Transformers, parallelism, and the role of depth

Daniel Hsu Columbia University

Math and Data Seminar, NYU

April 3, 2025

Capabilities of large language models?

In-context learning [Brown et al, 2020]

Circulation revenue has increased by 5% in Finland. // Positive

Panostaja did not disclose the purchase price. // Neutral

Paying off the national debt will be extremely painful. // Negative

The company anticipated its operating profit to improve. // _____

[Figure from Xie and Min, 2022]

Multi-step reasoning [Weston, Chorpa, Bordes, 2014]

John is in the playground. Helen is playing with John. Helen picked up the football. Where is the football?

Plan for the talk

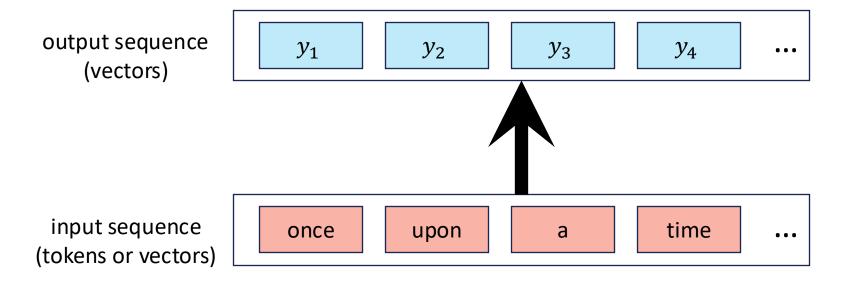
- 1. Role of depth in transformers
- 2. Transformers & Massively Parallel Computation
- 3. Limitations of sequential neural architectures (if time permits)

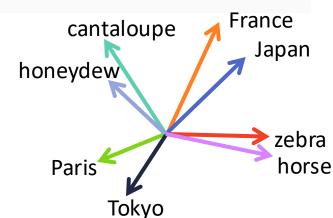
<u>Joint work with</u>: Clayton Sanford (Columbia → Google Research) Matus Telgarsky (NYU) [NeurIPS 2023, ICML 2024, arXiv:2408.14332] 0. Basics about transformers

<u>Transformer</u>: a kind of sequence-to-sequence map, formed by compositions of <u>self-attention heads</u>

Ingredients:

- 1. Ways to embed tokens into vector space
- 2. Way to for embedded tokens to "interact" and produce new vectors



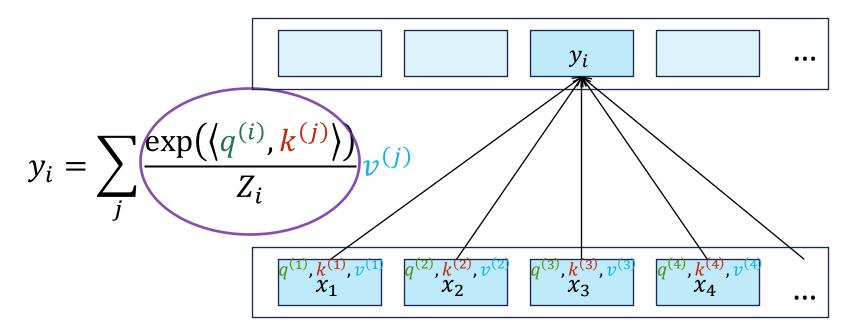


Transformers [Demircigil et al, 2017; Vaswani et al, 2017]

Self-attention head

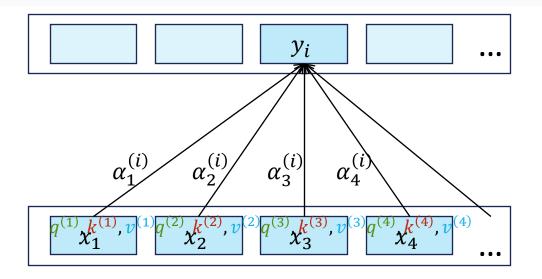
<u>Token embeddings</u> produced using "trained" multilayer Perceptrons (MLPs)

- 1. Independently create N query/key/value vectors from $x_1, ..., x_N$
- 2. For each $i \in [N]$: i^{th} output y_i = weighted average of all N values, where weights = "softmax" of $\langle i^{\text{th}} \text{ query}, j^{\text{th}} \text{ key} \rangle$ for all $j \in [N]$



