Algorithms for multi-group learning

Daniel Hsu

Columbia University

Based on joint work with (and slides of) Christopher Tosh (MSKCC)

Workshop on "Multigroup Fairness and the Validity of Statistical Judgment" April 25, 2023

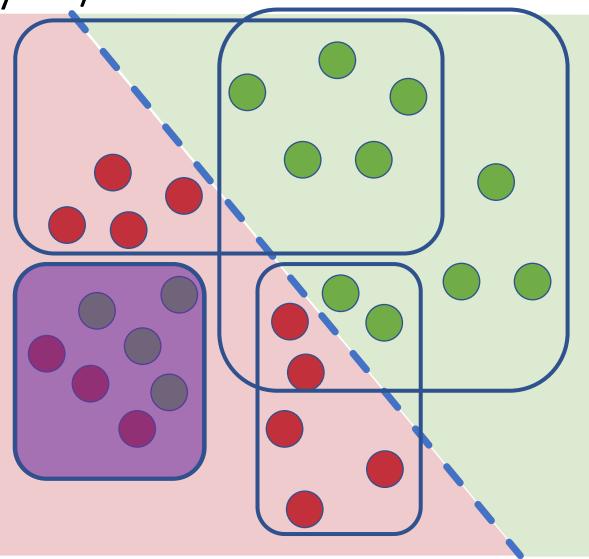
Motivation: statistical learning

- Aggregate performance over a population P $\mathbb{E}_{(x,y)\sim P}[\ell(f(x),y)]$
- No assurance about any particular instance $\ell(f(x), y)$
- No assurances even for subpopulations/subgroups

Disadvantaged subgroup

Motivation: trustworthy AI/ML

- Many highlighted failures of AI/ML happen on individual instances & subgroups
- Standard ML objectives fail to address prerequisites for trustworthy AI/ML



Multi-group learning: history

- Formalized by Rothblum and Yona (2021); related to a multi-group extension of "online learning" of Blum and Lykouris (2020)
 - Largely motivated by fairness in ML & trustworthy AI/ML
 - For simplicity, we'll focus on binary classification + error rate objective, but [RY'21] and [BL'20] also consider other objectives (e.g., calibration)
- Our motivation came from "hidden stratification" (Oakden-Rayner, Dummon, Carneiro, and Ré, 2020)
 - Training data is often a data set of convenience, typically stratified
 - Downstream application requires good accuracy on specific strata

High-level summary

- Multi-group learning is a natural generalization of the "classical" setup for supervised learning from statistical learning theory
- Basic sample complexity results from "classical" setup can be extended to multi-group setup...
- ...But requires new algorithms
 - In "classical" setup: ERM suffices
 - In multi-group setup: resulting predictors necessarily more complicated

Cast of characters

- $(X,Y) \sim P$ for data distribution P over $\mathcal{X} \times \{0,1\}$
- \mathcal{H} is reference class of functions $\mathcal{X} \to \{0,1\}$ ("hypotheses")
- \mathcal{G} is family of subsets of \mathcal{X} ("groups")
- Eventually assume both ${\mathcal H}$, ${\mathcal G}$ have finite VC dimensions $d_{{\mathcal H}}$, $d_{{\mathcal G}}$

Background: agnostic learning

• Agnostic learning (with no groups involved): For any $\epsilon \in (0,1)$, given $n = n\left(\frac{1}{\epsilon}, d_{\mathcal{H}}\right)$ iid copies of (X, Y), find classifier $f: \mathcal{X} \to \{0,1\}$ such that, with high probability,

$$P(f(X) \neq Y) \leq \inf_{h \in \mathcal{H}} P(h(X) \neq Y) + \epsilon$$

err(f)
$$err(h)$$

- Suffices to let f = empirical risk minimizer (ERM) over $\mathcal H$
- Optimal sample complexity: $d_{\mathcal{H}}/\epsilon^2$

