
Learning latent variable models
using tensor decompositions

Daniel Hsu

Columbia University

January 27, 2017

1

Subject matter

Learning algorithms

(parameter estimation)

for latent variable models

based on decompositions of moment tensors.

“Method-of-moments” (Pearson, 1894)

2

Subject matter

Learning algorithms (parameter estimation)

for latent variable models

based on decompositions of moment tensors.

“Method-of-moments” (Pearson, 1894)

2

Example #1: summarizing a corpus of documents

Observation: documents express one or more thematic topics.

I What topics are expressed in a corpus of documents?
I How prevalent is each topic in the corpus?

3

Example #1: summarizing a corpus of documents

Observation: documents express one or more thematic topics.

I What topics are expressed in a corpus of documents?
I How prevalent is each topic in the corpus?

3

Topic model (e.g., latent Dirichlet allocation)

sports science

businesspolitics

K topics (distributions over vocab words).
Document ≡ mixture of topics.
Word tokens in doc. iid∼ mixture distribution.

E.g.,
iid∼ 0.7× P sports + 0.3× P business.

Given corpus of documents (and “hyper-parameters”, e.g., K),
produce estimates of model parameters, e.g.:

I Distribution P t over vocab words, for each t ∈ [K].
I Weight wt of topic t in document corpus, for each t ∈ [K].

4

Topic model (e.g., latent Dirichlet allocation)

sports science

businesspolitics

K topics (distributions over vocab words).
Document ≡ mixture of topics.
Word tokens in doc. iid∼ mixture distribution.

E.g.,
iid∼ 0.7× P sports + 0.3× P business.

Given corpus of documents (and “hyper-parameters”, e.g., K),
produce estimates of model parameters, e.g.:

I Distribution P t over vocab words, for each t ∈ [K].
I Weight wt of topic t in document corpus, for each t ∈ [K].

4

Topic model (e.g., latent Dirichlet allocation)

sports science

businesspolitics

K topics (distributions over vocab words).
Document ≡ mixture of topics.
Word tokens in doc. iid∼ mixture distribution.

E.g.,
iid∼ 0.7× P sports + 0.3× P business.

Given corpus of documents (and “hyper-parameters”, e.g., K),
produce estimates of model parameters, e.g.:

I Distribution P t over vocab words, for each t ∈ [K].
I Weight wt of topic t in document corpus, for each t ∈ [K].

4

Labels / annotations

I Suppose each word token x in document is annotated with
source topic tx ∈ {1, 2, . . . ,K}.

Team Relocations Keep N.F.L. Moving Up Financially
1 1 1 1 4 4 4

Then estimating the {(P t, wt)}Kt=1 can be done “directly”.

I Unfortunately, we often don’t have such annotations
(i.e., data are unlabeled / topics are hidden).

“Direct” approach to estimation unavailable.

5

Labels / annotations

I Suppose each word token x in document is annotated with
source topic tx ∈ {1, 2, . . . ,K}.

Team Relocations Keep N.F.L. Moving Up Financially
1 1 1 1 4 4 4

Then estimating the {(P t, wt)}Kt=1 can be done “directly”.

I Unfortunately, we often don’t have such annotations
(i.e., data are unlabeled / topics are hidden).

“Direct” approach to estimation unavailable.

5

Labels / annotations

I Suppose each word token x in document is annotated with
source topic tx ∈ {1, 2, . . . ,K}.

Team Relocations Keep N.F.L. Moving Up Financially
1 1 1 1 4 4 4

Then estimating the {(P t, wt)}Kt=1 can be done “directly”.

I Unfortunately, we often don’t have such annotations
(i.e., data are unlabeled / topics are hidden).

“Direct” approach to estimation unavailable.

5

Example #2: subpopulations in data

Data studied by Pearson (1894):
ratio of forehead-width to body-length for 1000 crabs.

Sample may be comprised of different sub-species of crabs.

ratio
0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7

c
o

u
n

t
(o

r
d

e
n

s
it
y
)

0

20

40

60

80

100

counts
subpop 1
subpop 2
full pop

6

Example #2: subpopulations in data

Data studied by Pearson (1894):
ratio of forehead-width to body-length for 1000 crabs.

Sample may be comprised of different sub-species of crabs.

ratio
0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7

c
o

u
n

t
(o

r
d

e
n

s
it
y
)

0

20

40

60

80

100

counts
subpop 1
subpop 2
full pop

6

Gaussian mixture model

H ∼ Discrete(π1, π2, . . . , πK) ;

X | H = t ∼ Normal(µt,Σt) , t ∈ [K] .

Estimate mean vector, covariance matrix, and mixing weight of
each subpopulation from unlabeled data.

7

Gaussian mixture model

H ∼ Discrete(π1, π2, . . . , πK) ;

X | H = t ∼ Normal(µt,Σt) , t ∈ [K] .

Estimate mean vector, covariance matrix, and mixing weight of
each subpopulation from unlabeled data.

7

Maximum likelihood estimation

I No “direct” estimators when some variables are hidden.

I Maximum likelihood estimator (MLE):

θMLE := arg max
θ∈Θ

log Prθ (data) .

I Note: log-likelihood is not necessarily concave function of θ.

I For latent variable models, often use local optimization,
most notably via Expectation-Maximization (EM)
(Dempster, Laird, & Rubin, 1977).

8

Maximum likelihood estimation

I No “direct” estimators when some variables are hidden.

I Maximum likelihood estimator (MLE):

θMLE := arg max
θ∈Θ

log Prθ (data) .

I Note: log-likelihood is not necessarily concave function of θ.

I For latent variable models, often use local optimization,
most notably via Expectation-Maximization (EM)
(Dempster, Laird, & Rubin, 1977).

8

Maximum likelihood estimation

I No “direct” estimators when some variables are hidden.

I Maximum likelihood estimator (MLE):

θMLE := arg max
θ∈Θ

log Prθ (data) .

I Note: log-likelihood is not necessarily concave function of θ.

I For latent variable models, often use local optimization,
most notably via Expectation-Maximization (EM)
(Dempster, Laird, & Rubin, 1977).

8

Maximum likelihood estimation

I No “direct” estimators when some variables are hidden.

I Maximum likelihood estimator (MLE):

θMLE := arg max
θ∈Θ

log Prθ (data) .

I Note: log-likelihood is not necessarily concave function of θ.

I For latent variable models, often use local optimization,
most notably via Expectation-Maximization (EM)
(Dempster, Laird, & Rubin, 1977).

8

MLE for Gaussian mixture models

Given data {xi}ni=1, find {(µt,Σt, πt)}Kt=1 to maximize

n∑
i=1

log

 K∑
t=1

πt ·
1

det(Σt)1/2
exp

{
−1

2
(xi − µt)>Σ−1

t (xi − µt)
} .

I Sensible with restrictions on Σt (e.g., Σt � σ2I).

I Similar to Euclidean K-means problem, which is NP-hard
(Dasgupta, 2008; Aloise, Deshpande, Hansen, & Popat, 2009; Mahajan,
Nimbhorkar, & Varadarajan, 2009; Vattani, 2009; Awasthi, Charikar,
Krishnaswamy, & Sinop, 2015).

9

MLE for Gaussian mixture models

Given data {xi}ni=1, find {(µt,Σt, πt)}Kt=1 to maximize

n∑
i=1

log

 K∑
t=1

πt ·
1

det(Σt)1/2
exp

{
−1

2
(xi − µt)>Σ−1

t (xi − µt)
} .

I Sensible with restrictions on Σt (e.g., Σt � σ2I).

I Similar to Euclidean K-means problem, which is NP-hard
(Dasgupta, 2008; Aloise, Deshpande, Hansen, & Popat, 2009; Mahajan,
Nimbhorkar, & Varadarajan, 2009; Vattani, 2009; Awasthi, Charikar,
Krishnaswamy, & Sinop, 2015).

9

MLE for Gaussian mixture models

Given data {xi}ni=1, find {(µt,Σt, πt)}Kt=1 to maximize

n∑
i=1

log

 K∑
t=1

πt ·
1

det(Σt)1/2
exp

{
−1

2
(xi − µt)>Σ−1

t (xi − µt)
} .

I Sensible with restrictions on Σt (e.g., Σt � σ2I).

I Similar to Euclidean K-means problem, which is NP-hard
(Dasgupta, 2008; Aloise, Deshpande, Hansen, & Popat, 2009; Mahajan,
Nimbhorkar, & Varadarajan, 2009; Vattani, 2009; Awasthi, Charikar,
Krishnaswamy, & Sinop, 2015).

9

Parameter learning objective
Suppose iid sample of size n is generated by distribution from
model with (unknown) parameters θ ∈ Θ ⊆ Rp (p = # params).

Task: Produce estimate θ̂ of θ such that

I E.g., for spherical Gaussian mixtures (as n→∞):

I For K = 2 (and πt = 1/2, Σt = I): EM is consistent
(Xu, H., & Maleki, 2016; Daskalakis, Tzamos, & Zampetakis, 2016).

I Larger K: easily trapped in local maxima, far from global max
(Jin, Zhang, Balakrishnan, Wainwright, & Jordan, 2016).

Practitioners often use EM with many (random) restarts . . .
but may take a long time to get near the global max.

10

Parameter learning objective
Suppose iid sample of size n is generated by distribution from
model with (unknown) parameters θ ∈ Θ ⊆ Rp (p = # params).

Task: Produce estimate θ̂ of θ such that

E ‖θ̂ − θ‖ → 0 as n → ∞

(i.e., θ̂ is consistent).

I E.g., for spherical Gaussian mixtures (as n→∞):

I For K = 2 (and πt = 1/2, Σt = I): EM is consistent
(Xu, H., & Maleki, 2016; Daskalakis, Tzamos, & Zampetakis, 2016).

I Larger K: easily trapped in local maxima, far from global max
(Jin, Zhang, Balakrishnan, Wainwright, & Jordan, 2016).

Practitioners often use EM with many (random) restarts . . .
but may take a long time to get near the global max.

10

Parameter learning objective
Suppose iid sample of size n is generated by distribution from
model with (unknown) parameters θ ∈ Θ ⊆ Rp (p = # params).

Task: Produce estimate θ̂ of θ such that

E ‖θ̂ − θ‖ → 0 as n → ∞

(i.e., θ̂ is consistent).

I E.g., for spherical Gaussian mixtures (as n→∞):

I For K = 2 (and πt = 1/2, Σt = I): EM is consistent
(Xu, H., & Maleki, 2016; Daskalakis, Tzamos, & Zampetakis, 2016).

I Larger K: easily trapped in local maxima, far from global max
(Jin, Zhang, Balakrishnan, Wainwright, & Jordan, 2016).

Practitioners often use EM with many (random) restarts . . .
but may take a long time to get near the global max.

10

Parameter learning objective
Suppose iid sample of size n is generated by distribution from
model with (unknown) parameters θ ∈ Θ ⊆ Rp (p = # params).

Task: Produce estimate θ̂ of θ such that

E ‖θ̂ − θ‖ → 0 as n → ∞

(i.e., θ̂ is consistent).

I E.g., for spherical Gaussian mixtures (as n→∞):

I For K = 2 (and πt = 1/2, Σt = I): EM is consistent
(Xu, H., & Maleki, 2016; Daskalakis, Tzamos, & Zampetakis, 2016).

I Larger K: easily trapped in local maxima, far from global max
(Jin, Zhang, Balakrishnan, Wainwright, & Jordan, 2016).

Practitioners often use EM with many (random) restarts . . .
but may take a long time to get near the global max.

10

Parameter learning objective
Suppose iid sample of size n is generated by distribution from
model with (unknown) parameters θ ∈ Θ ⊆ Rp (p = # params).

Task: Produce estimate θ̂ of θ such that

E ‖θ̂ − θ‖ → 0 as n → ∞

(i.e., θ̂ is consistent).

I E.g., for spherical Gaussian mixtures (as n→∞):

I For K = 2 (and πt = 1/2, Σt = I): EM is consistent
(Xu, H., & Maleki, 2016; Daskalakis, Tzamos, & Zampetakis, 2016).

I Larger K: easily trapped in local maxima, far from global max
(Jin, Zhang, Balakrishnan, Wainwright, & Jordan, 2016).

Practitioners often use EM with many (random) restarts . . .
but may take a long time to get near the global max.

10

Parameter learning objective
Suppose iid sample of size n is generated by distribution from
model with (unknown) parameters θ ∈ Θ ⊆ Rp (p = # params).

Task: Produce estimate θ̂ of θ such that

Pr
(
‖θ̂ − θ‖ ≤ ε

)
≥ 1− δ

with poly(p, 1/ε, 1/δ, . . .) sample size and running time.

I E.g., for spherical Gaussian mixtures (as n→∞):

I For K = 2 (and πt = 1/2, Σt = I): EM is consistent
(Xu, H., & Maleki, 2016; Daskalakis, Tzamos, & Zampetakis, 2016).

I Larger K: easily trapped in local maxima, far from global max
(Jin, Zhang, Balakrishnan, Wainwright, & Jordan, 2016).

Practitioners often use EM with many (random) restarts . . .
but may take a long time to get near the global max.

10

Barriers

Hard to learn model parameters,
even when data is generated by a model distribution.

Cryptographic hardness Information-theoretic hardness
(e.g., Mossel & Roch, 2006) (e.g., Moitra & Valiant, 2010)

May require 2Ω(K) running time or 2Ω(K) sample size.

11

Barriers

Hard to learn model parameters,
even when data is generated by a model distribution.

Cryptographic hardness Information-theoretic hardness
(e.g., Mossel & Roch, 2006) (e.g., Moitra & Valiant, 2010)

May require 2Ω(K) running time or 2Ω(K) sample size.

