
Transformers, parallelism,
and the role of depth

Daniel Hsu
Columbia University

Math and Data Seminar, NYU

April 3, 2025

Capabilities of large language models?

In-context learning
[Brown et al, 2020]

Multi-step reasoning
[Weston, Chorpa, Bordes, 2014]

John is in the playground.
Helen is playing with John.
Helen picked up the football.
Where is the football?

[Figure from Xie and Min, 2022]

Plan for the talk

1. Role of depth in transformers

2. Transformers & Massively Parallel Computation

3. Limitations of sequential neural architectures (if time permits)

Joint work with:
Clayton Sanford (Columbia ⟶ Google Research)

Matus Telgarsky (NYU)
[NeurIPS 2023, ICML 2024, arXiv:2408.14332]

0. Basics about transformers

Transformers [Demircigil et al, 2017; Vaswani et al, 2017]

Transformer: a kind of sequence-to-sequence map,
formed by compositions of self-attention heads

Ingredients:
1. Ways to embed tokens into vector space

2. Way to for embedded tokens to "interact" and produce new vectors

once upon a time …

𝑦1 𝑦2 𝑦3 𝑦4 …

input sequence
(tokens or vectors)

output sequence
(vectors)

France
Japan

Paris

Tokyo

cantaloupe

zebra
horse

honeydew

Self-attention head

1. Independently create 𝑁 query/key/value vectors from 𝑥1, … , 𝑥𝑁

2. For each 𝑖 ∈ [𝑁]: 𝑖th output 𝑦𝑖 = weighted average of all 𝑁 values,
where weights = "softmax" of ⟨𝑖th query, 𝑗th key⟩ for all 𝑗 ∈ [𝑁]

Token embeddings produced
using "trained" multilayer

Perceptrons (MLPs)

𝑦𝑖 =

𝑗

exp 𝑞 𝑖 , 𝑘 𝑗

𝑍𝑖
𝑣 𝑗

𝑥1 𝑥2 𝑥3 𝑥4 …

𝑦𝑖 …

Outputs 𝑦1, … , 𝑦𝑁 can be produced in parallel

𝑞 1 , 𝑘 1 , 𝑣 1 𝑞 2 , 𝑘 2 , 𝑣 2 𝑞 3 , 𝑘 3 , 𝑣 3 𝑞 4 , 𝑘 4 , 𝑣 4

Comparison to feedforward neural networks

Self-attention head

Shared parameterized mapping
𝑥𝑖 ↦ 𝑞 𝑖 , 𝑘 𝑖 , 𝑣 𝑖

Weights 𝛼𝑗
𝑖

 determined via softmax

Feedforward neural network

Each "weight" is a separate parameter

𝑦𝑖 =

𝑗=1

𝐻

𝐴𝑖,𝑗𝜎

𝑘=1

𝑁

𝑊𝑗,𝑘𝑥𝑘

𝑥1 𝑥2 𝑥3 𝑥4 …

𝑦𝑖 …

𝑞 1 , 𝑘 1 , 𝑣 1 𝑞 2 , 𝑘 2 , 𝑣 2 𝑞 3 , 𝑘 3 , 𝑣 3 𝑞 4 , 𝑘 4 , 𝑣 4

𝛼1
𝑖

𝛼2
𝑖

𝛼3
𝑖 𝛼4

𝑖

𝑥1 𝑥2 𝑥3 𝑥4 …

𝑦𝑖 …

𝑢1 𝑢2 𝑢𝐻…

Universal approximation if
embedding dimension 𝐷 → ∞ (if width 𝐻 → ∞)

Transformers as compositions

Transformers: compositions of self-attention layers

(layer = one self-attention head, or sum of several self-attention heads)

once upon a time …

ℎ1
1 ℎ2

1 ℎ3
1 ℎ4

1 …

ℎ1
2 ℎ2

2 ℎ3
2 ℎ4

2 …

…

Self-attention layer 1

Self-attention layer 2

Why are multiple layers necessary?