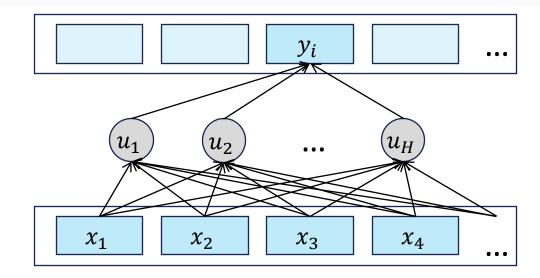
Outputs y_1, \dots, y_N can be produced in <u>parallel</u>

Comparison to feedforward neural networks



Self-attention head

Shared parameterized mapping $x_i \mapsto (q^{(i)}, k^{(i)}, v^{(i)})$ Weights $\alpha_j^{(i)}$ determined via softmax <u>Universal approximation</u> if embedding dimension $D \to \infty$



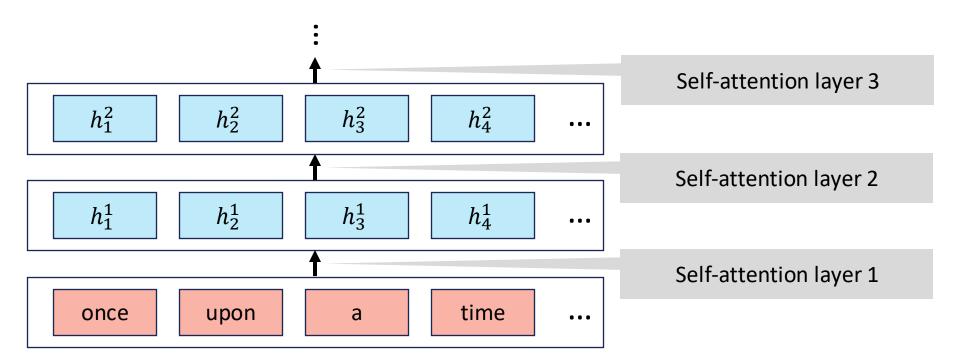
Feedforward neural network

Each "weight" is a separate parameter
$y_i = \sum_{j=1}^{k} A_{i,j} \sigma \left(\sum_{k=1}^{k} W_{j,k} x_k \right)$
Universal Approximation Bounds for Superpositions
of a Sigmoidal Function
Andrew R. Barron, <i>Member, IEEE</i> (if width $H \to \infty$)

Transformers as compositions

<u>Transformers</u>: compositions of self-attention layers

(layer = one self-attention head, or sum of several self-attention heads)



Why are multiple layers necessary?

1. Role of depth in transformers

Tasks for transformers

In-context learning [Brown et al, 2020]

Circulation revenue has increased by 5% in Finland. // Positive

Panostaja did not disclose the purchase price. // Neutral

Paying off the national debt will be extremely painful. // Negative

The company anticipated its operating profit to improve. // _____

[Figure from Xie and Min, 2022]

Multi-step reasoning [Weston, Chorpa, Bordes, 2014]

John is in the playground. Helen is playing with John. Helen picked up the football. Where is the football? In-context learning as associative recall

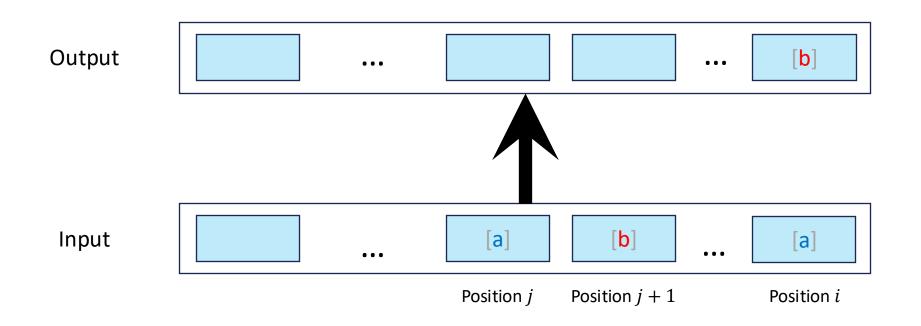
"Nearest neighbor"-like in-context learning

Associative recall task (a.k.a. induction heads task)

[Anthropic: Elhage et al, 2021; Olsson et al, 2022]

(Most recent) associative recall task:

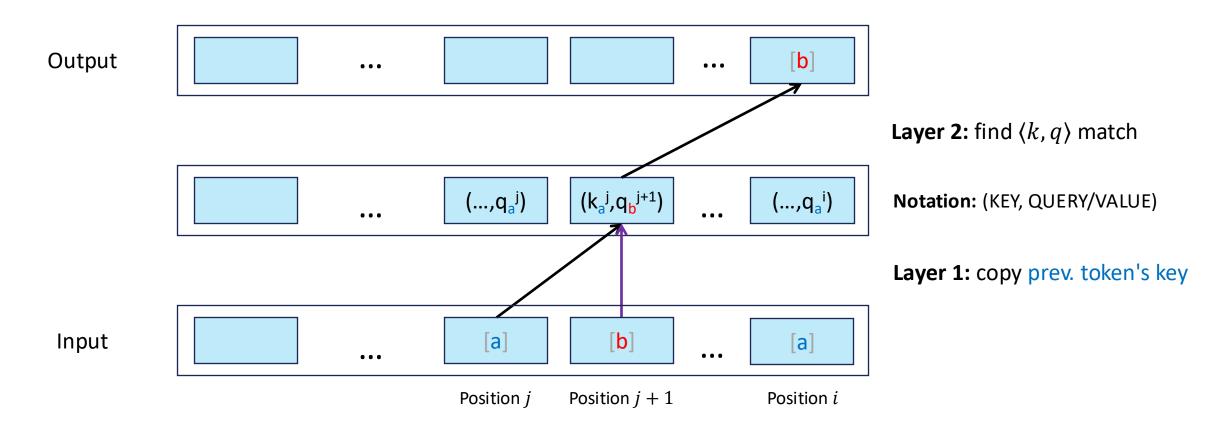
• i^{th} output: Find last position j < i where x_i occurs, output x_{j+1}



Solution using two layer transformer

Composition of two "small" self-attention heads [e.g., Bietti et al, 2023]

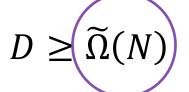
Token embedding dimension $O(\log N)$ suffices



Necessity of two layers

Theorem [SHT'24b]:

Single self-attention head* (one layer) with embedding dimension *D* cannot compute associative recall for length *N* sequences unless



Exponentially larger than what's sufficient with *two* layers

Corroborates prior empirical findings [Elhage et al, 2021; Olsson et al, 2022; Bietti et al, 2023]

*Using polylog N bits of numerical precision, even for O(1)-size input alphabet, allowing arbitrary size MLPs

Proof (by reduction from Index)

Index problem:

- Alice is given $(f_1, \dots, f_T) \in \{0, 1\}^T$
- Bob is given $i^* \in [T]$
- <u>Goal</u>: Message that Alice can send to Bob that lets Bob determine f_{i^*}

Lower bound (by counting): Alice must send T bits

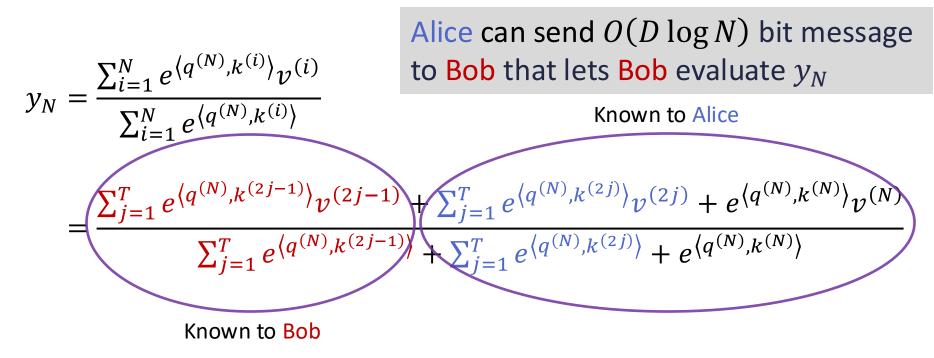
<u>Claim</u>:

Self-attention head for Associative Recall (for N token seqs.) with embedding dim. D

$$\tilde{O}(D)$$
 bit messaging strategy
for Index (for $T = \Omega(N)$)

Proof of claim

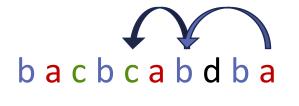
- Index instance $(f_1, ..., f_T, i^*) \mapsto \text{Associative Recall instance (over alphabet <math>\{0, 1, ?, \bot\}$) $(x_1, x_2, ..., x_N) = (e_1, f_1, e_2, f_2, ..., e_T, f_T, ?)$ where N = 2T + 1 and $e_i = \begin{cases} ?, & \text{if } i = i^* \\ \bot, & \text{if } i \neq i^* \end{cases}$
- N^{th} output y_N of a self-attention head for Associative Recall must encode f_{i^*} :



Beyond two layers?