11

Ways around the barriers

I Separation conditions.

E.g., assume min
i 6=j

‖µi − µj‖2

σ2
i + σ2

j

is sufficiently large.

(Dasgupta, 1999; Arora & Kannan, 2001; Vempala & Wang, 2002; . . .)

I Structural assumptions.

E.g., sparsity, anchor words.
(Spielman, Wang, & Wright, 2012; Arora, Ge, & Moitra, 2012; . . .)

I Non-degeneracy conditions.

E.g., assume µ1,µ2, . . . ,µK are in general position.

This talk: learning algorithms for non-degenerate instances via
method-of-moments.

12

Ways around the barriers

I Separation conditions.

E.g., assume min
i 6=j

‖µi − µj‖2

σ2
i + σ2

j

is sufficiently large.

(Dasgupta, 1999; Arora & Kannan, 2001; Vempala & Wang, 2002; . . .)

I Structural assumptions.

E.g., sparsity, anchor words.
(Spielman, Wang, & Wright, 2012; Arora, Ge, & Moitra, 2012; . . .)

I Non-degeneracy conditions.

E.g., assume µ1,µ2, . . . ,µK are in general position.

This talk: learning algorithms for non-degenerate instances via
method-of-moments.

12

Ways around the barriers

I Separation conditions.

E.g., assume min
i 6=j

‖µi − µj‖2

σ2
i + σ2

j

is sufficiently large.

(Dasgupta, 1999; Arora & Kannan, 2001; Vempala & Wang, 2002; . . .)

I Structural assumptions.

E.g., sparsity, anchor words.
(Spielman, Wang, & Wright, 2012; Arora, Ge, & Moitra, 2012; . . .)

I Non-degeneracy conditions.

E.g., assume µ1,µ2, . . . ,µK are in general position.

This talk: learning algorithms for non-degenerate instances via
method-of-moments.

12

Ways around the barriers

I Separation conditions.

E.g., assume min
i 6=j

‖µi − µj‖2

σ2
i + σ2

j

is sufficiently large.

(Dasgupta, 1999; Arora & Kannan, 2001; Vempala & Wang, 2002; . . .)

I Structural assumptions.

E.g., sparsity, anchor words.
(Spielman, Wang, & Wright, 2012; Arora, Ge, & Moitra, 2012; . . .)

I Non-degeneracy conditions.

E.g., assume µ1,µ2, . . . ,µK are in general position.

This talk: learning algorithms for non-degenerate instances via
method-of-moments.

12

Method-of-moments at a glance

1. Determine function of model parameters θ estimatable from
observable data:

Eθ[f(X)] (“moments”) .

Which moments? Often third-order moments suffice.

2. Form estimates of moments using data (e.g., iid sample):

Ê[f(X)] (“empirical moments”) .

3. Approximately solve equations for parameters θ:

Eθ[f(X)] = Ê[f(X)] .

How? Algorithms for tensor decomposition.

4. (“Fine-tune” estimated parameters with local optimization.)

13

Method-of-moments at a glance

1. Determine function of model parameters θ estimatable from
observable data:

Eθ[f(X)] (“moments”) .

Which moments?

Often third-order moments suffice.

2. Form estimates of moments using data (e.g., iid sample):

Ê[f(X)] (“empirical moments”) .

3. Approximately solve equations for parameters θ:

Eθ[f(X)] = Ê[f(X)] .

How?

Algorithms for tensor decomposition.

4. (“Fine-tune” estimated parameters with local optimization.)

13

Method-of-moments at a glance

1. Determine function of model parameters θ estimatable from
observable data:

Eθ[f(X)] (“moments”) .

Which moments? Often third-order moments suffice.
2. Form estimates of moments using data (e.g., iid sample):

Ê[f(X)] (“empirical moments”) .

3. Approximately solve equations for parameters θ:

Eθ[f(X)] = Ê[f(X)] .

How? Algorithms for tensor decomposition.
4. (“Fine-tune” estimated parameters with local optimization.)

13

Unresolved issues

I Handle model misspecification, increase robustness.
I Can tolerate some independence assumptions but not others?

I General methodology.
I At present, ad hoc to instantiate; guided by examples.

I Incorporate general prior knowledge.

I Incorporate user feedback interactively.

14

Outline

1. Warm-up: topic model for single-topic documents.

I Identifiability.
I Parameter recovery via decompositions of exact moments.

2. Moment decompositions for other models.

I Mixtures of Gaussians and linear regressions.
I Multi-view models.

3. Error-tolerant algorithms for tensor decompositions.

15

Other models amenable to moment tensor decomposition
I Models for independent components analysis (Comon, 1994; Frieze,

Jerrum, & Kannan, 1996; Arora, Ge, Moitra & Sachdeva, 2012;
Anandkumar, Foster, H., Kakade, & Liu, 2012, 2015; Belkin,
Rademacher, & Voss, 2013; etc.)

I Latent Dirichlet Allocation (Anandkumar, Foster, H., Kakade, & Liu,
2012, 2015; Anderson, Goyal, & Rademacher, 2013)

I Mixed-membership stochastic blockmodels (Anandkumar, Ge, H., &
Kakade, 2013, 2014)

I Simple probabilistic grammars (H., Kakade, & Liang, 2012)
I Noisy-or networks (Halpern & Sontag, 2013; Jernite, Halpern & Sontag,

2013; Arora, Ge, Ma, & Risteski, 2016)
I Indian buffet process (Tung & Smola, 2014)
I Mixed multinomial logit model (Oh & Shah, 2014)
I Dawid-Skene model (Zhang, Chen, Zhou, & Jordan, 2014)
I Multi-task bandits (Azar, Lazaric, & Brunskill, 2013)
I Partially obs. MDPs (Azizzadenesheli, Lazaric, & Anandkumar, 2016)
I . . .

16

1. Warm-up: topic model for single-topic documents

17

Topic model

General topic model (e.g., Latent Dirichlet Allocation)

sports science

businesspolitics

K topics (dists. over words) {P t}Kt=1.
Document ≡ mixture of topics (hidden).
Word tokens in doc. iid∼ mixture distribution.

Given iid sample of documents of length L,
produce estimates of model parameters {(P t, wt)}Kt=1.

How long must the documents be?

18

Topic model

Topic model for single-topic documents

sports science

businesspolitics

K topics (dists. over words) {P t}Kt=1.
Pick topic t with prob. wt (hidden).
Word tokens in doc. iid∼ P t.

Given iid sample of documents of length L,
produce estimates of model parameters {(P t, wt)}Kt=1.

How long must the documents be?

18

Topic model

Topic model for single-topic documents

sports science

businesspolitics

K topics (dists. over words) {P t}Kt=1.
Pick topic t with prob. wt (hidden).
Word tokens in doc. iid∼ P t.

Given iid sample of documents of length L,
produce estimates of model parameters {(P t, wt)}Kt=1.

How long must the documents be?

18

Topic model

Topic model for single-topic documents

sports science

businesspolitics

K topics (dists. over words) {P t}Kt=1.
Pick topic t with prob. wt (hidden).
Word tokens in doc. iid∼ P t.

Given iid sample of documents of length L,
produce estimates of model parameters {(P t, wt)}Kt=1.

How long must the documents be?

18

Identifiability
I Generative process:

Pick t ∼ Discrete(w1, w2, . . . , wK).
Given t, pick L words from P t.

I L = 1: random document ∼
∑K

t=1wtP t

Parameters not identifiable from such observations.

I L = 2:
Regard P t as probability vector.
Joint distribution of word pairs (for topic t) is given by matrix:

i

j

Pr[words i, j]P tP
>
t =

Random document ∼
∑K

t=1wtP tP
>
t .

Are parameters {(P t, wt)}Kt=1 identifiable?

19

Identifiability
I Generative process:

Pick t ∼ Discrete(w1, w2, . . . , wK).
Given t, pick L words from P t.

I L = 1: random document ∼
∑K

t=1wtP t

Parameters not identifiable from such observations.

I L = 2:
Regard P t as probability vector.
Joint distribution of word pairs (for topic t) is given by matrix:

i

j

Pr[words i, j]P tP
>
t =

Random document ∼
∑K

t=1wtP tP
>
t .

Are parameters {(P t, wt)}Kt=1 identifiable?

19

Identifiability
I Generative process:

Pick t ∼ Discrete(w1, w2, . . . , wK).
Given t, pick L words from P t.

I L = 1: random document ∼
∑K

t=1wtP t

Parameters not identifiable from such observations.

I L = 2:
Regard P t as probability vector.
Joint distribution of word pairs (for topic t) is given by matrix:

i

j

Pr[words i, j]P tP
>
t =

Random document ∼
∑K

t=1wtP tP
>
t .

Are parameters {(P t, wt)}Kt=1 identifiable?

19

Identifiability
I Generative process:

Pick t ∼ Discrete(w1, w2, . . . , wK).
Given t, pick L words from P t.

I L = 1: random document ∼
∑K

t=1wtP t

Parameters not identifiable from such observations.

I L = 2:
Regard P t as probability vector.
Joint distribution of word pairs (for topic t) is given by matrix:

i

j

Pr[words i, j]P tP
>
t =

Random document ∼
∑K

t=1wtP tP
>
t .

Are parameters {(P t, wt)}Kt=1 identifiable?

19

Identifiability
I Generative process:

Pick t ∼ Discrete(w1, w2, . . . , wK).
Given t, pick L words from P t.

I L = 1: random document ∼
∑K

t=1wtP t

Parameters not identifiable from such observations.

I L = 2:
Regard P t as probability vector.
Joint distribution of word pairs (for topic t) is given by matrix:

i

j

Pr[words i, j]P tP
>
t =

Random document ∼
∑K

t=1wtP tP
>
t .

Are parameters {(P t, wt)}Kt=1 identifiable?
19

Identifiability: L = 2

Parameters {(P 1, w1), (P 2, w2)} and {(P̃ 1, w̃1), (P̃ 2, w̃2)}

(P 1, w1) =

[0.40
0.60

]
, 0.5

 , (P 2, w2) =

[0.60
0.40

]
, 0.5

 ;

(P̃ 1, w̃1) =

[0.55
0.45

]
, 0.8

 , (P̃ 2, w̃2) =

[0.30
0.70

]
, 0.2



satisfy

w1P 1P
>
1 +w2P 2P

>
2 = w̃1P̃ 1P̃

>

1 + w̃2P̃ 2P̃
>

2 =

[
0.26 0.24
0.24 0.26

]
.

Cannot identify parameters from length-two documents.

20

Identifiability: L = 2

Parameters {(P 1, w1), (P 2, w2)} and {(P̃ 1, w̃1), (P̃ 2, w̃2)}

(P 1, w1) =

[0.40
0.60

]
, 0.5

 , (P 2, w2) =

[0.60
0.40

]
, 0.5

 ;

(P̃ 1, w̃1) =

[0.55
0.45

]
, 0.8

 , (P̃ 2, w̃2) =

[0.30
0.70

]
, 0.2


satisfy

w1P 1P
>
1 +w2P 2P

>
2 = w̃1P̃ 1P̃

>

1 + w̃2P̃ 2P̃
>

2 =

[
0.26 0.24
0.24 0.26

]
.

Cannot identify parameters from length-two documents.

20

Identifiability: L = 2

Parameters {(P 1, w1), (P 2, w2)} and {(P̃ 1, w̃1), (P̃ 2, w̃2)}

(P 1, w1) =

[0.40
0.60

]
, 0.5

 , (P 2, w2) =

[0.60
0.40

]
, 0.5

 ;

(P̃ 1, w̃1) =

[0.55
0.45

]
, 0.8

 , (P̃ 2, w̃2) =

[0.30
0.70

]
, 0.2


satisfy

w1P 1P
>
1 +w2P 2P

>
2 = w̃1P̃ 1P̃

>

1 + w̃2P̃ 2P̃
>

2 =

[
0.26 0.24
0.24 0.26

]
.

Cannot identify parameters from length-two documents.

20

Identifiability: L = 3

Documents of length L = 3
Joint distribution of word triple (for topic t) is given by tensor:

Pr[words i, j, k]P t ⊗ P t ⊗ P t =

Random document ∼
∑K

t=1wtP t ⊗ P t ⊗ P t.

21

Identifiability from documents of length three

Claim: If {P t}Kt=1 are linearly independent and all wt > 0, then
parameters {(P t, wt)}Kt=1 are identifiable from word triples.

I Claim implied by uniqueness of certain tensor decompositions.
I Algorithmic proof via special case of Jennrich’s algorithm

(Harshman, 1970).

Next: Brief overview of tensors.

22

Identifiability from documents of length three

Claim: If {P t}Kt=1 are linearly independent and all wt > 0, then
parameters {(P t, wt)}Kt=1 are identifiable from word triples.

I Claim implied by uniqueness of certain tensor decompositions.

I Algorithmic proof via special case of Jennrich’s algorithm
(Harshman, 1970).

Next: Brief overview of tensors.

22

Identifiability from documents of length three

Claim: If {P t}Kt=1 are linearly independent and all wt > 0, then
parameters {(P t, wt)}Kt=1 are identifiable from word triples.

I Claim implied by uniqueness of certain tensor decompositions.
I Algorithmic proof via special case of Jennrich’s algorithm

(Harshman, 1970).

Next: Brief overview of tensors.

22

Identifiability from documents of length three

Claim: If {P t}Kt=1 are linearly independent and all wt > 0, then
parameters {(P t, wt)}Kt=1 are identifiable from word triples.

I Claim implied by uniqueness of certain tensor decompositions.
I Algorithmic proof via special case of Jennrich’s algorithm

(Harshman, 1970).

Next: Brief overview of tensors.