Self-attention layer 3

1. Role of depth in transformers

Tasks for transformers

In-context learning
[Brown et al, 2020]

Multi-step reasoning
[Weston, Chorpa, Bordes, 2014]

John is in the playground.
Helen is playing with John.
Helen picked up the football.
Where is the football?

[Figure from Xie and Min, 2022]

In-context learning as associative recall

Prompt: whale 1 dog 1 frog 0 shark 0 bat 1 owl 0 wolf

"Nearest neighbor"-like in-context learning

b a c b … c a b d b a

Associative recall task (a.k.a. induction heads task)

[Anthropic: Elhage et al, 2021; Olsson et al, 2022]

(Most recent) associative recall task:

• 𝑖th output: Find last position 𝑗 < 𝑖 where 𝑥𝑖 occurs, output 𝑥𝑗+1

[a] [b] [a]……

[b]……

Position 𝑗 Position 𝑗 + 1 Position 𝑖

Input

Output

Solution using two layer transformer

Composition of two "small" self-attention heads [e.g., Bietti et al, 2023]

Layer 1: copy prev. token's key

(…,qa
j) (ka

j,qb
j+1) (…,qa

i)……

Layer 2: find ⟨𝑘, 𝑞⟩ match

[b]……

[a] [b] [a]……
Position 𝑗 Position 𝑗 + 1 Position 𝑖

Notation: (KEY, QUERY/VALUE)

Input

Output

Token embedding dimension
𝑂 log 𝑁 suffices

Necessity of two layers

Theorem [SHT'24b]:
Single self-attention head* (one layer) with embedding dimension 𝐷
cannot compute associative recall for length 𝑁 sequences unless

𝐷 ≥ ෩Ω 𝑁

*Using polylog 𝑁 bits of numerical precision, even for 𝑂(1)-size input alphabet, allowing arbitrary size MLPs

Corroborates prior empirical findings
[Elhage et al, 2021; Olsson et al, 2022; Bietti et al, 2023]

Exponentially larger than what's
sufficient with two layers

Proof (by reduction from Index)

Index problem:
• Alice is given 𝑓1, … , 𝑓𝑇 ∈ 0,1 𝑇

• Bob is given 𝑖∗ ∈ 𝑇

• Goal: Message that Alice can send to Bob
that lets Bob determine 𝑓𝑖∗

Lower bound (by counting): Alice must send 𝑇 bits

Claim:

Self-attention head for Associative Recall
(for 𝑁 token seqs.) with embedding dim. 𝐷

෨𝑂(𝐷) bit messaging strategy
for Index (for 𝑇 = Ω(𝑁))⇒

Proof of claim

• Index instance (𝑓1, … , 𝑓𝑇 , 𝑖∗) ↦ Associative Recall instance (over alphabet 0,1, ? , ⊥)
𝑥1, 𝑥2, … , 𝑥𝑁 = 𝑒1, 𝑓1, 𝑒2, 𝑓2, … , 𝑒𝑇 , 𝑓𝑇 , ?

where 𝑁 = 2𝑇 + 1 and

𝑒𝑖 = ቊ
?, if 𝑖 = 𝑖∗

⊥, if 𝑖 ≠ 𝑖∗

• 𝑁th output 𝑦𝑁 of a self-attention head for Associative Recall must encode 𝑓𝑖∗ :

𝑦𝑁 =
σ𝑖=1

𝑁 𝑒 𝑞 𝑁 ,𝑘 𝑖
𝑣 𝑖

σ𝑖=1
𝑁 𝑒 𝑞 𝑁 ,𝑘 𝑖

=
σ𝑗=1

𝑇 𝑒 𝑞 𝑁 ,𝑘 2𝑗−1
𝑣 2𝑗−1 + σ𝑗=1

𝑇 𝑒 𝑞 𝑁 ,𝑘 2𝑗
𝑣 2𝑗 + 𝑒 𝑞 𝑁 ,𝑘 𝑁

𝑣 𝑁

σ𝑗=1
𝑇 𝑒 𝑞 𝑁 ,𝑘 2𝑗−1

+ σ𝑗=1
𝑇 𝑒 𝑞 𝑁 ,𝑘 2𝑗

+ 𝑒 𝑞 𝑁 ,𝑘 𝑁

Known to Alice

Known to Bob

Alice can send 𝑂 𝐷 log 𝑁 bit message
to Bob that lets Bob evaluate 𝑦𝑁

Beyond two layers?