Multi-step reasoning [Weston, Chorpa, Bordes, 2014; Peng, Narayanan, Papadimitriou, 2024]:

<u>Prompt</u>: Jane is a teacher. Helen is a doctor. [...] The mother of John is Helen. The mother of Charlotte is Eve. [...] What's the profession of John's mother?" <u>Answer</u>: doctor



2-hop induction head

k-hop induction head

Theorem [SHT'24a]: There is a 2 + $\lceil \log_2 k \rceil$ layer transformer* that implements k-hop ...

<u>Main idea</u>: Each additional layer *doubles* the "reach" (Cf. [Liu, Ash, Goel, Krishnamurthy, Zhang, 2023] simulating finite automata)

... & under plausible conjecture about massively parallel computation, $\Omega(\log k)$ layers are necessary (under similar size constraints)

*Using one self-attention head per layer, $\log N$ dimensional embeddings, $\log N$ bits of numerical precision, assuming poly(N)-size input alphabet, causal masking

2. Transformers & Massively Parallel Computation

Massively Parallel Computation (MPC)

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay@google.com

Google, Inc.

A Model of Computation for MapReduce

Howard Karloff* Sid

Siddharth Suri †

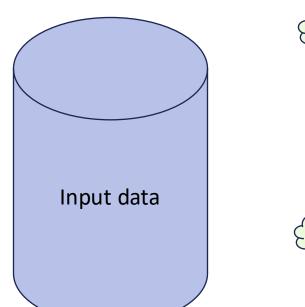
Sergei Vassilvitskii[‡]

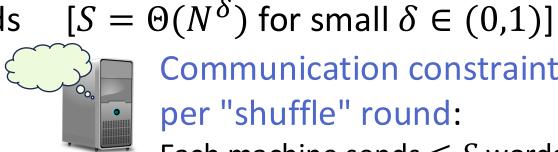
[Karloff et al, 2010; Goodrich et al, 2011; Beame et al, 2013; Andoni et al, 2014]

MPC model of computation

 $[N \leq M \times S]$ Input data size: *N* words Number of machines: M

Memory size per machine: *S* words





Communication constraints per "shuffle" round: Each machine sends $\leq S$ words Each machine receives $\leq S$ words

Between "shuffle" rounds: Each machine performs arbitrary computation on local memory

Main question: How many rounds *R* are needed?

MPC algorithms for many tasks

• Broadcast R = O(1)

...

- Sorting R = O(1)
- Prefix sum R = O(1)

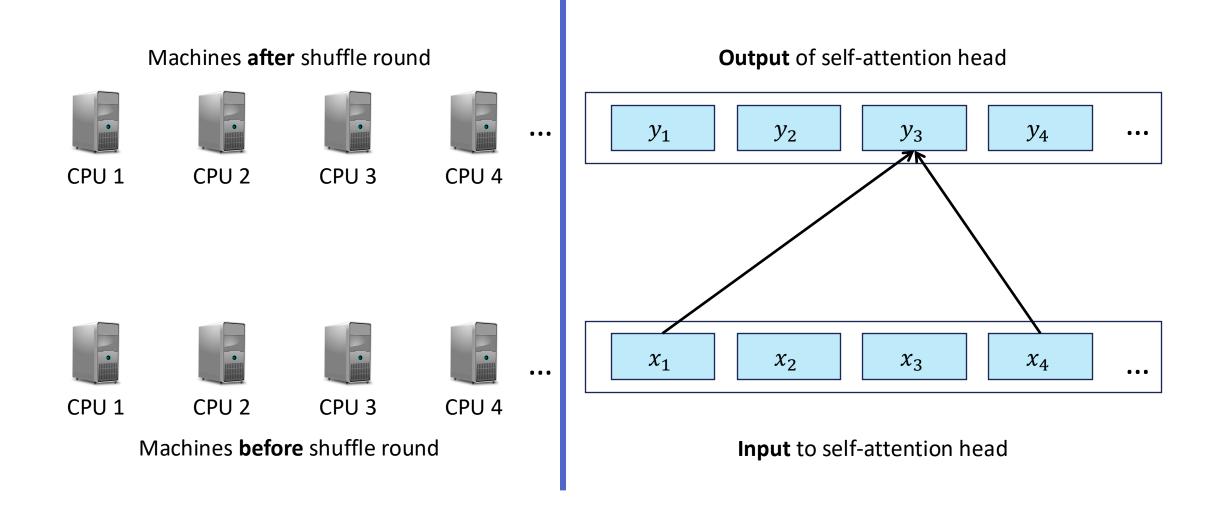
- Foundations and Trends® in Optimization 5:4
- **Massively Parallel Computation**
 - Algorithms and Applications
 - Sungjin Im, Ravi Kumar, Silvio Lattanzi, Benjamin Moseley and Sergei Vassilvitskii