22

Tensors of order two

Matrices (tensors of order two): M ∈ Rd×d.
I Think of as bilinear function M : Rd × Rd → R.

I Formula using matrix representation:

M(x,y) = x>My =
∑
i,j

Mi,j · xiyj .

I Describe M by d2 values M(ei, ej).

Tensors are multi-linear generalization.

23

Tensors of order two

Matrices (tensors of order two): M ∈ Rd×d.
I Think of as bilinear function M : Rd × Rd → R.

I Formula using matrix representation:

M(x,y) = x>My =
∑
i,j

Mi,j · xiyj .

I Describe M by d2 values M(ei, ej).

Tensors are multi-linear generalization.

23

Tensors of order two

Matrices (tensors of order two): M ∈ Rd×d.
I Think of as bilinear function M : Rd × Rd → R.

I Formula using matrix representation:

M(x,y) = x>My =
∑
i,j

Mi,j · xiyj .

I Describe M by d2 values M(ei, ej).

Tensors are multi-linear generalization.

23

Tensors of order two

Matrices (tensors of order two): M ∈ Rd×d.
I Think of as bilinear function M : Rd × Rd → R.

I Formula using matrix representation:

M(x,y) = x>My =
∑
i,j

Mi,j · xiyj .

I Describe M by d2 values M(ei, ej).

Tensors are multi-linear generalization.

23

Tensors of order p

p-linear functions: T : Rd × Rd × · · · × Rd → R.

I Describe T by dp values T (ei1 , ei2 , . . . , eip).

I Identify T with multi-index array T ∈ Rd×d×···×d.

Formula for function value:

T (x(1),x(2), . . . ,x(p)) =
∑

i1,i2,...,ip

Ti1,i2,...,ip · x
(1)
i1
x

(2)
i2
· · ·x(p)

ip
.

I Rank-1 tensor: T = v(1) ⊗ v(2) ⊗ · · · ⊗ v(p),

T (x(1),x(2), . . . ,x(p)) = 〈v(1),x(1)〉〈v(2),x(2)〉 · · · 〈v(p),x(p)〉 .

Symmetric rank-1 tensor: T = v⊗p = v ⊗ v ⊗ · · · ⊗ v,

T (x(1),x(2), . . . ,x(p)) = 〈v,x(1)〉〈v,x(2)〉 · · · 〈v,x(p)〉 .

24

Tensors of order p

p-linear functions: T : Rd × Rd × · · · × Rd → R.
I Describe T by dp values T (ei1 , ei2 , . . . , eip).

I Identify T with multi-index array T ∈ Rd×d×···×d.

Formula for function value:

T (x(1),x(2), . . . ,x(p)) =
∑

i1,i2,...,ip

Ti1,i2,...,ip · x
(1)
i1
x

(2)
i2
· · ·x(p)

ip
.

I Rank-1 tensor: T = v(1) ⊗ v(2) ⊗ · · · ⊗ v(p),

T (x(1),x(2), . . . ,x(p)) = 〈v(1),x(1)〉〈v(2),x(2)〉 · · · 〈v(p),x(p)〉 .

Symmetric rank-1 tensor: T = v⊗p = v ⊗ v ⊗ · · · ⊗ v,

T (x(1),x(2), . . . ,x(p)) = 〈v,x(1)〉〈v,x(2)〉 · · · 〈v,x(p)〉 .

24

Tensors of order p

p-linear functions: T : Rd × Rd × · · · × Rd → R.
I Describe T by dp values T (ei1 , ei2 , . . . , eip).

I Identify T with multi-index array T ∈ Rd×d×···×d.

Formula for function value:

T (x(1),x(2), . . . ,x(p)) =
∑

i1,i2,...,ip

Ti1,i2,...,ip · x
(1)
i1
x

(2)
i2
· · ·x(p)

ip
.

I Rank-1 tensor: T = v(1) ⊗ v(2) ⊗ · · · ⊗ v(p),

T (x(1),x(2), . . . ,x(p)) = 〈v(1),x(1)〉〈v(2),x(2)〉 · · · 〈v(p),x(p)〉 .

Symmetric rank-1 tensor: T = v⊗p = v ⊗ v ⊗ · · · ⊗ v,

T (x(1),x(2), . . . ,x(p)) = 〈v,x(1)〉〈v,x(2)〉 · · · 〈v,x(p)〉 .

24

Tensors of order p

p-linear functions: T : Rd × Rd × · · · × Rd → R.
I Describe T by dp values T (ei1 , ei2 , . . . , eip).

I Identify T with multi-index array T ∈ Rd×d×···×d.
Formula for function value:

T (x(1),x(2), . . . ,x(p)) =
∑

i1,i2,...,ip

Ti1,i2,...,ip · x
(1)
i1
x

(2)
i2
· · ·x(p)

ip
.

I Rank-1 tensor: T = v(1) ⊗ v(2) ⊗ · · · ⊗ v(p),

T (x(1),x(2), . . . ,x(p)) = 〈v(1),x(1)〉〈v(2),x(2)〉 · · · 〈v(p),x(p)〉 .

Symmetric rank-1 tensor: T = v⊗p = v ⊗ v ⊗ · · · ⊗ v,

T (x(1),x(2), . . . ,x(p)) = 〈v,x(1)〉〈v,x(2)〉 · · · 〈v,x(p)〉 .

24

Tensors of order p

p-linear functions: T : Rd × Rd × · · · × Rd → R.
I Describe T by dp values T (ei1 , ei2 , . . . , eip).

I Identify T with multi-index array T ∈ Rd×d×···×d.
Formula for function value:

T (x(1),x(2), . . . ,x(p)) =
∑

i1,i2,...,ip

Ti1,i2,...,ip · x
(1)
i1
x

(2)
i2
· · ·x(p)

ip
.

I Rank-1 tensor: T = v(1) ⊗ v(2) ⊗ · · · ⊗ v(p),

T (x(1),x(2), . . . ,x(p)) = 〈v(1),x(1)〉〈v(2),x(2)〉 · · · 〈v(p),x(p)〉 .

Symmetric rank-1 tensor: T = v⊗p = v ⊗ v ⊗ · · · ⊗ v,

T (x(1),x(2), . . . ,x(p)) = 〈v,x(1)〉〈v,x(2)〉 · · · 〈v,x(p)〉 .

24

Tensors of order p

p-linear functions: T : Rd × Rd × · · · × Rd → R.
I Describe T by dp values T (ei1 , ei2 , . . . , eip).

I Identify T with multi-index array T ∈ Rd×d×···×d.
Formula for function value:

T (x(1),x(2), . . . ,x(p)) =
∑

i1,i2,...,ip

Ti1,i2,...,ip · x
(1)
i1
x

(2)
i2
· · ·x(p)

ip
.

I Rank-1 tensor: T = v(1) ⊗ v(2) ⊗ · · · ⊗ v(p),

T (x(1),x(2), . . . ,x(p)) = 〈v(1),x(1)〉〈v(2),x(2)〉 · · · 〈v(p),x(p)〉 .

Symmetric rank-1 tensor: T = v⊗p = v ⊗ v ⊗ · · · ⊗ v,

T (x(1),x(2), . . . ,x(p)) = 〈v,x(1)〉〈v,x(2)〉 · · · 〈v,x(p)〉 .

24

Usual caveat
(Hillar & Lim, 2013)

✐
✐

✐
✐

✐
✐

✐
✐

45

Most Tensor Problems Are NP-Hard

CHRISTOPHER J. HILLAR, Mathematical Sciences Research Institute
LEK-HENG LIM, University of Chicago

We prove that multilinear (tensor) analogues of many efficiently computable problems in numerical linear
algebra are NP-hard. Our list includes: determining the feasibility of a system of bilinear equations, de-
ciding whether a 3-tensor possesses a given eigenvalue, singular value, or spectral norm; approximating
an eigenvalue, eigenvector, singular vector, or the spectral norm; and determining the rank or best rank-1
approximation of a 3-tensor. Furthermore, we show that restricting these problems to symmetric tensors
does not alleviate their NP-hardness. We also explain how deciding nonnegative definiteness of a symmetric
4-tensor is NP-hard and how computing the combinatorial hyperdeterminant is NP-, #P-, and VNP-hard.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Numerical multilinear algebra, tensor rank, tensor eigenvalue, tensor
singular value, tensor spectral norm, system of multilinear equations, hyperdeterminants, symmetric ten-
sors, nonnegative definite tensors, bivariate matrix polynomials, NP-hardness, #P-hardness, VNP-hardness,
undecidability, polynomial time approximation schemes

ACM Reference Format:
Hillar, C. J. and Lim, L.-H. 2013. Most tensor problems are NP-hard. J. ACM 60, 6, Article 45 (November
2013), 39 pages.
DOI:http://dx.doi.org/10.1145/2512329

1. INTRODUCTION
Frequently a problem in science or engineering can be reduced to solving a linear
(matrix) system of equations and inequalities. Other times, solutions involve the ex-
traction of certain quantities from matrices such as eigenvectors or singular values. In
computer vision, for instance, segmentations of a digital picture along object bound-
aries can be found by computing the top eigenvectors of a certain matrix produced
from the image [Shi and Malik 2000]. Another common problem formulation is to find
low-rank matrix approximations that explain a given two-dimensional array of data,
accomplished, as is now standard, by zeroing the smallest singular values in a singular
value decomposition of the array [Golub and Kahan 1965; Golub and Reinsch 1970]. In

C. J. Hillar was partially supported by an NSA Young Investigators Grant and an NSF All-Institutes Post-
doctoral Fellowship administered by the Mathematical Sciences Research Institute through its core grant
DMS-0441170. L.-H. Lim was partially supported by an NSF CAREER Award DMS-1057064, and NSF
Collaborative Research Grant DMS 1209136, and an AFOSR Young Investigator Award FA9550-13-1-0133.
Authors’ addresses: C. J. Hillar, Mathematical Sciences Research Institute, Berkeley, CA 94720; email:
chillar@msri.org; L.-H. Lim, Computational and Applied Mathematics Initiative, Department of Statistics,
University of Chicago, Chicago, IL 60637; email: lekheng@galton.uchicago.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ 2013 ACM 0004-5411/2013/11-ART45 $15.00
DOI:http://dx.doi.org/10.1145/2512329

Journal of the ACM, Vol. 60, No. 6, Article 45, Publication date: November 2013.

25

Jennrich’s algorithm (simplified)

Task: Given tensor T =
∑K

t=1 v
⊗3
t with linearly independent

components {vt}Kt=1, find the components (up to scaling).

Jennrich’s algorithm: based on “collapsing” the tensor.

I Think of T : Rd × Rd × Rd → R as T : Rd → Rd×d:

[T (x)]j,k = T (x, ej , ek) .

(Like “currying” in functional programming.)

input Tensor T ∈ Rd×d×d.
1: Pick x,y independently & uniformly at random from Sd−1.
2: Compute and return eigenvectors of T (x)T (y)†

(with non-zero eigenvalues).

26

Jennrich’s algorithm (simplified)

Task: Given tensor T =
∑K

t=1 v
⊗3
t with linearly independent

components {vt}Kt=1, find the components (up to scaling).

Jennrich’s algorithm: based on “collapsing” the tensor.

I Think of T : Rd × Rd × Rd → R as T : Rd → Rd×d:

[T (x)]j,k = T (x, ej , ek) .

(Like “currying” in functional programming.)

input Tensor T ∈ Rd×d×d.
1: Pick x,y independently & uniformly at random from Sd−1.
2: Compute and return eigenvectors of T (x)T (y)†

(with non-zero eigenvalues).

26

Jennrich’s algorithm (simplified)

Task: Given tensor T =
∑K

t=1 v
⊗3
t with linearly independent

components {vt}Kt=1, find the components (up to scaling).

Jennrich’s algorithm: based on “collapsing” the tensor.
I Think of T : Rd × Rd × Rd → R as T : Rd → Rd×d:

[T (x)]j,k = T (x, ej , ek) .

(Like “currying” in functional programming.)

input Tensor T ∈ Rd×d×d.
1: Pick x,y independently & uniformly at random from Sd−1.
2: Compute and return eigenvectors of T (x)T (y)†

(with non-zero eigenvalues).

26

Jennrich’s algorithm (simplified)

Task: Given tensor T =
∑K

t=1 v
⊗3
t with linearly independent

components {vt}Kt=1, find the components (up to scaling).

Jennrich’s algorithm: based on “collapsing” the tensor.
I Think of T : Rd × Rd × Rd → R as T : Rd → Rd×d:

[T (x)]j,k = T (x, ej , ek) .

(Like “currying” in functional programming.)

input Tensor T ∈ Rd×d×d.
1: Pick x,y independently & uniformly at random from Sd−1.
2: Compute and return eigenvectors of T (x)T (y)†

(with non-zero eigenvalues).

26

Analysis of Jennrich’s algorithm

For T =
∑K

t=1 vt ⊗ vt ⊗ vt, linearity of “collapsing” implies

T (x) =

K∑
t=1

(vt ⊗ vt ⊗ vt)(x)

=
K∑
t=1

〈vt,x〉vtv>t = V DxV
>

where V = [v1| · · · |vK] and Dx = diag(〈v1,x〉, . . . , 〈vK ,x〉).

By linear independence of {vt}Kt=1 and random choice of x and y:

1. V has rank K;
2. Dx and Dy are invertible (a.s.);
3. diagonal entries of DxD

−1
y are distinct (a.s.);

4. T (x)T (y)† = V (DxD
−1
y)V † (a.s.).

So {vt}Kt=1 are the eigenvectors of T (x)T (y)† with distinct
non-zero eigenvalues.