Multi-step reasoning [Weston, Chorpa, Bordes, 2014; Peng, Narayanan, Papadimitriou, 2024]:
Prompt:
Jane is a teacher. Helen is a doctor. […]
The mother of John is Helen. The mother of Charlotte is Eve. […]
What's the profession of John's mother?"
Answer: doctor

b a c b c a b d b a

2-hop induction head

𝑘-hop induction head

Theorem [SHT'24a]:
There is a 2 + ⌈log2 𝑘⌉ layer transformer* that implements 𝑘-hop …

*Using one self-attention head per layer, log 𝑁 dimensional embeddings, log 𝑁 bits of numerical precision,
assuming poly(𝑁)-size input alphabet, causal masking

Main idea: Each additional layer doubles the "reach"
(Cf. [Liu, Ash, Goel, Krishnamurthy, Zhang, 2023] simulating finite automata)

… & under plausible conjecture about massively parallel computation,
Ω(log 𝑘) layers are necessary (under similar size constraints)

2. Transformers & Massively Parallel Computation

Massively Parallel Computation (MPC)

[Karloff et al, 2010; Goodrich et al, 2011; Beame et al, 2013; Andoni et al, 2014]

MPC model of computation

Input data size: 𝑁 words [𝑁 ≤ 𝑀 × 𝑆]

Number of machines: 𝑀

Memory size per machine: 𝑆 words [𝑆 = Θ(𝑁𝛿) for small 𝛿 ∈ (0,1)]

N/M

N/M

N/M

N/M

Communication constraints
per "shuffle" round:
Each machine sends ≤ 𝑆 words
Each machine receives ≤ 𝑆 words

Between "shuffle" rounds:
Each machine performs arbitrary
computation on local memory

Main question: How many rounds 𝑅 are needed?

Input data

MPC algorithms for many tasks

• Broadcast 𝑅 = 𝑂(1)

• Sorting 𝑅 = 𝑂(1)

• Prefix sum 𝑅 = 𝑂(1)

• …

• Open question:
𝑅 = 𝑜(log 𝑁) rounds for graph connectivity?

Simulating MPC shuffle round with self-attention

CPU 1

𝑥1 𝑥2 𝑥3 𝑥4 …

𝑦1 𝑦2 𝑦3 𝑦4 …

CPU 2 CPU 3 CPU 4

CPU 1 CPU 2 CPU 3 CPU 4

…

…

Machines before shuffle round

Machines after shuffle round

Input to self-attention head

Output of self-attention head

MPC algorithms ⇄ transformers

Theorem [SHT'24a; Sanford et al, 2024] (informal version):

Easy for MPC ⇒ Easy for transformer

Hard for MPC ⇒ Hard for transformer

Θ 𝑅 -round MPC algorithm

with local memory ≈ Θ 𝑁𝛿

Θ 𝑅 -layer transformer with

embedding dimension ≈ Θ 𝑁𝛿

can be simulated by*

can be simulated by**

*Embedding dimension needed is actually 𝑂(𝑁𝛿+𝜖) for any constant 𝜖 > 0
**With additional Θ 𝑁2 machines

What is hard for MPC?