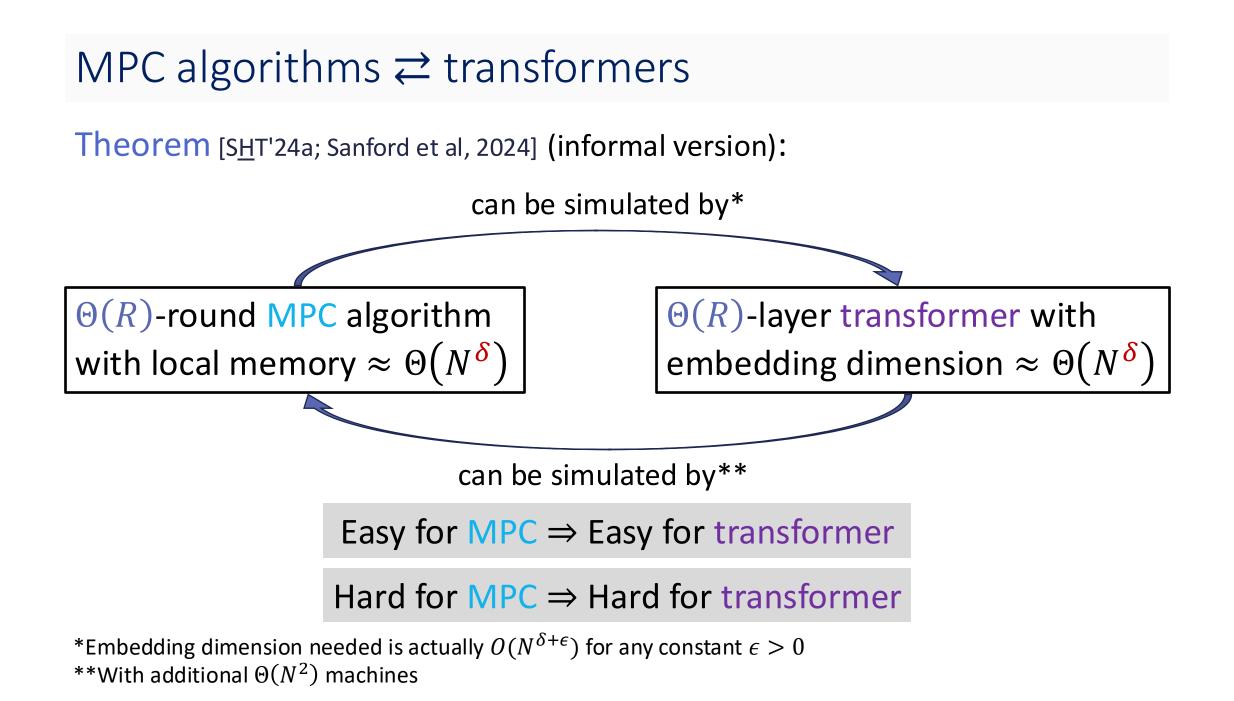
now

the essence of knowledge

Open question:
R = o(log N) rounds for graph connectivity?

Simulating MPC shuffle round with self-attention





What is hard for MPC?

<u>1-vs-2 cycle problem</u>: Given graph G that is promised to be either cycle on N vertices or union of two cycles on N/2 vertices each ...

 \dots decide if G is connected

<u>1-vs-2 cycle hypothesis</u> (informal version) [e.g., Im et al, 2023]:

Every "efficient" MPC algorithm must use $R = \Omega(\log N)$ rounds

Theorem [SHT'24a]: 1-vs-2 cycle hypothesis implies necessity of $\Omega(\log k)$ layers in "small size" transformers for k-hop

Cf. Lower bounds via containment in constant depth circuit classes [Liu et al, 2023; Merrill & Sabharwal, 2024; Li, Liu, Zhou, Ma, 2024; ...]