27

Analysis of Jennrich’s algorithm

For T =
∑K

t=1 vt ⊗ vt ⊗ vt, linearity of “collapsing” implies

T (x) =

K∑
t=1

(vt ⊗ vt ⊗ vt)(x) =

K∑
t=1

〈vt,x〉vtv>t

= V DxV
>

where V = [v1| · · · |vK] and Dx = diag(〈v1,x〉, . . . , 〈vK ,x〉).

By linear independence of {vt}Kt=1 and random choice of x and y:

1. V has rank K;
2. Dx and Dy are invertible (a.s.);
3. diagonal entries of DxD

−1
y are distinct (a.s.);

4. T (x)T (y)† = V (DxD
−1
y)V † (a.s.).

So {vt}Kt=1 are the eigenvectors of T (x)T (y)† with distinct
non-zero eigenvalues.

27

Analysis of Jennrich’s algorithm

For T =
∑K

t=1 vt ⊗ vt ⊗ vt, linearity of “collapsing” implies

T (x) =

K∑
t=1

(vt ⊗ vt ⊗ vt)(x) =

K∑
t=1

〈vt,x〉vtv>t = V DxV
>

where V = [v1| · · · |vK] and Dx = diag(〈v1,x〉, . . . , 〈vK ,x〉).

By linear independence of {vt}Kt=1 and random choice of x and y:

1. V has rank K;
2. Dx and Dy are invertible (a.s.);
3. diagonal entries of DxD

−1
y are distinct (a.s.);

4. T (x)T (y)† = V (DxD
−1
y)V † (a.s.).

So {vt}Kt=1 are the eigenvectors of T (x)T (y)† with distinct
non-zero eigenvalues.

27

Analysis of Jennrich’s algorithm

For T =
∑K

t=1 vt ⊗ vt ⊗ vt, linearity of “collapsing” implies

T (x) =

K∑
t=1

(vt ⊗ vt ⊗ vt)(x) =

K∑
t=1

〈vt,x〉vtv>t = V DxV
>

where V = [v1| · · · |vK] and Dx = diag(〈v1,x〉, . . . , 〈vK ,x〉).

By linear independence of {vt}Kt=1 and random choice of x and y:

1. V has rank K;
2. Dx and Dy are invertible (a.s.);
3. diagonal entries of DxD

−1
y are distinct (a.s.);

4. T (x)T (y)† = V (DxD
−1
y)V † (a.s.).

So {vt}Kt=1 are the eigenvectors of T (x)T (y)† with distinct
non-zero eigenvalues.

27

Analysis of Jennrich’s algorithm

For T =
∑K

t=1 vt ⊗ vt ⊗ vt, linearity of “collapsing” implies

T (x) =

K∑
t=1

(vt ⊗ vt ⊗ vt)(x) =

K∑
t=1

〈vt,x〉vtv>t = V DxV
>

where V = [v1| · · · |vK] and Dx = diag(〈v1,x〉, . . . , 〈vK ,x〉).

By linear independence of {vt}Kt=1 and random choice of x and y:
1. V has rank K;

2. Dx and Dy are invertible (a.s.);
3. diagonal entries of DxD

−1
y are distinct (a.s.);

4. T (x)T (y)† = V (DxD
−1
y)V † (a.s.).

So {vt}Kt=1 are the eigenvectors of T (x)T (y)† with distinct
non-zero eigenvalues.

27

Analysis of Jennrich’s algorithm

For T =
∑K

t=1 vt ⊗ vt ⊗ vt, linearity of “collapsing” implies

T (x) =

K∑
t=1

(vt ⊗ vt ⊗ vt)(x) =

K∑
t=1

〈vt,x〉vtv>t = V DxV
>

where V = [v1| · · · |vK] and Dx = diag(〈v1,x〉, . . . , 〈vK ,x〉).

By linear independence of {vt}Kt=1 and random choice of x and y:
1. V has rank K;
2. Dx and Dy are invertible (a.s.);

3. diagonal entries of DxD
−1
y are distinct (a.s.);

4. T (x)T (y)† = V (DxD
−1
y)V † (a.s.).

So {vt}Kt=1 are the eigenvectors of T (x)T (y)† with distinct
non-zero eigenvalues.

27

Analysis of Jennrich’s algorithm

For T =
∑K

t=1 vt ⊗ vt ⊗ vt, linearity of “collapsing” implies

T (x) =

K∑
t=1

(vt ⊗ vt ⊗ vt)(x) =

K∑
t=1

〈vt,x〉vtv>t = V DxV
>

where V = [v1| · · · |vK] and Dx = diag(〈v1,x〉, . . . , 〈vK ,x〉).

By linear independence of {vt}Kt=1 and random choice of x and y:
1. V has rank K;
2. Dx and Dy are invertible (a.s.);
3. diagonal entries of DxD

−1
y are distinct (a.s.);

4. T (x)T (y)† = V (DxD
−1
y)V † (a.s.).

So {vt}Kt=1 are the eigenvectors of T (x)T (y)† with distinct
non-zero eigenvalues.

27

Analysis of Jennrich’s algorithm

For T =
∑K

t=1 vt ⊗ vt ⊗ vt, linearity of “collapsing” implies

T (x) =

K∑
t=1

(vt ⊗ vt ⊗ vt)(x) =

K∑
t=1

〈vt,x〉vtv>t = V DxV
>

where V = [v1| · · · |vK] and Dx = diag(〈v1,x〉, . . . , 〈vK ,x〉).

By linear independence of {vt}Kt=1 and random choice of x and y:
1. V has rank K;
2. Dx and Dy are invertible (a.s.);
3. diagonal entries of DxD

−1
y are distinct (a.s.);

4. T (x)T (y)† = V (DxD
−1
y)V † (a.s.).

So {vt}Kt=1 are the eigenvectors of T (x)T (y)† with distinct
non-zero eigenvalues.

27

Analysis of Jennrich’s algorithm

For T =
∑K

t=1 vt ⊗ vt ⊗ vt, linearity of “collapsing” implies

T (x) =

K∑
t=1

(vt ⊗ vt ⊗ vt)(x) =

K∑
t=1

〈vt,x〉vtv>t = V DxV
>

where V = [v1| · · · |vK] and Dx = diag(〈v1,x〉, . . . , 〈vK ,x〉).

By linear independence of {vt}Kt=1 and random choice of x and y:
1. V has rank K;
2. Dx and Dy are invertible (a.s.);
3. diagonal entries of DxD

−1
y are distinct (a.s.);

4. T (x)T (y)† = V (DxD
−1
y)V † (a.s.).

So {vt}Kt=1 are the eigenvectors of T (x)T (y)† with distinct
non-zero eigenvalues.

27

Application to topic model parameters

Probabilities of word triples as third-order tensor:

T =

K∑
t=1

wtP t ⊗ P t ⊗ P t =

K∑
t=1

vt ⊗ vt ⊗ vt

for vt = w
1/3
t P t.

I About pre-condition for Jennrich’s algorithm:

{vt}Kt=1 are linearly independent
⇔ {P t}Kt=1 are linearly independent and all wt > 0.

I Can recover {P t}Kt=1 from {ctvt}Kt=1 for any ct 6= 0.
I Can recover {(P t, wt)}Kt=1 from {P t}Kt=1 and T .

28

Application to topic model parameters

Probabilities of word triples as third-order tensor:

T =

K∑
t=1

wtP t ⊗ P t ⊗ P t =

K∑
t=1

vt ⊗ vt ⊗ vt

for vt = w
1/3
t P t.

I About pre-condition for Jennrich’s algorithm:

{vt}Kt=1 are linearly independent
⇔ {P t}Kt=1 are linearly independent and all wt > 0.

I Can recover {P t}Kt=1 from {ctvt}Kt=1 for any ct 6= 0.
I Can recover {(P t, wt)}Kt=1 from {P t}Kt=1 and T .

28

Application to topic model parameters

Probabilities of word triples as third-order tensor:

T =

K∑
t=1

wtP t ⊗ P t ⊗ P t =

K∑
t=1

vt ⊗ vt ⊗ vt

for vt = w
1/3
t P t.

I About pre-condition for Jennrich’s algorithm:

{vt}Kt=1 are linearly independent
⇔ {P t}Kt=1 are linearly independent and all wt > 0.

I Can recover {P t}Kt=1 from {ctvt}Kt=1 for any ct 6= 0.

I Can recover {(P t, wt)}Kt=1 from {P t}Kt=1 and T .

28

Application to topic model parameters

Probabilities of word triples as third-order tensor:

T =

K∑
t=1

wtP t ⊗ P t ⊗ P t =

K∑
t=1

vt ⊗ vt ⊗ vt

for vt = w
1/3
t P t.

I About pre-condition for Jennrich’s algorithm:

{vt}Kt=1 are linearly independent
⇔ {P t}Kt=1 are linearly independent and all wt > 0.

I Can recover {P t}Kt=1 from {ctvt}Kt=1 for any ct 6= 0.
I Can recover {(P t, wt)}Kt=1 from {P t}Kt=1 and T .

28

Recap

I Parameters of topic model for single-topic documents
(satisfying linear independence condition) can be efficiently
recovered from distribution of three-word documents.

I Two-word documents not sufficient.

29

Recap

I Parameters of topic model for single-topic documents
(satisfying linear independence condition) can be efficiently
recovered from distribution of three-word documents.

I Two-word documents not sufficient.

29

Illustrative empirical results
I Corpus: 300, 000 New York Times articles.
I Vocabulary size: 102, 660 words.
I Set number of topics K := 50.

Model predictive performance:
≈ 4–8× speed-up over Gibbs sampling for LDA;
comparable to “FastLDA” (Porteous, Newman, Ihler, Asuncion, Smyth, &
Welling, 2008).

0 0.5 1 1.5 2

8.4

8.6

Training time (×104 sec)

Lo
g
lo
ss

Method-of-moments
Gibbs sampling

FastLDA

30

Illustrative empirical results

Sample topics: (showing top 10 words for each topic)

Econ. Baseball Edu. Health care Golf
sales run school drug player

economic inning student patient tiger_wood
consumer hit teacher million won
major game program company shot
home season official doctor play

indicator home public companies round
weekly right children percent win
order games high cost tournament
claim dodger education program tour

scheduled left district health right

31

Illustrative empirical results

Sample topics: (showing top 10 words for each topic)

Invest. Election auto race Child’s Lit. Afghan War
percent al_gore car book taliban
stock campaign race children attack
market president driver ages afghanistan
fund george_bush team author official

investor bush won read military
companies clinton win newspaper u_s
analyst vice racing web united_states
money presidential track writer terrorist

investment million season written war
economy democratic lap sales bin

32

Illustrative empirical results

Sample topics: (showing top 10 words for each topic)

Web Antitrust TV Movies Music
com court show film music
www case network movie song
site law season director group
web lawyer nbc play part
sites federal cb character new_york

information government program actor company
online decision television show million
mail trial series movies band

internet microsoft night million show
telegram right new_york part album

etc.

33

Learning algorithms

I Estimation via method-of-moments:
1. Estimate distribution of three-word documents → T̂

(empirical moment tensor).

2. Approximately decompose T̂ → estimates {(P̂ t, ŵt)}Kt=1.

I Issues:
1. Accuracy of moment estimates?

Can more reliably estimate lower-order moments;
distribution-specific sample complexity bounds.

2. Robustness of (approximate) tensor decomposition?

Instead of Jennrich’s algorithm, use more error-tolerant
decomposition algorithm (also computationally efficient).

3. Generality beyond simple topic models?

Next: Moment decompositions for other models.

34

Learning algorithms

I Estimation via method-of-moments:
1. Estimate distribution of three-word documents → T̂

(empirical moment tensor).

2. Approximately decompose T̂ → estimates {(P̂ t, ŵt)}Kt=1.

I Issues:
1. Accuracy of moment estimates?

Can more reliably estimate lower-order moments;
distribution-specific sample complexity bounds.

2. Robustness of (approximate) tensor decomposition?

Instead of Jennrich’s algorithm, use more error-tolerant
decomposition algorithm (also computationally efficient).

3. Generality beyond simple topic models?

Next: Moment decompositions for other models.

34

Learning algorithms

I Estimation via method-of-moments:
1. Estimate distribution of three-word documents → T̂

(empirical moment tensor).

2. Approximately decompose T̂ → estimates {(P̂ t, ŵt)}Kt=1.

I Issues:
1. Accuracy of moment estimates?

Can more reliably estimate lower-order moments;
distribution-specific sample complexity bounds.

2. Robustness of (approximate) tensor decomposition?
Instead of Jennrich’s algorithm, use more error-tolerant
decomposition algorithm (also computationally efficient).

3. Generality beyond simple topic models?

Next: Moment decompositions for other models.

34

Learning algorithms

I Estimation via method-of-moments:
1. Estimate distribution of three-word documents → T̂

(empirical moment tensor).

2. Approximately decompose T̂ → estimates {(P̂ t, ŵt)}Kt=1.

I Issues:
1. Accuracy of moment estimates?

Can more reliably estimate lower-order moments;
distribution-specific sample complexity bounds.

2. Robustness of (approximate) tensor decomposition?
Instead of Jennrich’s algorithm, use more error-tolerant
decomposition algorithm (also computationally efficient).

3. Generality beyond simple topic models?

Next: Moment decompositions for other models.

34

2. Moment decompositions for other models

35

Moment decompositions

Some examples of usable moment decompositions.
1. Two classical mixture models.
2. Models with multi-view structure.

36

Mixtures of spherical Gaussians

H ∼ Discrete(π1, π2, . . . , πK) (hidden) ;

X | H = t ∼ Normal(µt, σ
2
t Id) , t ∈ [K] .

(For simplicity, restrict σ1 = σ2 = · · · = σK = σ.)

