https://web.archive.org/web/20141224113252/https://support.google.com/mail/answer/6603
https://web.archive.org/web/20141224113252/https://support.google.com/mail/answer/6603


We collect 19,807 distinct ads through 932,612 total impres-
sions. The web display ads we collected skewed to fewer impres-
sions than those we collected in the Gmail experiment. The median
ad appears 3 times and we recorded 12/126/584 impressions for the
top 25/5/1% of display ads. In this experiment, 931 unique ads (5%
of all) were classified as targeted, and collectively they are respon-
sible from 37% of all impressions.

Figure 5 shows a selection of ads from the study, chosen sim-
ilarly as the ads from the Gmail study. Among the examples are
ads targeted on marijuana sites and drug use sites. Many of the ads
targeted on drug use sites we saw, such as the “Aqua Lab Tech-
nologies” ad, advertise drug paraphernalia and are served from
googlesyndication.com. This appears to contradict Google’s
advertising policy, which bans “Products or services marketed as
facilitating recreational drug use.” – https://support.google.
com/adwordspolicy/answer/6014299.

§7 presents further results about targeting on the web.

6 Evaluation
We evaluate Sunlight by answering the following questions: (Q1)

How accurate is Sunlight’s against ground truth, where it is avail-
able? (Q2) How do different Stage 1 algorithm’s hypotheses com-
pare? (Q3) What is the influence of p-value correction on Sun-
light? (Q4) How does scale affect confidence? As foreshadowing,
we show that Sunlight’s high-confidence hypotheses are precise,
and that the Logit (logistic regression) method is best suited among
those we evaluated for maximizing hypothesis recall after p-value
correction. Somewhat surprisingly, we show that the “winning” in-
ference algorithm at Stage 1 (XRay’s) is not the winner at the end
of the pipeline, after correction is applied. Finally, we show that the
same effect in also responsible for a trade-off between confidence
and scalability in the number of outputs.
6.1 Methodology

We evaluate Sunlight using the system’s split of observations into
a training and a testing set, and leveraging the modularity of Sun-
light to measure the effectiveness of targeting detection at differ-
ent stages of the analysis pipeline. We believe that our evaluation
methodology, along with the metrics that we developed for it, rep-
resents a significant contribution and a useful starting point for the
evaluation of future transparency infrastructures, an area that cur-
rently lacks rigorous evaluations (see §2.2).

A critical challenge in evaluating Sunlight and its design space
is the lack of ground truth for targeting for most experiments. For
example, in Gmail, we do not know how ads are targeted; we can
take guesses, but that is extremely error prone (see §6.6). In other
cases (such as for Amazon and Youtube recommendations), we can
obtain the ground truth from the services. For a thorough evalua-
tion, we thus decided to use a multitude of metrics, each designed
for a different situation and goal. They are:

1. hypothesis precision: proportion of high-confidence hypothe-
ses that are true given some ground truth assessment.

2. hypothesis recall: proportion of true hypotheses that are found
from some ground truth assessment.

3. ad prediction precision, the proportion of success in predict-
ing if an ad will be present in a training set account.4

4. ad prediction recall: proportion of ads appearances that were
correctly guessed when predicting if an ad will be present in
a training set account.

5. algorithm coverage: proportion of low p-value hypotheses
found by an algorithm, out of all low p-value hypotheses
found by any of the algorithms.

4“Ad” in this section is short for the more generic output.

Workload Profiles Inputs Outputs
Gmail (one day) 119 327 4099
Website 200 84 4867
Website-large 798 263 19808
YouTube 45 64 308
Amazon 51 61 2593

Table 1: Workloads used to evaluate Sunlight

We use the first two metrics in cases where ground truth is avail-
able (§6.2) and with manual assessments (§6.6). These are typi-
cally small scale experiments. We use the next two metrics in cases
where ground truth is unavailable; this lets us evaluate at full scale
and on interesting targeting. Finally, we use the last metric for
comparison of various pipeline instantiations.