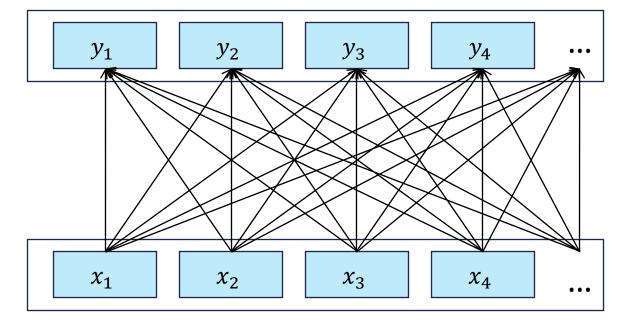
- <u>3-SUM</u>: Given integers $x_1, ..., x_N \in [-M, M]$ (for some M = poly(N)), determine if there exists $i, j, k \in [N]$ such that $x_i + x_j + x_k = 0$
 - Can solve in $O(N^2)$ time; conjectured to be (essentially) optimal
 - Theorem [SHT'23]: $\exists O(1)$ -layer transformer for <u>2-SUM</u> using embedding dimension $D = O(\log N)$
 - Conjecture [SHT'23]: Every transformer for 3-SUM with $D = O(\log N)$ needs $\Omega(N^c)$ layers for some c > 0
- Theorem [HajiAghayi et al, 2019]: \exists MPC algo. for 3-SUM using R = O(1) rounds and space $S = O(N^{0.51})$ on each of $N^{0.99}$ machines
- Corollary: $\exists O(1)$ -layer transformer for 3-SUM using embedding dimension $D = O(N^{0.52})$

3. Limitations of sequential neural architectures

[If time permits...]

Computational cost of transformers

For self-attention, quadratic time computation appears to be inherent [e.g., Alman & Song, 2023; Alman & Yu, 2025]



Are there sub-quadratic alternatives to self-attention?

Sequential neural architectures

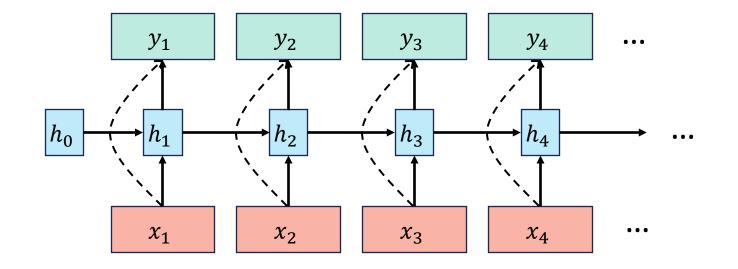
<u>Recurrent neural network (RNN)</u>:

Initialize "hidden state" h_0

For t = 1, 2, ..., N:

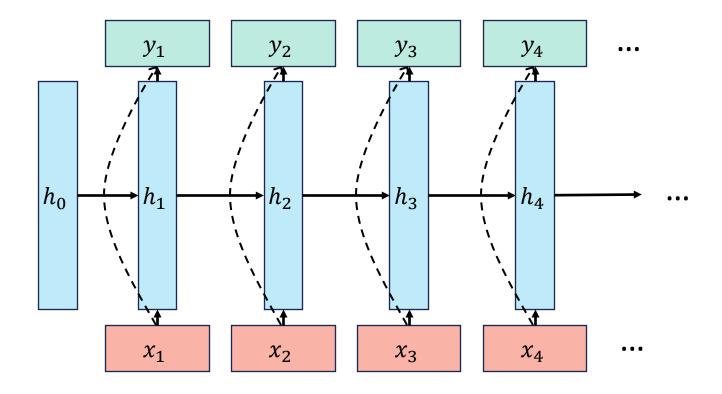
$$h_t = update_t(h_{t-1}, x_t)$$

$$y_t = output_t(h_t, x_t)$$



Memory bottlenecks in RNNs

Theorem [SHT'23]: Any RNN that computes N^{th} output of Associative Recall must use a $\Omega(N)$ -bit hidden state



Further limitations for sequential architectures

Theorem [SHT'24a] (informal version):

For <u>k-fold composition</u>, "sequential architectures" require "# sequential steps" $\geq k$ or "size" = $\Omega(N/k^6)$

(Applies to multi-layer RNNs, shallow TF with "chain-of-thought", ...)

(Recall: For standard transformer, depth = $O(\log k)$, size = $O(\log N)$)

Closing

- 1. Role of depth in transformers
 - At least two layers are necessary for associative recall ("induction head")
 - For k-fold compositions, log k layers sufficient (and probably necessary)
 - What are important function compositions in LLMs?
- 2. Transformers & MPC
 - Coarse reductions between transformers and MPC
 - How to characterize power of transformer "shuffle" operation?
- 3. Limitations of sequential neural architectures
 - How do we get around these limitations?

Thank you!