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Mo#va#on: sta#s#cal learning

• Aggregate performance over a 
popula1on 𝑃

𝔼 !,# ∼% ℓ 𝑓 𝑥 , 𝑦
• No assurance about any 

par1cular instance
ℓ 𝑓 𝑥 , 𝑦

• No assurances even for 
subpopula1ons/subgroups

Disadvantaged 
subgroup



Mo#va#on: trustworthy AI/ML

• Many highlighted failures of 
AI/ML happen on individual 
instances & subgroups
• Standard ML objectives fail to 

address prerequisites for 
trustworthy AI/ML 



Multi-group learning: history

• Formalized by Rothblum and Yona (2021); related to a mul1-group 
extension of "online learning" of Blum and Lykouris (2020)
• Largely mo?vated by fairness in ML & trustworthy AI/ML
• For simplicity, we'll focus on binary classifica?on + error rate objec?ve, but 

[RY'21] and [BL'20] also consider other objec?ves (e.g., calibra?on)

• Our mo1va1on came from "hidden stra1fica1on"
(Oakden-Rayner, Dummon, Carneiro, and Ré, 2020)
• Training data is oXen a data set of convenience, typically stra?fied
• Downstream applica?on requires good accuracy on specific strata



High-level summary

• Mul1-group learning is a natural generaliza1on of the "classical" 
setup for supervised learning from sta1s1cal learning theory
• Basic sample complexity results from "classical" setup can be 

extended to mul1-group setup…
• …But requires new algorithms
• In "classical" setup: ERM suffices
• In mul?-group setup: resul?ng predictors necessarily more complicated



Cast of characters

• (𝑋,𝑌)∼𝑃 for data distribu1on 𝑃 over 𝒳× 0,1
• ℋ is reference class of func1ons 𝒳 → 0,1 ("hypotheses")
• 𝒢 is family of subsets of 𝒳 ("groups")
• Eventually assume both ℋ, 𝒢 have finite VC dimensions 𝑑ℋ , 𝑑𝒢



Background: agnos#c learning

• Agnostic learning (with no groups involved):
For any 𝜖 ∈ 0,1 , given 𝑛 = 𝑛 (

)
, 𝑑ℋ iid copies of (𝑋, 𝑌), find 

classifier 𝑓:𝒳 → {0,1} such that, with high probability,

𝑃 𝑓 𝑋 ≠ 𝑌 ≤ inf
*∈ℋ

𝑃 ℎ 𝑋 ≠ 𝑌 + 𝜖

• Suffices to let 𝑓 = empirical risk minimizer (ERM) over ℋ
• Optimal sample complexity: 𝑑ℋ/𝜖,

err(𝑓) err(ℎ)



Mul#-group agnos#c learning

• Mul0-group agnos0c learning (Rothblum and Yona, 2021): 
For any 𝜖 ∈ 0,1 , 𝛾 ∈ (0,1), given 𝑛 = 𝑛 (

)
, (
-
, 𝑑ℋ , 𝑑𝒢 iid copies of 

(𝑋, 𝑌), find classifier 𝑓:𝒳 → {0,1} such that, with high probability,
for all 𝑔 ∈ 𝒢- ≔ 𝑔 ∈ 𝒢 𝑃 𝑋 ∈ 𝑔 ≥ 𝛾 ,

𝑃 𝑓 𝑋 ≠ 𝑌 𝑋 ∈ 𝑔 ≤ inf
*∈ℋ

𝑃 ℎ 𝑋 ≠ 𝑌 𝑋 ∈ 𝑔 + 𝜖

• Possible that no ℎ ∈ ℋ can sa1sfy this requirement on 𝑓
err(𝑓 ∣ 𝑔) err(ℎ ∣ 𝑔)



Applica#on: hidden stra#fica#on

• Multi-group agnostic learning ⇒ hidden stratification guarantee

For every 𝑆 ⊂ 𝒳 that is 𝜖-multiplicatively-approx.* by some 𝑔 ∈ 𝒢-,

err 𝑓 ∣ 𝑆 ≤ inf
*∈ℋ

err ℎ 𝑆 + 𝑂(𝜖)

(So we'd like 𝒢 as "rich" as possible)

*𝑃 𝑔Δ𝑆 ≤ 𝜖min 𝑃 𝑔 , 𝑃(𝑆)



Challenges for mul#-group agnos#c learning
Easy case

Fit a predictor to each group

?

Harder case

How do we resolve disagreements 
among predictors?

?