Table 1 shows the datasets on which we apply these metrics. The
first three datasets come from the experiments described in the pre-
ceding section. The Gmail dataset corresponds to one day’s worth
of ads in the middle of our 33-day experiment. The YouTube and
Amazon datasets are from our prior work XRay [18]. They contain
targeting observations for the recommendation systems of YouTube
and Amazon, for videos and products respectively. They are small
(about 60 inputs), and with inputs on very distinct topics, minimiz-
ing the chances for targeting on input combinations. On the other
hand the Gmail and Websites datasets are larger scale, with up to
327 inputs and thousands outputs. Moreover their inputs are not
distinct, containing some redundancy because they include emails
or websites on the same topics that are more likely to attract simi-
lar outputs. They are thus more representative of experiments that
would be conducted by investigators.

In all the evaluation, we use XRay as our baseline comparison
with prior art. XRay is Sunlight’s most closely related system, in-
heriting from it many of its design goals, including its focus on
scalable, generic, and fine-grained targeting detection. We leave
quantitative comparison with other systems for future work and re-
fer the reader to our analytical comparison in §8.
6.2 Q1: Precision and recall on ground truth

Dataset Precision Recall Hyp.
Sunlight XRay Sunlight XRay count

Amazon 100% 81% 46% 78% 142
YouTube 100% 93% 52% 68% 1349

Table 2: Sunlight’s hypothesis precision & recall

Sunlight favors finding reliable, validated targeting hypotheses
over finding every potential targeting, so that investigators do not
waste time on dead ends. This strategy is characterized by hypothe-
sis precision that should be very high, and hypothesis recall that we
try to keep high without lowering precision. We measure these two
metrics on two datasets from YouTube and Amazon from the XRay
paper [18], both containing ground truth (Amazon and YouTube
inform users why they are shown certain recommendations). This
gives us a direct comparison with prior art, as well as an assessment
of Sunlight’s hypothesis precision and recall on services provided
ground truth for recommendation targeting. Table 2 describes the
results. We make two observations. First Sunlight’s hypothesis pre-
cision against ground truth is 100% (with a Logit Stage 1) on both
Amazon and YouTube, while XRay’s best algorithm reaches only
81% and 93% respectively. This confirms Sunlight’s high hypoth-
esis precision that makes a difference even on simple cases.

Second hypothesis recall is higher for XRay. The Bayesian algo-
rithm reaches 68% on YouTube and 78% on Amazon while Logit
yields 46% and 52% respectively. This can be explained by the
small size of these datasets: when faced with little evidence, Sun-
light will return no hypothesis or low confidence hypotheses, fa-
voring precision over recall compared to XRay’s algorithms. We
believe this is a valuable trade-off when performing large scale ex-

googlesyndication.com
https://support.google.com/adwordspolicy/answer/6014299
https://support.google.com/adwordspolicy/answer/6014299
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Figure 6: Ad prediction precision and recall. The x-axis shows different p-value correction methods, and the y-axis shows the proportion of precision and
recall. (a) and (b) show ad prediction precision and recall on the Gmail dataset, (c) and (d) on the Websites dataset, for all algorithms. Both metrics increase
when using stricter p-values, indicating better hypotheses.

periments. In the absence of ground truth, we need to be able to
trust targeting hypotheses even at the cost of some recall.

This confirms Sunlight’s focus on precision over recall on datasets
with ground truth. We next study more complex targeting with in-
puts on redundant topics, but that do not provide ground truth.
6.3 Q2: Evaluating the analysis pipeline

We now look inside the analysis pipeline to measure the effects
of its different stages and to compare stage 1 algorithms. In or-
der to measure algorithm’s performances we use their ad predic-
tion precision and recall described in § 6.1. Intuitively if the algo-
rithms detect targeting, they can predict where the ads will be seen
in the testing set. Because ads do not always appear in all accounts
that have the targeted inputs, we do not expect precision to always
be 100%. On the other hand, a targeting hypothesis formed using
many inputs may easily yield high recall.

Fig. 6 shows the precision and recall of those predictions on the
Gmail and Website datasets, first on all hypotheses and then after
selecting higher and higher confidence hypotheses. We make three
observations. First, the precision is poor if we take every hypothe-
ses into account (see group labeled all_hyps). Precision is below
80% for both datasets, and even less than 60% for most algorithms.
Restricting to just the low p-value hypotheses (without correction)
somewhat increases ad presence precision (low_pvals group).