Multi-group agnostic learning

• Multi-group agnostic learning (Rothblum and Yona, 2021): For any $\epsilon \in (0,1), \gamma \in (0,1)$, given $n = n\left(\frac{1}{\epsilon}, \frac{1}{\gamma}, d_{\mathcal{H}}, d_{\mathcal{G}}\right)$ iid copies of (X, Y), find classifier $f: \mathcal{X} \to \{0,1\}$ such that, with high probability, for all $g \in \mathcal{G}_{\gamma} \coloneqq \{g \in \mathcal{G} \mid P(X \in g) \ge \gamma\}$,

$$P(f(X) \neq Y \mid X \in g) \le \inf_{h \in \mathcal{H}} P(h(X) \neq Y \mid X \in g) + e$$

err(f | g)
$$err(h \mid g)$$

• Possible that no $h \in \mathcal{H}$ can satisfy this requirement on f

Application: hidden stratification

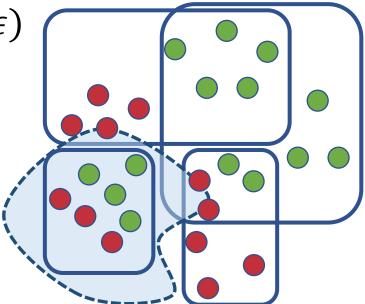
Multi-group agnostic learning ⇒ hidden stratification guarantee

For every $S \subset \mathcal{X}$ that is ϵ -multiplicatively-approx.* by some $g \in \mathcal{G}_{\gamma}$,

$$\operatorname{err}(f \mid S) \leq \inf_{h \in \mathcal{H}} \operatorname{err}(h \mid S) + O(\epsilon)$$

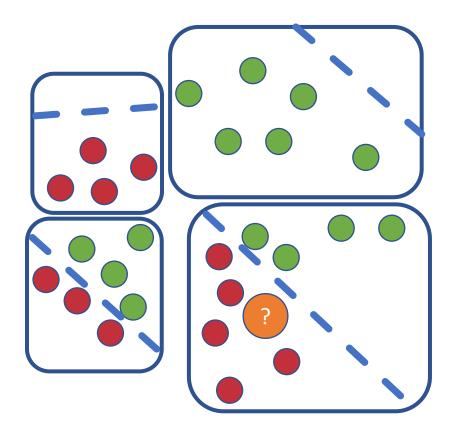
(So we'd like *G* as "rich" as possible)

* $P(g\Delta S) \le \epsilon \min\{P(g), P(S)\}$

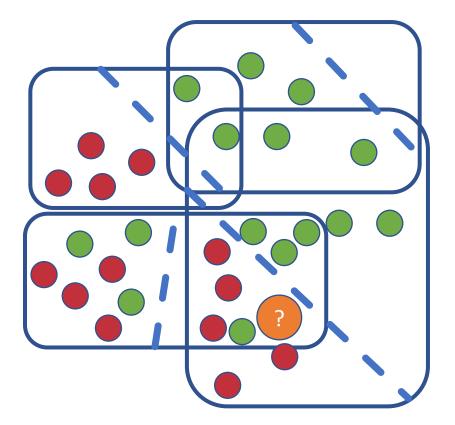


Challenges for multi-group agnostic learning

Easy case



Fit a predictor to each group



How do we resolve disagreements among predictors?

Easy case: finitely-many disjoint groups

• Easy case: assume groups are disjoint $g \cap g' = \emptyset$ for all distinct $g, g' \in G$

• Solution:

- Find ERM h_g for each $g \in \mathcal{G}$
- Return f defined by: On input x, find unique $g \in G$ that contains x, and return $h_q(x)$
- Sample complexity:

$$\frac{d_{\mathcal{H}} + d_{\mathcal{G}}}{\epsilon^2 \gamma}$$

• (Also easy: \mathcal{G} is laminar family of subsets of \mathcal{X})

General case: prior work

• Rothblum and Yona (2021): algorithm requires sample size

$$\frac{1}{\epsilon^{8}\gamma} \operatorname{polylog}\left(\frac{|\mathcal{H}| \times |\mathcal{G}|}{\epsilon}\right)$$

- Final predictor f is functional combination of hypotheses from ${\mathcal H}$ and indicator functions of groups from ${\mathcal G}$
- But works for other objectives beyond expected loss (e.g., calibration)
- Based on Outcome Indistinguishability [Dwork, Kim, Reingold, Rothblum, Yona, 2021]

