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Large Language Models (LLMs)

Shannon's N-gram model:
Distribution of next word is determined by last N words

once upon a time and a very

Small N: Large N:

Produces garbage; not predictive Too many parameters: exp(Q(N));
likely overfitting to training data

Today's solution: neural language models




/00 of neural architectures for language models!
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RNN versus Transformer

Per-token

Test Loss 6

(i.e., prediction loss;
smaller is better)

LSTM (RNN variant)

Transformer

Parameters:

400K

5 | 400K

2M
3M

3 | 200M

300M

101 102 103
Token Index in Context (i.e., N)

[Figure from Kaplan et al, 2020]



The measure of a model|

Many aspects may contributetoa "Fair comparisons" of neural

neural architecture's success: architectures are difficult:
* Representational power * Parameter count?

* Complexity of inference * Inference time or cost?
* Learnability with SGD * Data efficiency?

Focus of this talk:

representational power
enabled by parallelism




Plan for the talk

1. Role of depth for in-context learning
2. Transformers & Massively Parallel Computation
3. Limitations of sequential neural architectures

Joint work with:

Clayton Sanford (Columbia = Google Research)
Matus Telgarsky (New York University)
[NeurlPS 2023, ICML 2024, arXiv:2408.14332]




0. Basics about transformers



Transformers pvaswani et al, 20171

Transformer: a kind of sequence-to-sequence map, formed by
compositions of self-attention heads

Ingredients:

1. Ways to embed tokens into vector space
2. Way to for embedded tokens to "interact" and produce new vectors

output sequence 2 Vo V3 V4
(vectors)
input sequence once upon a time
(tokens or vectors)




Word / token embeddings

Represent words with vectors [Deerwester et al, 1990; Mikolov et al, 2013; ...]

Example:

France

cantaloupe .
i Japan Paris — France + Japan = Tokyo

honeydew /
-3 zebra
Paris /
horse

Tokyo

Data-driven "geometry" captures semantics



Token embeddings created

Se H:‘atte nt| on h ed d using "trained" multilayer

Perceptrons (MLPs)
1. Independently create N query/key/value vectors from x4, ..., Xy

2. Foreachi € [N]: ith output y; = weighted average of all N values,
where weights = "softmax" of (it" query, jt key) for all j € [N]

i

AN
7, ku) 7 g@ ku) 7 G, k T8 [0, kP, 0
X1 X3 X4

Outputs vy, ..., Yy can be produced in parallel




Prototypical attention patterns

Few keys well-align with query All keys equally aligned with query

("sparse attention") ("uniform averaging")
Vi Vi
=1/3 =2/3 1/N 1/N/ 1/N| 1/N
X1 X, X3 X4 X1 X, X3 X4

Attention pattern entirely determined by token embeddings (query/key vectors)
(... and tokens' positions via "positional embeddings")



Comparison to feedforward neural networks
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embEddlng dimenSion D — 0O Andrew R. Barron, Member, IEEE (|f width H — OO)




Transformers as compositions

Transformers: compositions of self-attention layers

(layer = one self-attention head, or sum of several self-attention heads)

h% h3 h% h3
hi hi h% hi
once upon a time

Why are multiple layers necessary?

Self-attention layer 3

Self-attention layer 2

Self-attention layer 1



1. Role of depth for in-context learning



In-context learning

[Brown et al, 2020]

Circulation revenue has increased by 5%
in Finland. // Positive

Panostaja did not disclose the purchase
price. // Neutral

Paying off the national debt will be
extremely painful. // Negative

The company anticipated its operating
profit to improve. //

[Figure from Xie and Min, 2022]

Circulation revenue has increased by
5% in Finland. // Finance

They defeated ... in the NFC
Championship Game. // Sports

Apple ... development of in-house
chips. // Tech

The company anticipated its operating
profit to improve. //



Transformers as Statisticians: Provable In-Context Learning with
In-Context Algorithm Selection

Yu Bai*® Fan Chen's Huan Wang* Caiming Xiong* Song Meit$

QO

July 7, 2023

Example 2: Regression + Classification Mechanism 2: Pre-ICL Testing

Yn41 @ LinReg(D, xy, ;) LogReg(D, xy, )

4 4

Transformer

Data 1 Data 2 EL_______________1_______________}
(Regression) (Classification)

N\




Basic mechanism for in-context learning

[Anthropic: Elhage et al, 2021; Olsson et al, 2022]

Prompt (after tokenization):

Mr| |and| [Mrs| [Durs]| [ley| |,| |of| [number] [four| |,| [Pri| [vet]| [Drive
,| lwere| [proud] [to] [say| [that]| [they| |were| |perfectly| [normal] |,
thank| (you| [very| Imuch] |.| [They| (were| [the] |[last| [people| |you
'd| |[expect]| [to] |be| [involved] |in| [anything]| [strange| |or
mysterious| |,| |because| [they]| |just| [didn] ['t] |[hold] |with| [such
nonsense| |.| Mr| Durs