Easy case: finitely-many disjoint groups

• Easy case: assume groups are disjoint
𝑔 ∩ 𝑔. = ∅ for all distinct 𝑔, 𝑔′ ∈ 𝒢

• Solu0on:
• Find ERM ℎ! for each 𝑔 ∈ 𝒢
• Return 𝑓 defined by:

On input 𝑥, find unique 𝑔 ∈ 𝒢 that contains 𝑥, and return ℎ! 𝑥
• Sample complexity:

𝑑ℋ + 𝑑𝒢
𝜖$𝛾

• (Also easy: 𝒢 is laminar family of subsets of 𝒳)



General case: prior work

• Rothblum and Yona (2021): algorithm requires sample size

1
𝜖/𝛾

polylog
ℋ ×|𝒢|
𝜖

• Final predictor 𝑓 is func?onal combina?on of hypotheses from ℋ and 
indicator func?ons of groups from 𝒢
• But works for other objec?ves beyond expected loss (e.g., calibra?on)
• Based on Outcome Indis@nguishability [Dwork, Kim, Reingold, Rothblum, Yona, 2021]



General case: our results (Tosh and H, 2022)

1. Simple and prac0cal algorithm: PREPEND
• Sample complexity: %

&!'" 𝑑ℋ + 𝑑𝒢 log %&
2. Near-op0mal (but complicated) algorithm: via online learning
• Sample complexity: %

&"'
𝑑ℋ log

%
&
+ log 𝒢



1. Simple and prac#cal algorithm

• "PREPEND" algorithm
• Learns a decision list (of length ≤ 2/(𝜖𝛾)):

"if 𝑥 ∈ 𝑔% then return ℎ% 𝑥 else if 𝑥 ∈ 𝑔$ then return ℎ$ 𝑥 else if …"

• Sample size requirement:

𝑑ℋ + 𝑑𝒢
𝜖(𝛾$

log
1
𝜖

(somewhat worse dependence on 𝜖 and 𝛾 than we might've hoped for)
• Algorithm independently found by Globus-Harris, Kearns, Roth (2022)!



PREPEND algorithm

Pick any ℎ ∈ ℋ; define decision list 𝑓 that, on input 𝑥, returns ℎ(𝑥)
While there is a group 𝑔 ∈ 𝒢- and ℎ ∈ ℋ such that

_err 𝑓 𝑔 > _err ℎ 𝑔 + 𝜖
Prepend  "if 𝑥 ∈ 𝑔 then return ℎ(𝑥) else"  to decision list 𝑓

• Decision list determines an ordering of (some subset of) 𝒢-
• (Algorithm may select same group 𝑔 in mul1ple loop itera1ons)



Analysis of PREPEND

• In itera1on 𝑡, update current 𝑓2 to new 𝑓23( by prepending
"if 𝑥 ∈ 𝑔2 then return ℎ2 𝑥 else"

• Therefore

• Done within 2/(𝛾𝜖) itera1ons

≤ 𝑃 𝑔2 err 𝑓2 𝑔2 − 𝜖/2 + 𝑃 𝑔24 err 𝑓2 𝑔24

≤ err 𝑓2 − 𝛾𝜖/2

= 𝑃 𝑔2 err ℎ2 𝑔2 + 𝑃 𝑔24 err 𝑓2 𝑔24err 𝑓23(



Non-iteratively learn a decision list?

• Q: Learn a decision list with beHer sample complexity?
• Cannot determine decision list just from "first-order sta1s1cs"

𝑃 𝑋 ∈ 𝑔 , err(ℎ ∣ 𝑔)
• Suppose 𝑔 ∩ 𝑔. ≠ ∅
• What should be done for 𝑥 ∈ 𝑔 ∩ 𝑔′?
• It may depend on 𝑃(𝑋 ∈ 𝑔 ∩ 𝑔.)



Employment predic#on in California
2016 American Community Survey

Groups:
ALL overall popula<on
R{1,2,3,6,7,8,9} group by race
S{1,2} group by sex
A{1,2} group by age

Global ERM: logreg on all data
Group ERM: logreg on group
Global RF: random forest on all data

Data is from "Folkstable" package
(Ding, Hardt, Miller, Schmidt, 2021)



2. Near-op#mal algorithm

• Algorithm based on on-line learning, with sample complexity

1
𝜖,𝛾

𝑑ℋ log
1
𝜖
+ log 𝒢

• Final predictor 𝑓 is stochas?c ensemble of 𝑛 base classifiers



Main idea of near-optimal algorithm

• Reduction to online learning ("learning with expert advice") followed 
by "online-to-batch conversion"
• Simulate instance of sequential bit prediction problem using training data
• Use suitable online learning algorithm to solve it
• Combine information from algorithm transcript to produce final predictor

• Complication: Requires "sleeping experts" variant of online learning
(Freund, Schapire, Singer, Warmuth, 1997; Blum and Mansour, 2007)

• Online part is same as Blum and Lykouris (2020)



Online learning with N experts

• In round 𝑡 = 1,… , 𝑇:
• Get "context" 𝑥) ∈ 𝒳
• Learner sees N experts' predic?ons: 7𝑦)* for 𝑖 = 1,… ,𝑁
• Learner makes own predic?on 7𝑦), then sees true label 𝑦)

• Regret to Expert 𝑖:
(number of mistakes by learner) − (number of mistakes by Expert 𝑖)
• Weighted majority algorithm (Lijlestone, Warmuth, 1994):

Regret to best expert ≤ 𝑂 𝑇 log𝑁
t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8