General case: our results (Tosh and H, 2022)

- 1. Simple and practical algorithm: PREPEND
 - Sample complexity: $\frac{1}{\epsilon^{3}\gamma^{2}} (d_{\mathcal{H}} + d_{\mathcal{G}}) \log \frac{1}{\epsilon}$
- 2. Near-optimal (but complicated) algorithm: via online learning

• Sample complexity:
$$\frac{1}{\epsilon^2 \gamma} \left(d_{\mathcal{H}} \log \frac{1}{\epsilon} + \log |\mathcal{G}| \right)$$

1. Simple and practical algorithm

- "PREPEND" algorithm
 - Learns a decision list (of length $\leq 2/(\epsilon \gamma)$):

"if $x \in g_1$ then return $h_1(x)$ else if $x \in g_2$ then return $h_2(x)$ else if ..."

• Sample size requirement:

$$\frac{d_{\mathcal{H}} + d_{\mathcal{G}}}{\epsilon^3 \gamma^2} \log \frac{1}{\epsilon}$$

(somewhat worse dependence on ϵ and γ than we might've hoped for)

• Algorithm independently found by Globus-Harris, Kearns, Roth (2022)!

PREPEND algorithm

Pick any $h \in \mathcal{H}$; define decision list f that, on input x, returns h(x)While there is a group $g \in \mathcal{G}_{\gamma}$ and $h \in \mathcal{H}$ such that $\widehat{\operatorname{err}}(f \mid g) > \widehat{\operatorname{err}}(h \mid g) + \epsilon$ Prepend "if $x \in g$ then return h(x) else" to decision list f

- Decision list determines an ordering of (some subset of) \mathcal{G}_{γ}
- (Algorithm may select same group g in multiple loop iterations)

Analysis of PREPEND

- In iteration t, update current f_t to new f_{t+1} by prepending "if $x \in g_t$ then return $h_t(x)$ else"
- Therefore

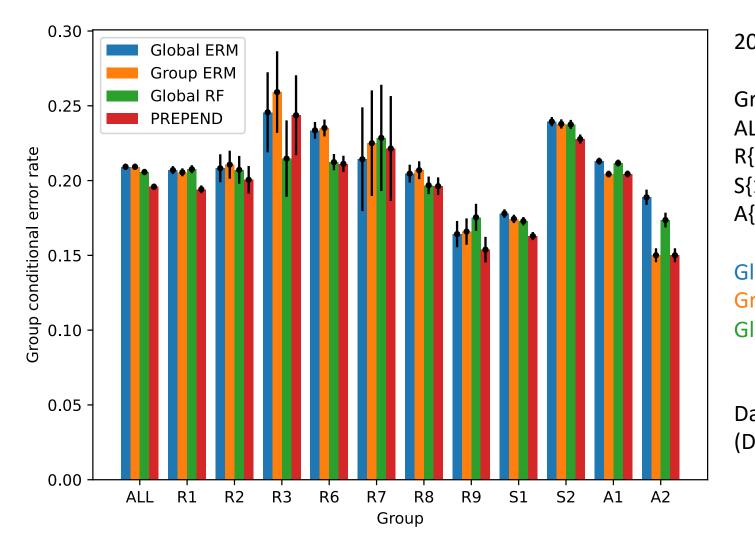
 $\operatorname{err}(f_{t+1}) = P(g_t)\operatorname{err}(h_t \mid g_t) + P(g_t^c)\operatorname{err}(f_t \mid g_t^c)$ $\leq P(g_t)(\operatorname{err}(f_t \mid g_t) - \epsilon/2) + P(g_t^c)\operatorname{err}(f_t \mid g_t^c)$ $\leq \operatorname{err}(f_t) - \gamma \epsilon/2$

• Done within $2/(\gamma \epsilon)$ iterations

Non-iteratively learn a decision list?