Second, correcting the p-values for multiple testing increases
precision as well as recall. The best algorithms on the Gmail
and Website datasets, respectively, reach a precision of 90% and
84% after BY correction, and 93% and 91% after Holm correction
(low_pvals_w/BY and low_pvals_w/Holm groups). The precision
is higher when with Holm because it is more conservative than BY.

Third, the differences introduced by Stage 1 algorithms are re-
duced by filtering out low-confidence hypotheses. While the preci-
sion with all hypotheses (all_hyps group) can vary of up to 40 per-
centage points, different Stage 1 algorithms vary only by 1 or 2 per-
centage points after Holm correction (low_pvals_w/Holm group).
The exception is with the BY correction (low_pvals_w/BY group),
where the precision of Logit is noticeably higher than that of the
other algorithms on the Website dataset.

Thus, when selecting only high-confidence hypotheses, Sunlight
is able to predict the presence of an ad with high precision and
recall. Moreover, all Stage 1 algorithms generally yield accurate
high-confidence hypotheses, which suggests that we should maxi-
mize the number of hypotheses. We next compare the number of
high-confidence hypotheses and how it is affected by correction.
6.4 Q3: The effect of p-value correction

Maximizing the number of high-confidence hypotheses is maxi-
mizing coverage (see § 6.1), the proportion of all high-confidence
hypotheses found by a given algorithm. Fig. 7 shows for each Stage
1 algorithm the coverage on the Gmail and Website datasets for
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Figure 7: Coverage. Proportion of ads each algorithm found, out of all ads
found by at least one algorithm.

 0

 500

 1000

 1500

 2000

1e-05
0.0001

0.001
0.01

0.1 1N
u
m

b
er

 o
f 

p
re

d
ic

ti
o
n
s

w
it

h
 p

-v
al

u
e 

<
=

 x logit

set_intersection

(a) P-value CDF (Gmail)

 0

 100

 200

 300

 400

 500

1e-05
0.0001

0.001
0.01

0.1 1N
u
m

b
er

 o
f 

p
re

d
ic

ti
o
n
s

w
it

h
 p

-v
al

u
e 

<
=

 x logit

set_intersection

(b) Same as (a) with Holm
Figure 8: Effect of p-value correction on the distribution. The Set In-
tersection algorithm makes much more hypothesis, and thus has more low
p-value hypothesis. After Holm’s correction however, the Logit algorithm
has more low p-value hypothesis. X is log scale.

low p-values, before and after correction. Set Intersection outputs
the most low p-value hypotheses (low_pvals group), but we saw
in Fig. 6(a) 6(c) that these hypotheses are poor predictors of the ad
presence, with a precision below 50%. After the strictest correction
(low_pvals_w/Holm), when all hypotheses have similar predictive
power, the Logit Stage 1 gives the best coverage, with 93% on
Gmail and 94% on Website, beating Lm, the Bayesian algorithm,
and Set Intersection. We can make the same conclusion on Gmail
after BY correction, but the picture is not as clear on the Websites
dataset, where Logit has a lower coverage (about 80%) but makes
hypotheses with a better ad prediction precision (see Fig. 6(c)).

It is interesting to understand why Set Intersection has a much
better coverage before correction, but loses this edge to Logit af-
ter p-value correction. This can be explained by the fact that the
number of hypotheses, and the proportion of high p-value hypothe-
ses play an important role in the correction, both increasing the
penalty applied to each p-value. To further demonstrate this effect,
Fig. 8 shows the CDF for the distribution of the absolute number of
hypotheses per p-value for Logit and Set Intersection. On Fig. 8(a)
we observe that the Set Intersection Stage 1 algorithm makes more
low p-value hypotheses with 836 hypothesis below 5%, and only
486 for Logit. However we can also see that the total number of
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(b) P-value dist. after BY correction
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(c) P-value dist. after Holm correction
Figure 9: Effect of p-value correction on the distribution, at different scales. In this graph, the scale is regarding the number of ads. For our small and large
scale Website datasets, for the Logit Stage 1, (a) shows the p-value distribution, (b) the p-value distribution after BY correction, and (c) the p-value distribution
after Holm correction. The higher number of hypotheses in the large experiment widens the difference in distributions after correction.

hypothesis is much higher (3282 compared to 928), and that a lot
of these hypotheses have a high p-value. After Holm correction
however, the Logit algorithm retains 80% more low p-value hy-
potheses, as shown on Fig. 8(b). BY correction shows the same
trend, although with less extreme results, explaining why on the
Websites dataset Set Intersection keeps a higher coverage.