µ1

µ2

µ3 Rd

37

Mixtures of spherical Gaussians

H ∼ Discrete(π1, π2, . . . , πK) (hidden) ;

X | H = t ∼ Normal(µt, σ
2Id) , t ∈ [K] .

(For simplicity, restrict σ1 = σ2 = · · · = σK = σ.)

µ1

µ2

µ3 Rd

37

Mixtures of spherical Gaussians

H ∼ Discrete(π1, π2, . . . , πK) (hidden) ;

X | H = t ∼ Normal(µt, σ
2Id) , t ∈ [K] .

(For simplicity, restrict σ1 = σ2 = · · · = σK = σ.)

µ1

µ2

µ3 Rd

Generative process:

X = Y + σZ

where Pr(Y = µt) = πt, and
Z ∼ Normal(0, Id) (indep. of Y).

37

Moments for spherical Gaussian mixtures

First- and second-order moments:

E(X) =

K∑
t=1

πt · µt ,

E(X ⊗X) =

K∑
t=1

πt · µt ⊗ µt + σ2Id .

(Vempala & Wang, 2002):
Span of top K eigenvectors of E(X ⊗X) contains {µt}Kt=1.
→ Principal component analysis (PCA).

38

Moments for spherical Gaussian mixtures

First- and second-order moments:

E(X) =

K∑
t=1

πt · µt ,

E(X ⊗X) =

K∑
t=1

πt · µt ⊗ µt + σ2Id .

(Vempala & Wang, 2002):
Span of top K eigenvectors of E(X ⊗X) contains {µt}Kt=1.
→ Principal component analysis (PCA).

38

Use of moments for mixtures of spherical Gaussians
Separation (Dasgupta, 1999):
standard deviations between component means

sep := min
i 6=j

‖µi − µj‖
σ

.

I (Dasgupta & Schulman, 2000, 2007):
Distance-based clustering (e.g., EM) works when sep & d1/4.

I (Vempala & Wang, 2002):
Problem becomes K-dimensional via PCA (assume K ≤ d).
Required separation reduced to sep & K1/4.

Third-order moments identify the mixture distribution when
{µt}Kt=1 are lin. indpt.; sep may be arbitrarily close to zero.

(Belkin & Sinha, 2010; Moitra & Valiant, 2010):
General Gaussians & no minimum sep, but Ω(K)th-order moments.

39

Use of moments for mixtures of spherical Gaussians
Separation (Dasgupta, 1999):
standard deviations between component means

sep := min
i 6=j

‖µi − µj‖
σ

.

I (Dasgupta & Schulman, 2000, 2007):
Distance-based clustering (e.g., EM) works when sep & d1/4.

I (Vempala & Wang, 2002):
Problem becomes K-dimensional via PCA (assume K ≤ d).
Required separation reduced to sep & K1/4.

Third-order moments identify the mixture distribution when
{µt}Kt=1 are lin. indpt.; sep may be arbitrarily close to zero.

(Belkin & Sinha, 2010; Moitra & Valiant, 2010):
General Gaussians & no minimum sep, but Ω(K)th-order moments.

39

Use of moments for mixtures of spherical Gaussians
Separation (Dasgupta, 1999):
standard deviations between component means

sep := min
i 6=j

‖µi − µj‖
σ

.

I (Dasgupta & Schulman, 2000, 2007):
Distance-based clustering (e.g., EM) works when sep & d1/4.

I (Vempala & Wang, 2002):
Problem becomes K-dimensional via PCA (assume K ≤ d).
Required separation reduced to sep & K1/4.

Third-order moments identify the mixture distribution when
{µt}Kt=1 are lin. indpt.; sep may be arbitrarily close to zero.

(Belkin & Sinha, 2010; Moitra & Valiant, 2010):
General Gaussians & no minimum sep, but Ω(K)th-order moments.

39

Use of moments for mixtures of spherical Gaussians
Separation (Dasgupta, 1999):
standard deviations between component means

sep := min
i 6=j

‖µi − µj‖
σ

.

I (Dasgupta & Schulman, 2000, 2007):
Distance-based clustering (e.g., EM) works when sep & d1/4.

I (Vempala & Wang, 2002):
Problem becomes K-dimensional via PCA (assume K ≤ d).
Required separation reduced to sep & K1/4.

Third-order moments identify the mixture distribution when
{µt}Kt=1 are lin. indpt.; sep may be arbitrarily close to zero.

(Belkin & Sinha, 2010; Moitra & Valiant, 2010):
General Gaussians & no minimum sep, but Ω(K)th-order moments.

39

Use of moments for mixtures of spherical Gaussians
Separation (Dasgupta, 1999):
standard deviations between component means

sep := min
i 6=j

‖µi − µj‖
σ

.

I (Dasgupta & Schulman, 2000, 2007):
Distance-based clustering (e.g., EM) works when sep & d1/4.

I (Vempala & Wang, 2002):
Problem becomes K-dimensional via PCA (assume K ≤ d).
Required separation reduced to sep & K1/4.

Third-order moments identify the mixture distribution when
{µt}Kt=1 are lin. indpt.; sep may be arbitrarily close to zero.

(Belkin & Sinha, 2010; Moitra & Valiant, 2010):
General Gaussians & no minimum sep, but Ω(K)th-order moments.

39

Third-order moments of spherical Gaussian mixtures

Generative process:

X = Y + σZ

where Pr(Y = µt) = πt, and Z ∼ Normal(0, Id) (indep. of Y).

Third-order moment tensor:

E
(
X⊗3

)
= E

(
{Y + σZ}⊗3)

= E
(
Y ⊗3

)
+ σ2 E

(
Y ⊗Z ⊗Z +Z ⊗ Y ⊗Z +Z ⊗Z ⊗ Y

)
=

K∑
t=1

πt · µ⊗3
t + τ(σ2,µ)︸ ︷︷ ︸

some tensor

.

40

Third-order moments of spherical Gaussian mixtures

Generative process:

X = Y + σZ

where Pr(Y = µt) = πt, and Z ∼ Normal(0, Id) (indep. of Y).

Third-order moment tensor:

E
(
X⊗3

)
= E

(
{Y + σZ}⊗3)

= E
(
Y ⊗3

)
+ σ2 E

(
Y ⊗Z ⊗Z +Z ⊗ Y ⊗Z +Z ⊗Z ⊗ Y

)

=
K∑
t=1

πt · µ⊗3
t + τ(σ2,µ)︸ ︷︷ ︸

some tensor

.

40

Third-order moments of spherical Gaussian mixtures

Generative process:

X = Y + σZ

where Pr(Y = µt) = πt, and Z ∼ Normal(0, Id) (indep. of Y).

Third-order moment tensor:

E
(
X⊗3

)
= E

(
{Y + σZ}⊗3)

= E
(
Y ⊗3

)
+ σ2 E

(
Y ⊗Z ⊗Z +Z ⊗ Y ⊗Z +Z ⊗Z ⊗ Y

)
=

K∑
t=1

πt · µ⊗3
t + τ(σ2,µ)︸ ︷︷ ︸

some tensor

.

40

Tensor decomposition for spherical Gaussian mixtures
(H. & Kakade, 2013)

E
(
X⊗3

)
=

K∑
t=1

πt · µ⊗3
t + τ(σ2,µ)︸ ︷︷ ︸

some tensor

.

Claim: µ and σ2 are functions of E(X) and E(X ⊗X).

Claim: If {µt}Kt=1 are linearly independent and all πt > 0, then
{(µt, πt)}Kt=1 are identifiable from

T := E(X⊗3)− τ(σ2,µ) =

K∑
t=1

πt · µ⊗3
t .

Can use, e.g., Jennrich’s algorithm to recover {(µt, πt)}Kt=1 from T .

41

Tensor decomposition for spherical Gaussian mixtures
(H. & Kakade, 2013)

E
(
X⊗3

)
=

K∑
t=1

πt · µ⊗3
t + τ(σ2,µ)︸ ︷︷ ︸

some tensor

.

Claim: µ and σ2 are functions of E(X) and E(X ⊗X).

Claim: If {µt}Kt=1 are linearly independent and all πt > 0, then
{(µt, πt)}Kt=1 are identifiable from

T := E(X⊗3)− τ(σ2,µ) =

K∑
t=1

πt · µ⊗3
t .

Can use, e.g., Jennrich’s algorithm to recover {(µt, πt)}Kt=1 from T .

41

Tensor decomposition for spherical Gaussian mixtures
(H. & Kakade, 2013)

E
(
X⊗3

)
=

K∑
t=1

πt · µ⊗3
t + τ(σ2,µ)︸ ︷︷ ︸

some tensor

.

Claim: µ and σ2 are functions of E(X) and E(X ⊗X).

Claim: If {µt}Kt=1 are linearly independent and all πt > 0, then
{(µt, πt)}Kt=1 are identifiable from

T := E(X⊗3)− τ(σ2,µ) =

K∑
t=1

πt · µ⊗3
t .

Can use, e.g., Jennrich’s algorithm to recover {(µt, πt)}Kt=1 from T .

41

Tensor decomposition for spherical Gaussian mixtures
(H. & Kakade, 2013)

E
(
X⊗3

)
=

K∑
t=1

πt · µ⊗3
t + τ(σ2,µ)︸ ︷︷ ︸

some tensor

.

Claim: µ and σ2 are functions of E(X) and E(X ⊗X).

Claim: If {µt}Kt=1 are linearly independent and all πt > 0, then
{(µt, πt)}Kt=1 are identifiable from

T := E(X⊗3)− τ(σ2,µ) =

K∑
t=1

πt · µ⊗3
t .

Can use, e.g., Jennrich’s algorithm to recover {(µt, πt)}Kt=1 from T .

41

Even more Gaussian mixtures

Note: Linear independence condition on {µt}Kt=1 requires K ≤ d.

I (Anderson, Belkin, Goyal, Rademacher, & Voss, 2014),
(Bhaskara, Charikar, Moitra, & Vijayaraghavan, 2014)
Mixtures of dO(1) Gaussians (w/ simple or known covariance)
via smoothed analysis and O(1)-order moments.

I (Ge, Huang, & Kakade, 2015)
Also with arbitrary unknown covariances.

42

Even more Gaussian mixtures

Note: Linear independence condition on {µt}Kt=1 requires K ≤ d.
I (Anderson, Belkin, Goyal, Rademacher, & Voss, 2014),

(Bhaskara, Charikar, Moitra, & Vijayaraghavan, 2014)
Mixtures of dO(1) Gaussians (w/ simple or known covariance)
via smoothed analysis and O(1)-order moments.

I (Ge, Huang, & Kakade, 2015)
Also with arbitrary unknown covariances.

42

Even more Gaussian mixtures

Note: Linear independence condition on {µt}Kt=1 requires K ≤ d.
I (Anderson, Belkin, Goyal, Rademacher, & Voss, 2014),

(Bhaskara, Charikar, Moitra, & Vijayaraghavan, 2014)
Mixtures of dO(1) Gaussians (w/ simple or known covariance)
via smoothed analysis and O(1)-order moments.

I (Ge, Huang, & Kakade, 2015)
Also with arbitrary unknown covariances.

42

Mixtures of linear regressions

H ∼ Discrete(π1, π2, . . . , πK) (hidden) ;

X ∼ Normal(µ,Σ) ;

Y | H = t,X = x ∼ Normal(〈βt,x〉, σ2) .

43

Mixtures of linear regressions

H ∼ Discrete(π1, π2, . . . , πK) (hidden) ;

X ∼ Normal(µ,Σ) ;

Y | H = t,X = x ∼ Normal(〈βt,x〉, σ2) .

x
-4 -2 0 2 4 6 8

y

-5

0

5

43

Mixtures of linear regressions

H ∼ Discrete(π1, π2, . . . , πK) (hidden) ;

X ∼ Normal(µ,Σ) ;

Y | H = t,X = x ∼ Normal(〈βt,x〉, σ2) .

x
-4 -2 0 2 4 6 8

y

-5

0

5

43

Use of moments for mixtures of linear regressions

Second-order moments (assume X ∼ Normal(0, Id)):

E(Y 2XX>) = 2

K∑
t=1

πt · βtβ>t +

σ2 +

K∑
t=1

πt · ‖βt‖2
 Id .

I Span of top K eigenvectors of E(Y 2XX>) contains {βt}Kt=1.
I Using Stein’s identity (1973), similar approach works for GLMs

(Sun, Ioannidis, & Montanari, 2013).

Tensor decomposition approach:
Can recover parameters {(βt, πt)}Kt=1 with higher-order moments
(Chaganty & Liang, 2013; Yi, Caramanis, & Sanghavi, 2014, 2016).
Also for GLMs, via Stein’s identity (Sedghi & Anandkumar, 2014).

44

Use of moments for mixtures of linear regressions

Second-order moments (assume X ∼ Normal(0, Id)):

E(Y 2XX>) = 2

K∑
t=1

πt · βtβ>t +

σ2 +

K∑
t=1

πt · ‖βt‖2
 Id .

I Span of top K eigenvectors of E(Y 2XX>) contains {βt}Kt=1.

I Using Stein’s identity (1973), similar approach works for GLMs
(Sun, Ioannidis, & Montanari, 2013).

Tensor decomposition approach:
Can recover parameters {(βt, πt)}Kt=1 with higher-order moments
(Chaganty & Liang, 2013; Yi, Caramanis, & Sanghavi, 2014, 2016).
Also for GLMs, via Stein’s identity (Sedghi & Anandkumar, 2014).

44

Use of moments for mixtures of linear regressions

Second-order moments (assume X ∼ Normal(0, Id)):

E(Y 2XX>) = 2

K∑
t=1

πt · βtβ>t +

σ2 +

K∑
t=1

πt · ‖βt‖2
 Id .