Online-to-batch conversion

Stochas1c ensemble over Learner's "memory states" between rounds

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

𝑓! 𝑓" 𝑓# 𝑓$ 𝑓% 𝑓& 𝑓' 𝑓(

Final stochas@c ensemble predictor 𝐹
On input 𝑥:
• Pick 𝑡 uniformly at random from {1, … , 𝑇}
• Return 𝑓) 𝑥



Sleeping experts variant

• In round 𝑡 = 1,… , 𝑇:
• Get "context" 𝑥) ∈ 𝒳; determines subset 𝐸) ⊆ {1,… ,𝑁} of "awake" experts
• Learner sees "awake" experts' predictions: 7𝑦)* for 𝑖 ∈ 𝐸)
• Learner makes own prediction 7𝑦), then sees true label 𝑦)

• Regret to Expert 𝑖:
(number of mistakes by learner) − (number of mistakes by Expert 𝑖)
… but only within the 𝑇5 rounds that Expert 𝑖 is "awake"
• Variant of weighted majority (Blum and Mansour, 2007):

Regret to expert 𝑖 ≤ 𝑂 𝑇5 log𝑁



How we use sleeping experts

• One expert per 𝑔, ℎ ∈ 𝒢×ℋ pair, so 𝑁 = 𝒢 ⋅ ℋ
• Consider new training example (𝑥2 , 𝑦2) in round 𝑡
• Expert (𝑔, ℎ) is "awake" in round 𝑡 iff  𝑥2 ∈ 𝑔

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

𝑓! 𝑓" 𝑓# 𝑓$ 𝑓% 𝑓& 𝑓' 𝑓(

Group 1 Group 2

Group 3

𝑥!

𝑥"

𝑥#

𝑥$

𝑥%
𝑥&

𝑥'

𝑥(



Analysis of the simula#on

• Regret guarantees: For all 𝑔 ∈ 𝒢 and ℎ ∈ ℋ,

&𝕀 𝑥! ∈ 𝑔 𝕀 )𝑦! ≠ 𝑦! − 𝕀 𝑥! ∈ 𝑔 𝕀{ℎ(𝑥!) ≠ 𝑦!} ≤ 𝑂 𝑇" log𝑁

• Concentra.on: With high probability, for all 𝑔 ∈ 𝒢 and ℎ ∈ ℋ,

&𝑃(𝑔)err 𝑓! 𝑔 − 𝕀 𝑥! ∈ 𝑔 𝕀 )𝑦! ≠ 𝑦! ≤ 𝑂 𝑇" log𝑁

&𝕀 𝑥! ∈ 𝑔 𝕀 ℎ 𝑥! ≠ 𝑦! − 𝑃(𝑔)err(ℎ ∣ 𝑔) ≤ 𝑂 𝑇" log𝑁

𝑇! = ∑𝕀 𝑥) ∈ 𝑔



Sleeping experts online-to-batch

• Online-to-batch conversion + analysis of simula1on ⇒
with high probability, for all 𝑔 ∈ 𝒢 and ℎ ∈ ℋ

err 𝐹 𝑔 ≤ err ℎ 𝑔 + 𝑂
log𝑁
𝑃 𝑔 𝑇

• But:
• 𝐹 is stochas1c ensemble of 𝑇 predictors ☹
• Each individual predictor is already (roughly like) big decision list

• Q: BeHer online-to-batch conversion?
Or "batch analogue" of sleeping experts algorithms?



Aside: bound sample size or excess error?

• Sample complexity: what sample size ensures excess error ≤ 𝜖?
• Excess error bound: given sample size 𝑛, what is the excess error?
• Agnos?c learning (no groups), same as uniform convergence for all ℎ ∈ ℋ:

𝑂
𝑑ℋ
𝑛

• Uniform convergence for ℎ ∈ ℋ and all 𝑔 ∈ 𝒢 [Balsubramani et al, '19]:

H𝑂
𝑑ℋ + 𝑑𝒢
𝑛!

• "Near-op?mal algorithm" (sorta) gets above bound in mul?-group senng 



Summary

• Mul0-group learning: extension of sta1s1cal learning that is 
addresses many prac1cal concerns in trustworthy AI/ML
• Tools from sta1s1cal learning theory are useful here, but need to 

remix the algorithmic ideas
• Open problems: Simpler op?mal algorithms? Polynomial-?me algorithms?

Support: NSF CCF-1740833, IIS-1563785, and JP Morgan Faculty Award

Thanks to Kamalika Chaudhuri for introducing me to the hidden stra.fica.on problem

Thank you!



Laminar groups

• Special case: 𝒢 is laminar (e.g., hierarchical clustering)
• Every pair 𝑔, 𝑔- sa?sfies 𝑔 ∩ 𝑔- = ∅, 𝑔 ⊂ 𝑔-, or 𝑔 ⊃ 𝑔-
• Very similar to disjoint group case
• Sample complexity: (𝑑ℋ + log 𝒢 )/(𝜖$𝛾)
• Can structure PREPEND decision list as a tree (following structure of 𝒢)


