On the number of variables to use in principal component regression
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Principal Component Regression

Model: Suppose the data consists of 7 i.i.d. observations (1, Y1)y« .+ s(Tns Yn)
from RY x R, where

y; = x,0 4+ w;,
and

Ly N N(O, E), w; N(O, 0'2).

Principal component regression: Let Ay > ... > A, be the eigenvalues of 3.

Let vy, v2,..., V), be the corresponding eigenvectors. The PCR estimator 0 for 6
is defined by (minimum €5 norm solution for p > m regime)

. [(XLXp) ' XLy ifp<mn,

\X}(XPX})_ly if p > n,

where X p = [x1] -« |Tp] |[v1] ... |vp]. The prediction error is given by
Error, := E,,[(y — 270p)?.

Question: What is the optimal value of p that minimizes the prediction error?

Double descent phenomenon
e First descent: classic U-shaped risk curve arising from a bias-variance trade-off.
® Second descent: behavior of models in ‘H that interpolate training data.

® [ his particular shape is observed in many learning problems, such as neural networks,
decision trees and ensemble methods.
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Figure: [BHMM19] (a) The classical U-shaped risk curve arising from the bias-variance trade-off. (b)
The double descent risk curve including both the U-shaped risk curve and the observed behavior from

using high capacity function classes.

For principal component regression (PCR):
Assumption: We assume Eg[0] = 0 and E¢[00'] = I.
Question: Does double descent phenomenon happen in PCR?

Question: When the second descent achieve error smaller than the first descent?
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Case of Polynomial Decay

We first analyze a special case when the eigenvalues of X decay to zero at a polynomial rate.

Specifically, we assume

A.1 There exists a constant & > 0 such that A\; = 37 " forallg =1,...,N.

A.2 There exist constants « € [0,1] and 3 € (0, 1) such that p/N — « and
n/N — 3 as p,n, N — 00.

Define m,;(2) for z < 0 to be the smallest positive solution to the equation
1

1 1 [° d¢
mg(z) 0 /a—'% RtVE(L 4+t my(z)

and let m’ () denote the derivative of m,(+).

Remark: m,(z) is the Stieltjes transform of the limiting distribution of the empirical
distribution of the eigenvalues of IN*3J.

Theorem 1. Assume A.1 with constant & and A.2 with constants o and (3.
(i) Risk characterization at o < [3: For all o« < 3, we have

g

1
E.g[Error] — (Nl"/ t—"dt + 0'2) : =: Re(a,0), VYVa < B.

(i) Optimal risk at ¢ < B: When & > 1, the minimum of R (c, o) is achieved at
o = 0 and the minimum risk is given by

min R.(a,0) = o°.

a<f

When k < 1, the minimum of R, (c, o) is achieved at o which is the unique
solution of the equation h,(a) = 0 on (0, 3), where h,. () is given by

1
h.(a) := P _ t"2dt — 1 — o*1{x = 1}.
8 o
The minimum risk is therefore given by
min R,(a,0) = N 7% o :
a<f (a*)"

(iii) Risk characterization at o« > (3: For all o > (3, the function m,, defined in (1) and its

derivative m/_ are well-defined and positive at z = 0, and

E,g[Error] =& N!=%

m,.(0) m;(0)

1 /
o | (Nl“/ t— " dt + 0'2) m,(0) =: Ru(a, 0).

(iv) Comparison between two regimes: When k > 1, the minimum risk for all « < 1 and
o # (3 is achieved at o« = 0, i.e., p = o(n). When k < 1, let o™ be the minimizer

of R«(a, o) over the interval [0, 3). Then

I; Rm(la 0') < 1
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Case of General Decay

Results from Theorem 1 can be extended to the eigenvalues of 3 with other
decay rate when the following assumptions hold:

B.1 ||X||2 < C for some constant C' > 0. Also, there exists a positive
sequence (cny)n>1 such that the empirical eigenvalue distribution of ey
converges as N — oo to F' = (1 — &) Fy + O Fy, where § € (0, 1], Fy
Is a point mass of 0, and Fj has a continuous probability density f
supported on either (1, 12| or [11, 00) for some constants 17,172 > 0.

B.2 There exist constants v > 0 and 3 € (0,0) s.t. p = Zfil I(N; > vn),
vney > vand n/N — Basn, N — oo.

Remark: B.1 is the extension of A.1 with ¢y = IN¥. B.2 is the extension of
A.2 where vy is the threshold parameter that determines the number of selected
principal components.

Summaries and Discussions

® \We confirm the “double descent” in a natural setting with Gaussian design.
e Optimal p depends on noise level and decay rate of the eigenvalues of ..

o When k < 1, a smaller risk is achieved after the interpolation threshold
(p > mn) than any point before (p < n).

o When K > 1, a smaller risk is achieved after the interpolation threshold
(p > n) only in the noiseless setting.

® \When X is unknown
o Estimate X via unlabeled data.

o Since the dominance of the p > m regime is always established at p = IN
(full model), we believe same results hold for standard PCR as well.
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Figure: The asymptotic risk function R, as a function of & (with & = 0, n = 300,

N =1000, 8 =n/N = 0.3 and K = 1, 2 respectively). The location of a* from Theorem
1 is marked with a black circle. In both cases, the asymptotic risk at a« = 1 is lower than the
asymptotic risk at o*.
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