- Q: Learn a decision list with better sample complexity?
- Cannot determine decision list just from "first-order statistics" $P(X \in g)$, $err(h \mid g)$
 - Suppose $g \cap g' \neq \emptyset$
 - What should be done for $x \in g \cap g'$?
 - It may depend on $P(X \in g \cap g')$

Employment prediction in California



2016 American Community Survey

roups:	
LL	overall population
{1,2,3,6,7,8,9}	group by race
[1,2}	group by sex
{1,2}	group by age

Global ERM: logreg on all data Group ERM: logreg on group Global RF: random forest on all data

Data is from "Folkstable" package (Ding, Hardt, Miller, Schmidt, 2021)

2. Near-optimal algorithm

• Algorithm based on on-line learning, with sample complexity

$$\frac{1}{\epsilon^2 \gamma} \left(d_{\mathcal{H}} \log \frac{1}{\epsilon} + \log |\mathcal{G}| \right)$$

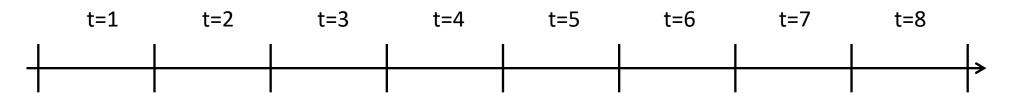
• Final predictor *f* is stochastic ensemble of *n* base classifiers

Main idea of near-optimal algorithm

- Reduction to online learning ("learning with expert advice") followed by "online-to-batch conversion"
 - Simulate instance of sequential bit prediction problem using training data
 - Use suitable online learning algorithm to solve it
 - Combine information from algorithm transcript to produce final predictor
- **Complication**: Requires "sleeping experts" variant of online learning (Freund, Schapire, Singer, Warmuth, 1997; Blum and Mansour, 2007)
- Online part is same as Blum and Lykouris (2020)

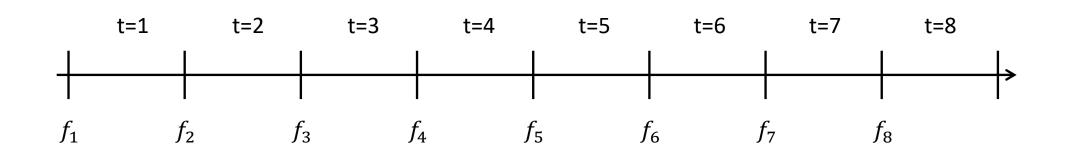
Online learning with N experts

- In round t = 1, ..., T:
 - Get "context" $x_t \in \mathcal{X}$
 - Learner sees N experts' predictions: \hat{y}_t^i for i = 1, ..., N
 - Learner makes own prediction \hat{y}_t , then sees true label y_t
- Regret to Expert *i*: (number of mistakes by learner) — (number of mistakes by Expert *i*)
- Weighted majority algorithm (Littlestone, Warmuth, 1994): Regret to best expert $\leq O(\sqrt{T \log N})$



Online-to-batch conversion

Stochastic ensemble over Learner's "memory states" between rounds



Final stochastic ensemble predictor *F* On input *x*:

- Pick *t* uniformly at random from {1, ..., *T*}
- Return $f_t(x)$

Sleeping experts variant

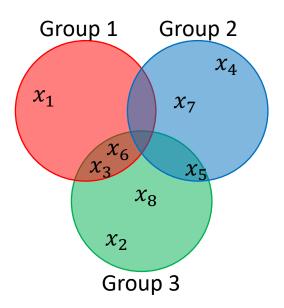
- In round t = 1, ..., T:
 - Get "context" $x_t \in \mathcal{X}$; determines subset $E_t \subseteq \{1, ..., N\}$ of "awake" experts
 - Learner sees "awake" experts' predictions: \hat{y}_t^i for $i \in E_t$
 - Learner makes own prediction \hat{y}_t , then sees true label y_t
- Regret to Expert *i*:

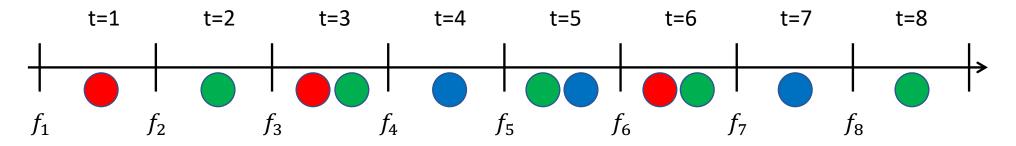
(number of mistakes by learner) – (number of mistakes by Expert i) ... but only within the T_i rounds that Expert i is "awake"