1-vs-2 cycle problem: Given graph 𝐺 that is promised to be either
cycle on 𝑁 vertices or union of two cycles on 𝑁/2 vertices each …

… decide if 𝐺 is connected

versus

Theorem [SHT'24a]: 1-vs-2 cycle hypothesis implies necessity
of Ω(log 𝑘) layers in "small size" transformers for 𝑘-hop

1-vs-2 cycle hypothesis (informal version) [e.g., Im et al, 2023]:

Every "efficient" MPC algorithm must use 𝑅 = Ω log 𝑁 rounds

Cf. Lower bounds via containment in constant depth circuit classes
[Liu et al, 2023; Merrill & Sabharwal, 2024; Li, Liu, Zhou, Ma, 2024; …]

More from the MPC ⇄ transformers connection

• 3-SUM: Given integers 𝑥1, … , 𝑥𝑁 ∈ [−𝑀, 𝑀] (for some 𝑀 = poly(𝑁)),
determine if there exists 𝑖, 𝑗, 𝑘 ∈ [𝑁] such that 𝑥𝑖 + 𝑥𝑗 + 𝑥𝑘 = 0

• Can solve in 𝑂 𝑁2 time; conjectured to be (essentially) optimal

• Theorem [SHT'23]: ∃ 𝑂(1)-layer transformer for 2-SUM using embedding
dimension 𝐷 = 𝑂 log 𝑁

• Conjecture [SHT'23]: Every transformer for 3-SUM with 𝐷 = 𝑂 log 𝑁 needs
Ω(𝑁𝑐) layers for some 𝑐 > 0

• Theorem [HajiAghayi et al, 2019]: ∃ MPC algo. for 3-SUM using 𝑅 = 𝑂(1)
rounds and space 𝑆 = 𝑂 𝑁0.51 on each of 𝑁0.99 machines

• Corollary: ∃ 𝑂(1)-layer transformer for 3-SUM using embedding
dimension 𝐷 = 𝑂(𝑁0.52)

3. Limitations of sequential neural architectures
[If time permits…]

[If time permits…]

Computational cost of transformers

For self-attention, quadratic time computation appears to be inherent
[e.g., Alman & Song, 2023; Alman & Yu, 2025]

𝑥1 𝑥2 𝑥3 𝑥4 …

𝑦1 𝑦2 𝑦3 𝑦4 …

Are there sub-quadratic alternatives to self-attention?

Sequential neural architectures

Recurrent neural network (RNN):

Initialize "hidden state" ℎ0

For 𝑡 = 1,2, … , 𝑁:
ℎ𝑡 = update𝑡 ℎ𝑡−1, 𝑥𝑡
𝑦𝑡 = output𝑡(ℎ𝑡 , 𝑥𝑡)

𝑥1 𝑥2 𝑥3 𝑥4

ℎ0 ℎ1 ℎ2 ℎ3 ℎ4

…

…

𝑦1 𝑦2 𝑦3 𝑦4 …

Memory bottlenecks in RNNs

Theorem [SHT'23]:
Any RNN that computes 𝑁th output of Associative Recall must use a
Ω(𝑁)-bit hidden state

𝑥1 𝑥2 𝑥3 𝑥4

ℎ0 ℎ1 ℎ2 ℎ3 ℎ4

…

…

𝑦1 𝑦2 𝑦3 𝑦4 …

Further limitations for sequential architectures

Theorem [SHT'24a] (informal version):

For 𝑘-fold composition, "sequential architectures" require
"# sequential steps" ≥ 𝑘 or "size" = Ω 𝑁/𝑘6

(Applies to multi-layer RNNs, shallow TF with "chain-of-thought", …)

(Recall: For standard transformer, depth = O(log 𝑘), size = 𝑂(log 𝑁))

Closing

1. Role of depth in transformers
• At least two layers are necessary for associative recall ("induction head")

• For 𝑘-fold compositions, log 𝑘 layers sufficient (and probably necessary)

• What are important function compositions in LLMs?

2. Transformers & MPC
• Coarse reductions between transformers and MPC

• How to characterize power of transformer "shuffle" operation?

3. Limitations of sequential neural architectures
• How do we get around these limitations?

Thank you!