I Span of top K eigenvectors of E(Y 2XX>) contains {βt}Kt=1.
I Using Stein’s identity (1973), similar approach works for GLMs

(Sun, Ioannidis, & Montanari, 2013).

Tensor decomposition approach:
Can recover parameters {(βt, πt)}Kt=1 with higher-order moments
(Chaganty & Liang, 2013; Yi, Caramanis, & Sanghavi, 2014, 2016).
Also for GLMs, via Stein’s identity (Sedghi & Anandkumar, 2014).

44

Use of moments for mixtures of linear regressions

Second-order moments (assume X ∼ Normal(0, Id)):

E(Y 2XX>) = 2

K∑
t=1

πt · βtβ>t +

σ2 +

K∑
t=1

πt · ‖βt‖2
 Id .

I Span of top K eigenvectors of E(Y 2XX>) contains {βt}Kt=1.
I Using Stein’s identity (1973), similar approach works for GLMs

(Sun, Ioannidis, & Montanari, 2013).

Tensor decomposition approach:
Can recover parameters {(βt, πt)}Kt=1 with higher-order moments
(Chaganty & Liang, 2013; Yi, Caramanis, & Sanghavi, 2014, 2016).

Also for GLMs, via Stein’s identity (Sedghi & Anandkumar, 2014).

44

Use of moments for mixtures of linear regressions

Second-order moments (assume X ∼ Normal(0, Id)):

E(Y 2XX>) = 2

K∑
t=1

πt · βtβ>t +

σ2 +

K∑
t=1

πt · ‖βt‖2
 Id .

I Span of top K eigenvectors of E(Y 2XX>) contains {βt}Kt=1.
I Using Stein’s identity (1973), similar approach works for GLMs

(Sun, Ioannidis, & Montanari, 2013).

Tensor decomposition approach:
Can recover parameters {(βt, πt)}Kt=1 with higher-order moments
(Chaganty & Liang, 2013; Yi, Caramanis, & Sanghavi, 2014, 2016).
Also for GLMs, via Stein’s identity (Sedghi & Anandkumar, 2014).

44

Simpler setting: mixed random linear equations
(Yi, Caramanis, & Sanghavi, 2016)

H ∼ Discrete(π1, π2, . . . , πK) (hidden) ;

X ∼ Normal(0, Id) ;

Y = 〈βH ,X〉 .

Claim: If {βt}Kt=1 are linearly independent and all πt > 0, then
parameters {(βt, πt)}Kt=1 are identifiable from

T := E
(
Y 3X⊗3

)
= 6

K∑
t=1

πt · β⊗3
t + τ(EY 3X)︸ ︷︷ ︸

some tensor

.

45

Simpler setting: mixed random linear equations
(Yi, Caramanis, & Sanghavi, 2016)

H ∼ Discrete(π1, π2, . . . , πK) (hidden) ;

X ∼ Normal(0, Id) ;

Y = 〈βH ,X〉 .

Claim: If {βt}Kt=1 are linearly independent and all πt > 0, then
parameters {(βt, πt)}Kt=1 are identifiable from

T := E
(
Y 3X⊗3

)
= 6

K∑
t=1

πt · β⊗3
t + τ(EY 3X)︸ ︷︷ ︸

some tensor

.

45

Recap: mixtures of Gaussians and linear regressions

I Parameters of Gaussian mixture models and related models
(satisfying linear independence condition) can be efficiently
recovered from O(1)-order moments.

I Exploit distributional properties to determine usable moments.

I Smoothed analysis: avoid linear independence condition for
“most” mixture distributions.

Next: Multi-view approach to finding usable moments.

46

Recap: mixtures of Gaussians and linear regressions

I Parameters of Gaussian mixture models and related models
(satisfying linear independence condition) can be efficiently
recovered from O(1)-order moments.

I Exploit distributional properties to determine usable moments.

I Smoothed analysis: avoid linear independence condition for
“most” mixture distributions.

Next: Multi-view approach to finding usable moments.

46

Recap: mixtures of Gaussians and linear regressions

I Parameters of Gaussian mixture models and related models
(satisfying linear independence condition) can be efficiently
recovered from O(1)-order moments.

I Exploit distributional properties to determine usable moments.

I Smoothed analysis: avoid linear independence condition for
“most” mixture distributions.

Next: Multi-view approach to finding usable moments.

46

Recap: mixtures of Gaussians and linear regressions

I Parameters of Gaussian mixture models and related models
(satisfying linear independence condition) can be efficiently
recovered from O(1)-order moments.

I Exploit distributional properties to determine usable moments.

I Smoothed analysis: avoid linear independence condition for
“most” mixture distributions.

Next: Multi-view approach to finding usable moments.

46

Multi-view interpretation of topic model

Recall: Topic model for single-topic documents

H

X1 X2 · · · XL

K topics (dists. over words) {P t}Kt=1.
Pick topic H = t with prob. wt (hidden).
Word tokens X1,X2, . . . ,XL

iid∼ PH .

Key property:
X1,X2, . . . ,XL conditionally independent given H.

Each word token Xi provides new “view” of hidden variable H.

Some previous theoretical analysis:
I (Blum & Mitchell, 1998)

Co-training in semi-supervised learning.
I (Chaudhuri, Kakade, Livescu, & Sridharan, 2009)

Multi-view Gaussian mixture models.

47

Multi-view interpretation of topic model

Recall: Topic model for single-topic documents

H

X1 X2 · · · XL

K topics (dists. over words) {P t}Kt=1.
Pick topic H = t with prob. wt (hidden).
Word tokens X1,X2, . . . ,XL

iid∼ PH .

Key property:
X1,X2, . . . ,XL conditionally independent given H.

Each word token Xi provides new “view” of hidden variable H.

Some previous theoretical analysis:
I (Blum & Mitchell, 1998)

Co-training in semi-supervised learning.
I (Chaudhuri, Kakade, Livescu, & Sridharan, 2009)

Multi-view Gaussian mixture models.

47

Multi-view interpretation of topic model

Recall: Topic model for single-topic documents

H

X1 X2 · · · XL

K topics (dists. over words) {P t}Kt=1.
Pick topic H = t with prob. wt (hidden).
Word tokens X1,X2, . . . ,XL

iid∼ PH .

Key property:
X1,X2, . . . ,XL conditionally independent given H.

Each word token Xi provides new “view” of hidden variable H.

Some previous theoretical analysis:
I (Blum & Mitchell, 1998)

Co-training in semi-supervised learning.
I (Chaudhuri, Kakade, Livescu, & Sridharan, 2009)

Multi-view Gaussian mixture models.

47

Multi-view interpretation of topic model

Recall: Topic model for single-topic documents

H

X1 X2 · · · XL

K topics (dists. over words) {P t}Kt=1.
Pick topic H = t with prob. wt (hidden).
Word tokens X1,X2, . . . ,XL

iid∼ PH .

Key property:
X1,X2, . . . ,XL conditionally independent given H.

Each word token Xi provides new “view” of hidden variable H.

Some previous theoretical analysis:
I (Blum & Mitchell, 1998)

Co-training in semi-supervised learning.
I (Chaudhuri, Kakade, Livescu, & Sridharan, 2009)

Multi-view Gaussian mixture models.

47

Multi-view mixture model

H

X1 X2 X3

View 1: X1 View 2: X2 View 3: X3

Jennrich’s algorithm works in this asymmetric case provided
{µ(j)

t }Kt=1 are linearly independent for each j, and all πt > 0.

(Also possible to “symmetrize” using second-order moments.)

48

Multi-view mixture model

H

X1 X2 X3

View 1: X1 View 2: X2 View 3: X3

Jennrich’s algorithm works in this asymmetric case provided
{µ(j)

t }Kt=1 are linearly independent for each j, and all πt > 0.

(Also possible to “symmetrize” using second-order moments.)

48

Multi-view mixture model

H

X1 X2 X3

E (X1 ⊗X2 ⊗X3) =

K∑
t=1

πt · µ(1)
t ⊗ µ

(2)
t ⊗ µ

(3)
t

where µ(i)
t = E[Xi | H = t] ,

πt = Pr(H = t) .

Jennrich’s algorithm works in this asymmetric case provided
{µ(j)

t }Kt=1 are linearly independent for each j, and all πt > 0.

(Also possible to “symmetrize” using second-order moments.)

48

Multi-view mixture model

H

X1 X2 X3

E (X1 ⊗X2 ⊗X3) =

K∑
t=1

πt · µ(1)
t ⊗ µ

(2)
t ⊗ µ

(3)
t

where µ(i)
t = E[Xi | H = t] ,

πt = Pr(H = t) .

Jennrich’s algorithm works in this asymmetric case provided
{µ(j)

t }Kt=1 are linearly independent for each j, and all πt > 0.

(Also possible to “symmetrize” using second-order moments.)

48

Multi-view mixture model

H

X1 X2 X3

E (X1 ⊗X2 ⊗X3) =

K∑
t=1

πt · µ(1)
t ⊗ µ

(2)
t ⊗ µ

(3)
t

where µ(i)
t = E[Xi | H = t] ,

πt = Pr(H = t) .

Jennrich’s algorithm works in this asymmetric case provided
{µ(j)

t }Kt=1 are linearly independent for each j, and all πt > 0.

(Also possible to “symmetrize” using second-order moments.)

48

Examples of multi-view mixture models
(Mossel & Roch, 2006; Anandkumar, H., & Kakade, 2012)

1. Mixtures of high-dimensional product distributions.
(E.g., mixtures of axis-aligned Gaussians.)

2. Hidden Markov models.

H1 H2 H3

X1 X2 X3

−→
H2

X1 X2 X3

3. Phylogenetic trees.
I X1,X2,X3: genes of three extant species.
I H: LCA of most closely related pair of species.

4. . . .

49

Examples of multi-view mixture models
(Mossel & Roch, 2006; Anandkumar, H., & Kakade, 2012)

1. Mixtures of high-dimensional product distributions.
(E.g., mixtures of axis-aligned Gaussians.)

2. Hidden Markov models.

H1 H2 H3

X1 X2 X3

−→
H2

X1 X2 X3

3. Phylogenetic trees.
I X1,X2,X3: genes of three extant species.
I H: LCA of most closely related pair of species.

4. . . .

49

Examples of multi-view mixture models
(Mossel & Roch, 2006; Anandkumar, H., & Kakade, 2012)

1. Mixtures of high-dimensional product distributions.
(E.g., mixtures of axis-aligned Gaussians.)

2. Hidden Markov models.

H1 H2 H3

X1 X2 X3

−→
H2

X1 X2 X3

3. Phylogenetic trees.
I X1,X2,X3: genes of three extant species.
I H: LCA of most closely related pair of species.

4. . . .

49

Examples of multi-view mixture models
(Mossel & Roch, 2006; Anandkumar, H., & Kakade, 2012)

1. Mixtures of high-dimensional product distributions.
(E.g., mixtures of axis-aligned Gaussians.)

2. Hidden Markov models.

H1 H2 H3

X1 X2 X3

−→
H2

X1 X2 X3

3. Phylogenetic trees.
I X1,X2,X3: genes of three extant species.
I H: LCA of most closely related pair of species.

4. . . .

49

Recap

I Parameters of many latent variable models
(satisfying non-degeneracy conditions) can be efficiently
recovered from O(1)-order moments.

I Exploit distributional properties, multi-view structure, and
other structure to determine usable moments.

I Estimation via method-of-moments:
1. Estimate moments → empirical moment tensor T̂ .
2. Approximately decompose T̂ → parameter estimate θ̂.

Next: Error-tolerant (approximate) tensor decomposition.

50

Recap

I Parameters of many latent variable models
(satisfying non-degeneracy conditions) can be efficiently
recovered from O(1)-order moments.

I Exploit distributional properties, multi-view structure, and
other structure to determine usable moments.

I Estimation via method-of-moments:
1. Estimate moments → empirical moment tensor T̂ .
2. Approximately decompose T̂ → parameter estimate θ̂.

Next: Error-tolerant (approximate) tensor decomposition.

50

Recap

I Parameters of many latent variable models
(satisfying non-degeneracy conditions) can be efficiently
recovered from O(1)-order moments.

I Exploit distributional properties, multi-view structure, and
other structure to determine usable moments.

I Estimation via method-of-moments:
1. Estimate moments → empirical moment tensor T̂ .
2. Approximately decompose T̂ → parameter estimate θ̂.

Next: Error-tolerant (approximate) tensor decomposition.

50

Recap

I Parameters of many latent variable models
(satisfying non-degeneracy conditions) can be efficiently
recovered from O(1)-order moments.

I Exploit distributional properties, multi-view structure, and
other structure to determine usable moments.

I Estimation via method-of-moments:
1. Estimate moments → empirical moment tensor T̂ .
2. Approximately decompose T̂ → parameter estimate θ̂.

Next: Error-tolerant (approximate) tensor decomposition.

50

3. Error-tolerant algorithms for tensor
decompositions

51

Moment estimates

Estimation of E[X⊗3] (say) from iid sample {xi}ni=1:

Ê[X⊗3] :=
1

n

n∑
i=1

x⊗3
i .

Inevitably expect error of order n−1/2 in some norm, e.g.,

‖T ‖ := sup
x,y,z∈Sd−1

T (x,y, z) (operator norm) ,

‖T ‖F :=

∑
i,j,k

T 2
i,j,k

1/2

(Frobenius norm) .

52

Moment estimates

Estimation of E[X⊗3] (say) from iid sample {xi}ni=1:

Ê[X⊗3] :=
1

n

n∑
i=1

x⊗3
i .