We show that making many hypotheses hurts coverage after p-
value correction, particularly with the Holm method. This calls
for algorithms that favor small number of high quality hypotheses,
such as Logit, over algorithms that make hypotheses even on weak
signal, such as Set Intersection. Making only a small number of
low p-value hypotheses is not always possible however, especially
when scaling experiments, which we evaluate next.

6.5 Q4: Confidence at scale
We saw in § 6.4 that favoring fewer, higher quality hypothesis is

a winning strategy to retain low p-value hypothesis after correction.
Unfortunately this is not always possible when scaling the number
of outputs, for instance when experiments have more inputs, more
profiles, or just when we collected data for a longer period. In
these cases analysis may also be harder, leading to fewer good p-
value hypotheses. Fig. 9 shows a CDF of the proportion of inputs
below a given p-value, and the same after the two p-value correc-
tion techniques we consider. We make three observations. First,
it appears that hypotheses are indeed harder to make on the large
dataset. Fig. 9(a) shows that the proportion of low p-values is lower
even before correction, with 75% of hypotheses with a p-value be-
low 5% for the Website-large, and 88% for Website.

Second, Fig. 9(c) shows that the Holm correction greatly reduces
the proportion of low p-values, with the Website experiment going
from 88% to 61%. The effect on the many hypotheses of Website-
large is much stronger however, with the low p-values dropping
from 75% to 21%. We conclude that the Holm correction is very
hard on experiments with a lot hypotheses. The larger the prover-
bial haystack, the harder the needles will be to find.

Third, the BY correction method is milder than Holm’s. Even
though we can see the large experiment’s distribution caving more
than the small’s, the distinction at scale is smaller. Website-large
still has 46% of its p-values below 5%, while the small one has
74%. Despite the weaker guarantees of the BY correction, it can
be a useful trade-off to make when dealing with large numbers of
outputs. Indeed, it is a well-accepted correction in statistics and
machine learning. We hence include it as a default in our system.

6.6 Anecdotal experience with the data
We already saw that high confidence hypotheses give good pre-

dictors of the profiles in which an ad will appear. While this ad pre-
diction precision and recall reveals that our algorithms are indeed

detecting a correlation, we also manually looked at many hypothe-
ses to understand the strengths and weaknesses of our methods.
We next describe the results of this experience on large, complex
datasets from Gmail and Websites experiments. These services do
not provide ground truth at this granularity, so we manually as-
sessed the hypotheses’ validity. For this manual assessment we
looked at low p-value hypotheses, visited the website targeted by
the ad, and decided if it made sense for the website to target the ad.
If we did not find a connection for at least one email in the target-
ing combination, we declared the hypothesis wrong. For instance
an ad for a ski resort targeting the “Ski” email was considered right,
but the same ad targeting “Ski” and “Cars” was considered a mis-
take. This labelling is very error prone. On the one hand some
associations can be non obvious but still be a real targeting. On the
other hand it can be easy to convince ourselves that an association
makes sense even when there is no targeting. It is thus an anecdotal
experience of Sunlight’s performances.

Hypothesis Precision. We examined 100 ads with high-confidence
hypotheses (p-value < 0.05 after Holm) from the Gmail and Web-
site experiments, and counted instances where we could not ex-
plain the input/output association with high certainty. We found
precisions of 95% and 96%, respectively. Hypotheses we classified
as false positives were associations of ads and emails that we just
could not explain from the topics, such as the luggage company
“www.eaglecreek.com” targeting the “Cheap drugs online order”
email from Figure 4. In this specific case the ad appears for 3 con-
secutive days, multiple times (a total of 437 impressions in 15 to
19 different accounts), and almost only in the context of the email,
so there does seem to be some targeting, although we cannot se-
mantically explain it. However, in other cases we have less data to
gain confidence, and we classify them as a mistake. This example
highlights the difficulty and the risk of bias of manual labelling.