• Variant of weighted majority (Blum and Mansour, 2007): Regret to expert $i \le O(\sqrt{T_i \log N})$

How we use sleeping experts

- One expert per $(g, h) \in \mathcal{G} \times \mathcal{H}$ pair, so $N = |\mathcal{G}| \cdot |\mathcal{H}|$
- Consider new training example (x_t, y_t) in round t
- Expert (g, h) is "awake" in round t iff $x_t \in g$





Analysis of the simulation

 $T_g = \sum \mathbb{I}\{x_t \in g\}$

• **Regret guarantees**: For all $g \in \mathcal{G}$ and $h \in \mathcal{H}$,

$$\sum \mathbb{I}\{x_t \in g\} \mathbb{I}\{\hat{y}_t \neq y_t\} - \mathbb{I}\{x_t \in g\} \mathbb{I}\{h(x_t) \neq y_t\} \le O\left(\sqrt{T_g \log N}\right)$$

• **Concentration**: With high probability, for all $g \in \mathcal{G}$ and $h \in \mathcal{H}$,

$$\sum P(g)\operatorname{err}(f_t \mid g) - \mathbb{I}\{x_t \in g\} \mathbb{I}\{\hat{y}_t \neq y_t\} \le O\left(\sqrt{T_g \log N}\right)$$

$$\sum \mathbb{I}\{x_t \in g\} \mathbb{I}\{h(x_t) \neq y_t\} - P(g)\operatorname{err}(h \mid g) \le O\left(\sqrt{T_g \log N}\right)$$

Sleeping experts online-to-batch

• Online-to-batch conversion + analysis of simulation \Rightarrow with high probability, for all $g \in \mathcal{G}$ and $h \in \mathcal{H}$

$$\operatorname{err}(F \mid g) \leq \operatorname{err}(h \mid g) + O\left(\sqrt{\frac{\log N}{P(g)T}}\right)$$

- But:
 - F is stochastic ensemble of T predictors $\stackrel{\bigcirc}{\sim}$
 - Each individual predictor is already (roughly like) big decision list
- Q: Better online-to-batch conversion? Or "batch analogue" of sleeping experts algorithms?

Aside: bound sample size or excess error?

- Sample complexity: what sample size ensures excess error $\leq \epsilon$?
- Excess error bound: given sample size n, what is the excess error?
 - Agnostic learning (no groups), same as uniform convergence for all $h \in \mathcal{H}$:

$$O\left(\sqrt{\frac{d_{\mathcal{H}}}{n}}\right)$$

• Uniform convergence for $h \in \mathcal{H}$ and all $g \in \mathcal{G}$ [Balsubramani et al, '19]:

$$\tilde{O}\left(\sqrt{\frac{d_{\mathcal{H}}+d_{\mathcal{G}}}{n_g}}\right)$$

• "Near-optimal algorithm" (sorta) gets above bound in multi-group setting

Summary

- **Multi-group learning**: extension of statistical learning that is addresses many practical concerns in trustworthy AI/ML
- Tools from statistical learning theory are useful here, but need to remix the algorithmic ideas
 - Open problems: Simpler optimal algorithms? Polynomial-time algorithms?

Thank you!

Support: NSF CCF-1740833, IIS-1563785, and JP Morgan Faculty Award

Thanks to Kamalika Chaudhuri for introducing me to the hidden stratification problem

Laminar groups

- Special case: G is laminar (e.g., hierarchical clustering)
 - Every pair g, g' satisfies $g \cap g' = \emptyset, g \subset g'$, or $g \supset g'$
 - Very similar to disjoint group case
 - Sample complexity: $(d_{\mathcal{H}} + \log|\mathcal{G}|)/(\epsilon^2 \gamma)$
 - Can structure PREPEND decision list as a tree (following structure of \mathcal{G})