Inevitably expect error of order n−1/2 in some norm, e.g.,

‖T ‖ := sup
x,y,z∈Sd−1

T (x,y, z) (operator norm) ,

‖T ‖F :=

∑
i,j,k

T 2
i,j,k

1/2

(Frobenius norm) .

52

Using Jennrich’s algorithm

Recall: Jennrich’s algorithm (simplified)

Goal: Given tensor T =
∑K

t=1 v
⊗3
t , find components {vt}Kt=1.

input Tensor T ∈ Rd×d×d.
1: Pick x,y independently & uniformly at random from Sd−1.
2: Compute and return eigenvectors of T (x)T (y)†

(with non-zero eigenvalues).

But we only have T̂ , an estimate of T =
∑K

t=1 v
⊗3
t with (say)

‖T̂ − T ‖ . n−1/2 .

53

Using Jennrich’s algorithm

Recall: Jennrich’s algorithm (simplified)

Goal: Given tensor T =
∑K

t=1 v
⊗3
t , find components {vt}Kt=1.

input Tensor T ∈ Rd×d×d.
1: Pick x,y independently & uniformly at random from Sd−1.
2: Compute and return eigenvectors of T (x)T (y)†

(with non-zero eigenvalues).

But we only have T̂ , an estimate of T =
∑K

t=1 v
⊗3
t with (say)

‖T̂ − T ‖ . n−1/2 .

53

Stability of Jennrich’s algorithm

Stability of eigenvectors requires eigenvalue gaps.

I Eigenvalue gaps for T (x)T (y)†:

∆ := min
i 6=j

∣∣∣∣∣〈vi,x〉〈vi,y〉
− 〈vj ,x〉
〈vj ,y〉

∣∣∣∣∣ .
I Need ‖T̂ (x)T̂ (y)† − T (x)T (y)†‖ � ∆ so that T̂ (x)T̂ (y)†

also has sufficient eigenvalue gaps.

I Ultimately, appears to need ‖T̂ − T ‖F � 1
poly(d) .

Next: A different approach.

54

Stability of Jennrich’s algorithm

Stability of eigenvectors requires eigenvalue gaps.
I Eigenvalue gaps for T (x)T (y)†:

∆ := min
i 6=j

∣∣∣∣∣〈vi,x〉〈vi,y〉
− 〈vj ,x〉
〈vj ,y〉

∣∣∣∣∣ .

I Need ‖T̂ (x)T̂ (y)† − T (x)T (y)†‖ � ∆ so that T̂ (x)T̂ (y)†

also has sufficient eigenvalue gaps.

I Ultimately, appears to need ‖T̂ − T ‖F � 1
poly(d) .

Next: A different approach.

54

Stability of Jennrich’s algorithm

Stability of eigenvectors requires eigenvalue gaps.
I Eigenvalue gaps for T (x)T (y)†:

∆ := min
i 6=j

∣∣∣∣∣〈vi,x〉〈vi,y〉
− 〈vj ,x〉
〈vj ,y〉

∣∣∣∣∣ .
I Need ‖T̂ (x)T̂ (y)† − T (x)T (y)†‖ � ∆ so that T̂ (x)T̂ (y)†

also has sufficient eigenvalue gaps.

I Ultimately, appears to need ‖T̂ − T ‖F � 1
poly(d) .

Next: A different approach.

54

Stability of Jennrich’s algorithm

Stability of eigenvectors requires eigenvalue gaps.
I Eigenvalue gaps for T (x)T (y)†:

∆ := min
i 6=j

∣∣∣∣∣〈vi,x〉〈vi,y〉
− 〈vj ,x〉
〈vj ,y〉

∣∣∣∣∣ .
I Need ‖T̂ (x)T̂ (y)† − T (x)T (y)†‖ � ∆ so that T̂ (x)T̂ (y)†

also has sufficient eigenvalue gaps.

I Ultimately, appears to need ‖T̂ − T ‖F � 1
poly(d) .

Next: A different approach.

54

Stability of Jennrich’s algorithm

Stability of eigenvectors requires eigenvalue gaps.
I Eigenvalue gaps for T (x)T (y)†:

∆ := min
i 6=j

∣∣∣∣∣〈vi,x〉〈vi,y〉
− 〈vj ,x〉
〈vj ,y〉

∣∣∣∣∣ .
I Need ‖T̂ (x)T̂ (y)† − T (x)T (y)†‖ � ∆ so that T̂ (x)T̂ (y)†

also has sufficient eigenvalue gaps.

I Ultimately, appears to need ‖T̂ − T ‖F � 1
poly(d) .

Next: A different approach.

54

Reduction to orthonormal case

In many (all?) applications, we can estimate moments of the form

M =

K∑
t=1

vt ⊗ vt , (e.g., word pairs)

and T =

K∑
t=1

λt · vt ⊗ vt ⊗ vt . (e.g., word triples)

(Here, we assume {vt}Kt=1 are linearly independent, and {λt}Kt=1 are positive.)

I M is positive semidefinite of rank K.
I M determines inner product system on span {vt}Kt=1 s.t.
{vt}Kt=1 are orthonormal.

55

Reduction to orthonormal case

In many (all?) applications, we can estimate moments of the form

M =

K∑
t=1

vt ⊗ vt , (e.g., word pairs)

and T =

K∑
t=1

λt · vt ⊗ vt ⊗ vt . (e.g., word triples)

(Here, we assume {vt}Kt=1 are linearly independent, and {λt}Kt=1 are positive.)

I M is positive semidefinite of rank K.

I M determines inner product system on span {vt}Kt=1 s.t.
{vt}Kt=1 are orthonormal.

55

Reduction to orthonormal case

In many (all?) applications, we can estimate moments of the form

M =

K∑
t=1

vt ⊗ vt , (e.g., word pairs)

and T =

K∑
t=1

λt · vt ⊗ vt ⊗ vt . (e.g., word triples)

(Here, we assume {vt}Kt=1 are linearly independent, and {λt}Kt=1 are positive.)

I M is positive semidefinite of rank K.
I M determines inner product system on span {vt}Kt=1 s.t.
{vt}Kt=1 are orthonormal.

55

(Nearly) orthogonally decomposable tensors (d = K)

Goal: Given tensor T̂ ∈ Rd×d×d such that ‖T̂ − T ‖ ≤ ε for
some T =

∑d
t=1 λt · v

⊗3
t where {vt}dt=1 are orthonormal and

all λt > 0, approximately recover {(vt, λt)}dt=1.

Analogous matrix problems:

I ε = 0: eigendecomposition.
(“Promised” decomposition always exists by symmetry.)

Decomposition is unique iff the {λt}dt=1 are distinct.

I ε > 0: perturbation theory for eigenvalues (Weyl) and
eigenvectors (Davis & Kahan).

56

(Nearly) orthogonally decomposable tensors (d = K)

Goal: Given tensor T̂ ∈ Rd×d×d such that ‖T̂ − T ‖ ≤ ε for
some T =

∑d
t=1 λt · v

⊗3
t where {vt}dt=1 are orthonormal and

all λt > 0, approximately recover {(vt, λt)}dt=1.

Analogous matrix problems:
I ε = 0: eigendecomposition.

(“Promised” decomposition always exists by symmetry.)

Decomposition is unique iff the {λt}dt=1 are distinct.

I ε > 0: perturbation theory for eigenvalues (Weyl) and
eigenvectors (Davis & Kahan).

56

(Nearly) orthogonally decomposable tensors (d = K)

Goal: Given tensor T̂ ∈ Rd×d×d such that ‖T̂ − T ‖ ≤ ε for
some T =

∑d
t=1 λt · v

⊗3
t where {vt}dt=1 are orthonormal and

all λt > 0, approximately recover {(vt, λt)}dt=1.

Analogous matrix problems:
I ε = 0: eigendecomposition.

(“Promised” decomposition always exists by symmetry.)

Decomposition is unique iff the {λt}dt=1 are distinct.

I ε > 0: perturbation theory for eigenvalues (Weyl) and
eigenvectors (Davis & Kahan).

56

(Nearly) orthogonally decomposable tensors (d = K)

Goal: Given tensor T̂ ∈ Rd×d×d such that ‖T̂ − T ‖ ≤ ε for
some T =

∑d
t=1 λt · v

⊗3
t where {vt}dt=1 are orthonormal and

all λt > 0, approximately recover {(vt, λt)}dt=1.

Analogous matrix problems:
I ε = 0: eigendecomposition.

(“Promised” decomposition always exists by symmetry.)

Decomposition is unique iff the {λt}dt=1 are distinct.

I ε > 0: perturbation theory for eigenvalues (Weyl) and
eigenvectors (Davis & Kahan).

56

Exact orthogonally decomposable tensor
(Zhang & Golub, 2001)

For now assume ε = 0, so T̂ = T .
Matching moments:

{(v̂t, λ̂t)}dt=1 := arg min
{(xt,σt)}dt=1

∥∥∥∥∥∥T −
d∑
t=1

σt · x⊗3
t

∥∥∥∥∥∥
2

F

.

I Greedy approach:
I Find best rank-1 approximation:

I “Deflate” T := T − λ̂ · v̂⊗3 and repeat.

57

Exact orthogonally decomposable tensor
(Zhang & Golub, 2001)

For now assume ε = 0, so T̂ = T .
Matching moments:

{(v̂t, λ̂t)}dt=1 := arg min
{(xt,σt)}dt=1

∥∥∥∥∥∥T −
d∑
t=1

σt · x⊗3
t

∥∥∥∥∥∥
2

F

.

I Greedy approach:
I Find best rank-1 approximation:

(v̂, λ̂) := arg min
(x,σ)∈Sd−1×R+

∥∥∥T − σ · x⊗3∥∥∥2
F
.

I “Deflate” T := T − λ̂ · v̂⊗3 and repeat.

57

Exact orthogonally decomposable tensor
(Zhang & Golub, 2001)

For now assume ε = 0, so T̂ = T .
Matching moments:

{(v̂t, λ̂t)}dt=1 := arg min
{(xt,σt)}dt=1

∥∥∥∥∥∥T −
d∑
t=1

σt · x⊗3
t

∥∥∥∥∥∥
2

F

.

I Greedy approach:
I Find best rank-1 approximation:

v̂ := arg max
x∈Sd−1

T (x,x,x) , λ̂ := T (v̂, v̂, v̂) .

I “Deflate” T := T − λ̂ · v̂⊗3 and repeat.

57

Rank-1 approximation problem

Claim: Local maximizers of the function

x 7→ T (x,x,x) =
∑
i,j,k

Ti,j,k · xixjxk

=
d∑
t=1

λt · 〈vt,x〉3

(over the unit ball) are {vt}dt=1, and

T (vt,vt,vt) = λt , t ∈ [d] .

Algorithm: use gradient ascent to find each component vt.

Next: “Parameter-free” fixed-point algorithm.

58

Rank-1 approximation problem

Claim: Local maximizers of the function

x 7→ T (x,x,x) =
∑
i,j,k

Ti,j,k · xixjxk =

d∑
t=1

λt · 〈vt,x〉3

(over the unit ball) are {vt}dt=1, and

T (vt,vt,vt) = λt , t ∈ [d] .

Algorithm: use gradient ascent to find each component vt.

Next: “Parameter-free” fixed-point algorithm.

58

Rank-1 approximation problem

Claim: Local maximizers of the function

x 7→ T (x,x,x) =
∑
i,j,k

Ti,j,k · xixjxk =

d∑
t=1

λt · 〈vt,x〉3

(over the unit ball) are {vt}dt=1, and

T (vt,vt,vt) = λt , t ∈ [d] .

Algorithm: use gradient ascent to find each component vt.

Next: “Parameter-free” fixed-point algorithm.

58

Rank-1 approximation problem

Claim: Local maximizers of the function

x 7→ T (x,x,x) =
∑
i,j,k

Ti,j,k · xixjxk =

d∑
t=1

λt · 〈vt,x〉3

(over the unit ball) are {vt}dt=1, and

T (vt,vt,vt) = λt , t ∈ [d] .

Algorithm: use gradient ascent to find each component vt.

Next: “Parameter-free” fixed-point algorithm.

58

Fixed-point algorithm
(De Lathauwer, De Moore, & Vandewalle, 2000)

First-order (necessary but not sufficient) optimality condition:

∇xT (x,x,x) = λx .

Gradient is “partial evaluation” of T :

∇xT (x,x,x) = 3
∑
i,j

Ti,j,k · xixjek = 3T (x,x, ·) .

(Third-order) tensor power iteration:

For i = 1, 2, . . . : x(i+1) :=
T (x(i),x(i), ·)
‖T (x(i),x(i), ·)‖

.

59

Fixed-point algorithm
(De Lathauwer, De Moore, & Vandewalle, 2000)

First-order (necessary but not sufficient) optimality condition:

∇xT (x,x,x) = λx .

Gradient is “partial evaluation” of T :

∇xT (x,x,x) = 3
∑
i,j

Ti,j,k · xixjek = 3T (x,x, ·) .

(Third-order) tensor power iteration:

For i = 1, 2, . . . : x(i+1) :=
T (x(i),x(i), ·)
‖T (x(i),x(i), ·)‖

.

59

Fixed-point algorithm
(De Lathauwer, De Moore, & Vandewalle, 2000)

First-order (necessary but not sufficient) optimality condition:

∇xT (x,x,x) = λx .

Gradient is “partial evaluation” of T :

∇xT (x,x,x) = 3
∑
i,j

Ti,j,k · xixjek = 3T (x,x, ·) .

(Third-order) tensor power iteration:

For i = 1, 2, . . . : x(i+1) :=
T (x(i),x(i), ·)
‖T (x(i),x(i), ·)‖

.