Many errors were also combinations with one input that seemed
relevant, and other inputs that did not. Intuitively this happens if
the targeting detection algorithm adds any other input to a heavily
targeted input, because in the specific training set this other in-
put correlates with the output (this is a case of over-fitting in the
training set). If for instance the ad appears in 10 profiles in the test-
ing set, all with the relevant input, and the inputs are assigned to
profiles with a 20% probability, the p-value should be 1.0e−7 with
only the relevant input. With the second input added the p-value be-
comes higher since a combination is more likely to cover profiles.
However the new p-value is still 3.6e−5 for two inputs, which will
remain below the 5% accepted error rate after correction.

Hypothesis Recall. Assessing hypothesis recall based on manual
inspection is even more challenging than assessing hypothesis pre-



cision. First, there are many more ads to analyze. Second, finding
an input among the hundreds we have that is very likely to be tar-
geted is challenging, and the many possibilities make it very easy
to invent connections where there is none. For this reason we did
not try to quantify hypothesis recall. Instead, we studied low p-
value hypotheses that are rejected after correction, a more amenable
method that gives information into how many hypotheses we lose
due to correction. In our experience, this happens mostly if an ad
does not appear enough: the p-value cannot be low enough to be
below 5% after correction. For instance if the ad appears in 10
profiles, it will be in about 3 profiles of the testing set, and the p-
value cannot be below 0.008 if the inputs are assigned with a 20%
probability. After correction this will most likely be over the 5%
threshold on big experiments.

This anecdotal experience qualitatively confirms Sunlight’s high
hypothesis precision on sizeable datasets. It also confirms that man-
ual labelling is unreliable. This is why we conducted our rigorous
evaluation with the five objective metrics described in § 6.1. More
importantly this experience emphasizes the importance of focusing
on quality hypotheses when analyzing a large number of outputs.
Indeed, the correction will reject all reasonable hypotheses without
a lot of data when the number of hypotheses is too high.
6.7 Summary

We show that Sunlight’s high-confidence hypotheses have a good
ad prediction precision and recall after p-value correction. This
empirically confirms the need to correct for multiple hypothesis
testing. The BY correction seems to reach a good trade-off between
statistical guarantees and number of low p-value hypotheses.

More surprisingly, we also show an inversion of recall after cor-
rection, where algorithms that make fewer, more precise hypothe-
ses end up with better coverage after correction. This makes the
case for algorithms that favor precision even at the cost of some
recall. Even with such algorithms, recall can become lower after
correction when scaling the number of outputs. This represents a
fundamental scale/confidence trade-off in targeting detection.

7 Other Targeting Results
Using Sunlight, we found several other interesting aspects about

ad targeting in Gmail (now obsolete) and on the web. We next
describe those aspects as examples of the kinds of things that could
be learned with Sunlight. As before, we consider an ad targeted if
its corrected p-value is < 0.05 under the Sunlight default pipeline.
For the results in this section we use the entire display ad dataset
and focus on one day from the Gmail study.
In Context vs. Outside Context. One interesting question one
might wonder is how often are ads shown out of the context of the
targeted input. Intuitively, if an ad is shown in the email (or on
the page) that it targets, its should be more obvious to a user com-
pared to an ad shown with one email (or page) but targeting another
email (or page). Figure 10(a) shows a CDF of how often targeted
ads appear in their target context for the Gmail and Website-large
datasets. The Y axis represents the fraction of all targeted ads in
each experiment.

In Gmail, ads are frequently out of context (i.e., alongside emails
that they do not target). Approximately 28% of the Gmail ads la-
beled as targeted appear only in their targeted context and half of
targeted Gmail ads appear out of context 48% of the time or more.
Thus there is (or rather, was) heavy behavioral targeting in Gmail.

On the web, display ads are rarely shown outside of their tar-
geted context. 73% of ads are only ever shown on the site targeted
by the ad. Of the targeted ads that do appear out of context, the
majority of them appear on only 1 or 2 other sites. This suggests
a very heavy contextual targeting for display ads. That said, we

have found convincing examples of behaviorally targeted ads that
appear entirely outside of their targeted context. Included in Fig-
ure 5 is an ad for The Economist encouraging viewers to subscribe
to the publication. That ad never appeared on the targeted site. We
found similar examples for The New York Times.
Targeting Per Category. Figures 10(b) and 10(c) show the num-
ber of ads targeting emails and websites, respectively in a particular
category. For emails, we classify them based on their content. For
websites, we use the Alexa categories. It is possible, and common,
for Sunlight to detect that an ad targets multiple emails so the cu-
mulative number of guesses represented in the figure may be larger
than the total number of ads.