59

Comparison to matrix power iteration

Matrix power iteration x(i+1) = Mx(i)

‖Mx(i)‖ for M =
∑

t λtvtv
>
t .

I Requires gap mini 6=1 1− λi/λ1 > 0 to converge to v1.

Tensor power iteration:
No gap required.

I If 〈v1,x
(0)〉 6= 0 (and gap > 0), converges to v1.

Tensor power iteration:
If t := arg maxt′ λt′ |〈vt′ ,x(0)〉|, converges to vt.

I Converges at linear rate.
Tensor power iteration:
Converges at quadratic rate.

60

Comparison to matrix power iteration

Matrix power iteration x(i+1) = Mx(i)

‖Mx(i)‖ for M =
∑

t λtvtv
>
t .

I Requires gap mini 6=1 1− λi/λ1 > 0 to converge to v1.

Tensor power iteration:
No gap required.

I If 〈v1,x
(0)〉 6= 0 (and gap > 0), converges to v1.

Tensor power iteration:
If t := arg maxt′ λt′ |〈vt′ ,x(0)〉|, converges to vt.

I Converges at linear rate.
Tensor power iteration:
Converges at quadratic rate.

60

Comparison to matrix power iteration

Matrix power iteration x(i+1) = Mx(i)

‖Mx(i)‖ for M =
∑

t λtvtv
>
t .

I Requires gap mini 6=1 1− λi/λ1 > 0 to converge to v1.
Tensor power iteration:
No gap required.

I If 〈v1,x
(0)〉 6= 0 (and gap > 0), converges to v1.

Tensor power iteration:
If t := arg maxt′ λt′ |〈vt′ ,x(0)〉|, converges to vt.

I Converges at linear rate.
Tensor power iteration:
Converges at quadratic rate.

60

Comparison to matrix power iteration

Matrix power iteration x(i+1) = Mx(i)

‖Mx(i)‖ for M =
∑

t λtvtv
>
t .

I Requires gap mini 6=1 1− λi/λ1 > 0 to converge to v1.
Tensor power iteration:
No gap required.

I If 〈v1,x
(0)〉 6= 0 (and gap > 0), converges to v1.

Tensor power iteration:
If t := arg maxt′ λt′ |〈vt′ ,x(0)〉|, converges to vt.

I Converges at linear rate.
Tensor power iteration:
Converges at quadratic rate.

60

Comparison to matrix power iteration

Matrix power iteration x(i+1) = Mx(i)

‖Mx(i)‖ for M =
∑

t λtvtv
>
t .

I Requires gap mini 6=1 1− λi/λ1 > 0 to converge to v1.
Tensor power iteration:
No gap required.

I If 〈v1,x
(0)〉 6= 0 (and gap > 0), converges to v1.

Tensor power iteration:
If t := arg maxt′ λt′ |〈vt′ ,x(0)〉|, converges to vt.

I Converges at linear rate.

Tensor power iteration:
Converges at quadratic rate.

60

Comparison to matrix power iteration

Matrix power iteration x(i+1) = Mx(i)

‖Mx(i)‖ for M =
∑

t λtvtv
>
t .

I Requires gap mini 6=1 1− λi/λ1 > 0 to converge to v1.
Tensor power iteration:
No gap required.

I If 〈v1,x
(0)〉 6= 0 (and gap > 0), converges to v1.

Tensor power iteration:
If t := arg maxt′ λt′ |〈vt′ ,x(0)〉|, converges to vt.

I Converges at linear rate.

Tensor power iteration:
Converges at quadratic rate.

60

Comparison to matrix power iteration

Matrix power iteration x(i+1) = Mx(i)

‖Mx(i)‖ for M =
∑

t λtvtv
>
t .

I Requires gap mini 6=1 1− λi/λ1 > 0 to converge to v1.
Tensor power iteration:
No gap required.

I If 〈v1,x
(0)〉 6= 0 (and gap > 0), converges to v1.

Tensor power iteration:
If t := arg maxt′ λt′ |〈vt′ ,x(0)〉|, converges to vt.

I Converges at linear rate.
Tensor power iteration:
Converges at quadratic rate.

60

Nearly orthogonally decomposable tensor
(Mu, H., & Goldfarb, 2015)

Now allow ε = ‖E‖ > 0, for E := T̂ − T .

Claim: Let v̂ := arg max
x∈Sd−1

T̂ (x,x,x) and λ̂ := T̂ (v̂, v̂, v̂).

Then

|λ̂− λt| ≤ ε , ‖v̂ − vt‖ ≤ O

(
ε

λt
+

(
ε

λt

)2
)

for some t ∈ [d] with λt ≥ maxt′ λt′ − 2ε.

Many efficient algorithms for solving this approximately, when ε is
small enough, like 1/d or 1/

√
d (e.g., Anandkumar, Ge, H., Kakade, &

Telgarsky, 2014; Ma, Shi, & Steurer, 2016).

61

Nearly orthogonally decomposable tensor
(Mu, H., & Goldfarb, 2015)

Now allow ε = ‖E‖ > 0, for E := T̂ − T .

Claim: Let v̂ := arg max
x∈Sd−1

T̂ (x,x,x) and λ̂ := T̂ (v̂, v̂, v̂).

Then

|λ̂− λt| ≤ ε , ‖v̂ − vt‖ ≤ O

(
ε

λt
+

(
ε

λt

)2
)

for some t ∈ [d] with λt ≥ maxt′ λt′ − 2ε.

Many efficient algorithms for solving this approximately, when ε is
small enough, like 1/d or 1/

√
d (e.g., Anandkumar, Ge, H., Kakade, &

Telgarsky, 2014; Ma, Shi, & Steurer, 2016).

61

Errors from deflation

(For simplicity, assume λt = 1 for all t, so T =
∑

t v
⊗3
t .)

First greedy step:
Rank-1 approx. v̂⊗3

1 to T̂ satisfies ‖v̂1 − v1‖ ≤ ε (say).

Deflation: To find next vt, use

T̂ − v̂⊗3
1 = T +E − v̂⊗3

1

=

d∑
t=2

v⊗3
t +E +

(
v⊗3

1 − v̂
⊗3
1

)
.

Now error seems to have doubled (i.e., of size 2ε) . . .

62

Errors from deflation

(For simplicity, assume λt = 1 for all t, so T =
∑

t v
⊗3
t .)

First greedy step:
Rank-1 approx. v̂⊗3

1 to T̂ satisfies ‖v̂1 − v1‖ ≤ ε (say).

Deflation: To find next vt, use

T̂ − v̂⊗3
1 = T +E − v̂⊗3

1

=

d∑
t=2

v⊗3
t +E +

(
v⊗3

1 − v̂
⊗3
1

)
.

Now error seems to have doubled (i.e., of size 2ε) . . .

62

Errors from deflation

(For simplicity, assume λt = 1 for all t, so T =
∑

t v
⊗3
t .)

First greedy step:
Rank-1 approx. v̂⊗3

1 to T̂ satisfies ‖v̂1 − v1‖ ≤ ε (say).

Deflation: To find next vt, use

T̂ − v̂⊗3
1 = T +E − v̂⊗3

1

=

d∑
t=2

v⊗3
t +E +

(
v⊗3

1 − v̂
⊗3
1

)
.

Now error seems to have doubled (i.e., of size 2ε) . . .

62

Effect of deflation errors

For any unit vector x orthogonal to v1:∥∥∥1

3
∇x
{(
v⊗3

1 −v̂
⊗3
1

)
(x,x,x)

}∥∥∥ =
∥∥∥〈v1,x〉2v1 − 〈v̂1,x〉2v̂1

∥∥∥

= 〈v̂1,x〉2

≤ ‖v1 − v̂1‖2 ≤ ε2 .

So effect of errors (original and from deflation) E +
(
v⊗3

1 − v̂
⊗3
1

)
in directions orthogonal to v1 is (1 + o(1))ε rather than 2ε.

I Deflation errors have lower-order effect on finding other vt.
(Analogous statement for deflation with matrices does not hold.)

63

Effect of deflation errors

For any unit vector x orthogonal to v1:∥∥∥1

3
∇x
{(
v⊗3

1 −v̂
⊗3
1

)
(x,x,x)

}∥∥∥ =
∥∥∥〈v1,x〉2v1 − 〈v̂1,x〉2v̂1

∥∥∥
= 〈v̂1,x〉2

≤ ‖v1 − v̂1‖2 ≤ ε2 .

So effect of errors (original and from deflation) E +
(
v⊗3

1 − v̂
⊗3
1

)
in directions orthogonal to v1 is (1 + o(1))ε rather than 2ε.

I Deflation errors have lower-order effect on finding other vt.
(Analogous statement for deflation with matrices does not hold.)

63

Effect of deflation errors

For any unit vector x orthogonal to v1:∥∥∥1

3
∇x
{(
v⊗3

1 −v̂
⊗3
1

)
(x,x,x)

}∥∥∥ =
∥∥∥〈v1,x〉2v1 − 〈v̂1,x〉2v̂1

∥∥∥
= 〈v̂1,x〉2

≤ ‖v1 − v̂1‖2 ≤ ε2 .

So effect of errors (original and from deflation) E +
(
v⊗3

1 − v̂
⊗3
1

)
in directions orthogonal to v1 is (1 + o(1))ε rather than 2ε.

I Deflation errors have lower-order effect on finding other vt.
(Analogous statement for deflation with matrices does not hold.)

63

Effect of deflation errors

For any unit vector x orthogonal to v1:∥∥∥1

3
∇x
{(
v⊗3

1 −v̂
⊗3
1

)
(x,x,x)

}∥∥∥ =
∥∥∥〈v1,x〉2v1 − 〈v̂1,x〉2v̂1

∥∥∥
= 〈v̂1,x〉2

≤ ‖v1 − v̂1‖2 ≤ ε2 .

So effect of errors (original and from deflation) E +
(
v⊗3

1 − v̂
⊗3
1

)
in directions orthogonal to v1 is (1 + o(1))ε rather than 2ε.

I Deflation errors have lower-order effect on finding other vt.
(Analogous statement for deflation with matrices does not hold.)

63

Effect of deflation errors

For any unit vector x orthogonal to v1:∥∥∥1

3
∇x
{(
v⊗3

1 −v̂
⊗3
1

)
(x,x,x)

}∥∥∥ =
∥∥∥〈v1,x〉2v1 − 〈v̂1,x〉2v̂1

∥∥∥
= 〈v̂1,x〉2

≤ ‖v1 − v̂1‖2 ≤ ε2 .

So effect of errors (original and from deflation) E +
(
v⊗3

1 − v̂
⊗3
1

)
in directions orthogonal to v1 is (1 + o(1))ε rather than 2ε.

I Deflation errors have lower-order effect on finding other vt.
(Analogous statement for deflation with matrices does not hold.)

63

Recap

I Reduction to (nearly) orthogonally decomposable tensor
permits simple and error-tolerant algorithms.

Lots of on-going work on non-orthogonal / over-complete
tensor decompositions (e.g., Goyal, Vempala, & Xiao, 2014; Ge &
Ma, 2015; Barak, Kelner, & Steurer, 2015; Ma, Shi, & Steurer, 2016).

I Many similarities to matrix decompositions and algorithms,
but differences due to non-linearity are crucial.

64

Summary

I Using method-of-moments with O(1)-order moments, can
efficiently estimate parameters for many latent variable models.

I Exploit distributional properties, multi-view structure, and
other structure to determine usable moments tensors.

I Some efficient algorithms for carrying out the tensor
decomposition to obtain parameter estimates.

I Many issues to resolve!
I Handle model misspecification, increase robustness.
I General methodology.
I Incorporate general prior knowledge.
I Incorporate user feedback interactively.

65

Summary

I Using method-of-moments with O(1)-order moments, can
efficiently estimate parameters for many latent variable models.

I Exploit distributional properties, multi-view structure, and
other structure to determine usable moments tensors.

I Some efficient algorithms for carrying out the tensor
decomposition to obtain parameter estimates.

I Many issues to resolve!
I Handle model misspecification, increase robustness.
I General methodology.
I Incorporate general prior knowledge.
I Incorporate user feedback interactively.

65

Acknowledgements

Collaborators: Anima Anandkumar (UCI/Amazon), Dean Foster (Amazon),
Rong Ge (Duke), Don Goldfarb (Columbia), Sham Kakade (UW),
Percy Liang (Stanford), Yi-Kai Liu (NIST), Cun Mu (Columbia),
Matus Telgarsky (UIUC), Tong Zhang (Tencent)

Funding: NSF (DMR-1534910, IIS-1563785), Sloan Foundation

Further reading:

I Anandkumar, Ge, H., Kakade, & Telgarsky.
Tensor decompositions for learning latent variable models.
Journal of Machine Learning Research, 15(Aug):2773–2831, 2014.
https://goo.gl/F8HudN

I Moitra. Algorithmic aspects of machine learning. 2014.
http://people.csail.mit.edu/moitra/docs/bookex.pdf (Chapter 3)

Thank you
66

https://goo.gl/F8HudN
http://people.csail.mit.edu/moitra/docs/bookex.pdf

	Introduction
	Example #1: topic models
	Example #2: Gaussian mixture models
	Maximum likelihood estimation and parameter estimation
	Barriers and ways around them
	Method-of-moments

	Warm-up: topic model for single-topic documents
	Identifiability
	Primer on tensors
	Jennrich's algorithm
	Recap
	Empirical example
	Learning algorithm

	Moment decompositions for other models
	Mixtures of spherical Gaussians
	Mixtures of linear regressions
	Multi-view models
	Recap

	Error-tolerant algorithms for tensor decompositions
	Stability of Jennrich's algorithm
	Orthogonally decomposable tensors
	Tensor power iteration
	Error analysis
	Recap
	Summary