In Gmail, by far the most targeted category (topic) in our dataset
was shopping (e.g., emails containing keywords such as clothes,
antiques, furniture etc.). The second most popular targeted cate-
gory was General health (i.e., emails with keywords such as vita-
mins, yoga, etc.). On the web, we did not observe a single dominant
category as we did in Gmail. The News category, containing sites
like The Economist and Market, was targeted by the most ads in
the study but with only slightly more ads then the Home category.

Overall, these results demonstrate that Sunlight is valuable not
only for investigators but also for researchers interested in broader
aspects of targeting.

8 Related Work
§2.2 already discusses works closest to ours: web transparency

tools and measurements [2,6,8,15,16,18–22,27,29]. These works
aim to quantify various data uses on the web, including targeting,
personalization, price tuning, or discrimination. Sunlight is the first
system to detect targeting at fine grain (individual inputs), at scale,
and with solid statistical justification.

The works closest in spirit to ours are AdFisher [8] and XRay
[18]; both of these aim, like us, to create generic, broadly applica-
ble methodologies for various web transparency goals. AdFisher
shares our goal of providing solid statistical justification for its find-
ings, but, because of scale limitations, makes it hard to simultane-
ously track many inputs. So far it was applied to relatively coarse
targeting (e.g., gender, a specific interest). Since Ad-Fisher grounds
its confidence in all outputs simultaneously, its results should be
carefully interpreted: it rigorously proved that some targeting is
taking place, but does not exhaustively and separately single out
the output subject to this targeting. Finally this design disregards
scalability with the number of inputs: the effect of each input and
each possible combination of inputs needs to be tested separately.

XRay shares our goal of detecting targeting at scale on many
inputs, but does not provide any statistical validation of its find-
ings. Because of this lack of statistical confidence, XRay misses
the inherent trade-off between scale in number of outputs and con-
fidence in the results, that we evaluate with Sunlight. The effects of
multiple hypotheses testing also change the choice of correlation
detection algorithms. We found Sunlight’s logit-based method to
be significantly more accurate than the algorithms from XRay.

Our methods for statistical experimental design and analysis draw
from the subjects of compressed sensing [9] and sparse regres-
sion [4, 26]. The experimental setups we consider correspond to
sensing matrices that satisfy certain analytic properties that permit
robust recovery of sparse signals. In Sunlight, these signals cor-
respond to the hypothesized targeting effects we subsequently test
and validate, and they are sparse when the targeting effects only
depend on a few variables.

9 Conclusions
This paper argues for the need for scalable and statistically rig-

orous methodologies, plus infrastructures that implement them, to
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Figure 10: Measurement Results. (a) Shows what fraction of targeted ads appear how often in their targeted context in both Gmail and Web experiments. (b)
Shows the number of ads are found to target emails in the eight most popular categories in the Gmail experiment. (c) Shows the number of ads are found to
target sites in the eight most popular categories in the web experiment.

shed light over today’s opaque online data ecosystem. We have pre-
sented one such methodology, developed in the context of Sunlight,
a system designed to detect targeting at fine granularity, at scale,
and with statistical justification for all its inferences. The Sun-
light methodology consists of a four-stage pipeline, which gradu-
ally generates, refines, and validates hypotheses to reveal the likely
causes of observed targeting. Sunlight implements this methodol-
ogy in a modular way, allowing for broad explorations and evalua-
tion of the design space. Our own exploration reveals an interesting
trade-off between the statistical confidence and the number of tar-
geting hypotheses that can be made. Our empirical study of this
effect suggests that favoring high precision hypothesis generation
can yield better recall at high confidence at the end of the Sunlight
pipeline, and that scaling the number of outputs of an experiment
may require to accept lower statistical semantics. In the future, we
plan to break the scaling barrier by developing a reactive architec-
ture that runs additional experiments to obtain the data necessary to
confirm plausible hypotheses.
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