Basic mechanism for in-context learning

[Anthropic: Elhage et al, 2021; Olsson et al, 2022]

Prompt (after tokenization):

‘Mr] [and] [Mrs] [Durs] [ley] [,] [of] [number] [four] [,] [Pri] [vet] [Drive]
L] [were] [proud] [to] [say] [that] [they] [were] [perfectly] [normal] [,]
thank] [you] [very] [much] [.] [They] [were] [the] [last] [people] [you]
'd] [expect] [to] [be] [involved] [in] [anything] [strange] [or]
'mysterious] [,] [because] [they] [just] [didn] ['t] [hold] [with] [such]

nonsense] [.] [Mr] [Durs]
N\

bacb..cabdba




Induction heads abstraction

[Anthropic: Elhage et al, 2021; Olsson et al, 2022]
Induction head: abstraction of a salient sub-circuit found in LLMs
e it output: Find last position j < i where x; occurs, output Xj+1

Output b

A

Input a b a

Position j Positionj + 1 Position i



Induction heads implementation

Composition of two "small" self-attention heads [e.g., Bietti et al, 2023]

Output

Input

Token embedding dimension
O (log N) suffices

b
> 4
//
(i) | | (ki) | | (al)
/a
e
a b a

Position j Positionj + 1 Position i

Layer 2: find (k, q¢) match

Notation: (KEY, QUERY/VALUE)

Layer 1: copy prev. token's key



Necessity of two layers

Theorem [SHT'24b]:
Single self-attention head™ (one layer) with embedding dimension D
cannot implement induction head for length N sequences unless

Exponentially larger than what's
— sufficient with two layers

D

Corroborates prior empirical findings
[Elhage et al, 2021; Olsson et al, 2022; Bietti et al, 2023]

*Using polylog N bits of numerical precision, even for 0(1)-size input alphabet, allowing arbitrary size MLPs



Rudimentary in-context learning

¢ N

Prompt: whale 1 dog 1 frog O shark O bat 1 owl 0 wolf

"Nearest neighbor"-like in-context learning:
Word embeddings + induction head

(Layers before induction head: help with prompt formatting, perhaps?)

Circulation revenue has increased by 5%
in Finland. // Positive

Panostaja did not disclose the purchase
price. // Neutral

Paying off the national debt will be
extremely painful. // Negative

The company anticipated its operating
profit to improve. //




Beyond two layers?

Multi-step reasoning problem [peng, Narayanan, Papadimitriou, 2024]:
Prompt: "Jane is a teacher. Helen is a doctor. [...] The mother of John is Helen.
The mother of Charlotte is Eve. [...] What's the profession of John's mother?"
Answer: doctor

A

bacbcabdba
2-hop induction head




2-hop induction head

1 1 1 1 a b
/ / / Layer 3
1 1 kb Iqa kC3lqb kazlqc kb ;qc kb qu kaGIqb
/// / Layer 2
qbl kb ;qa kazqu kc3;qb kb ;qc kc5)qa ka6;qb kb qu kd Iqb kb Iqalo
A 7 7 Zh 7 Zh 7\ A Z\ 7\
/ / / / / / / / / taver t

b

a

C

b

C

a

b

d

b

Key idea: Layers 1 & 2 so

ve 1-hop for all positions in parallel



k-hop induction head

Theorem [sHT'24a]:
Thereis a 2 + [log, k| layer transformer* that implements k-hop ...

Main idea: Each additional layer doubles the "reach"

Empirical surprise: SGD finds this ©@(log k)-layer solution!

... & under plausible conjecture about massively parallel computation,
((log k) layers are necessary (under similar size constraints)

*Using one self-attention head per layer, log N dimensional embeddings, log N bits of numerical precision,
assuming poly(N)-size input alphabet



2. Transformers & Massively Parallel Computation



Massively Parallel Computation (MPC)

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @google.com

Google, Inc.

A Model of Computation for MapReduce

Howard Karloff* Siddharth Surif Sergei Vassilvitskiit

[Karloff et al, 2010; Goodrich et al, 2011; Beame et al, 2013; Andoni et al, 2014]



MPC model of computation

Input data size: N words IN <M XS]
Number of machines: M

Memory size per machine: S words  [S = O(N?) for small § € (0,1)]

Communication constraints

per "shuffle" round:
Each machine sends < S words
Each machine receives < S words

»

Input data . |
Between "shuffle" rounds:

Each machine performs arbitrary
computation on local memory

(

Main question: How many rounds R are needed?




MPC algorithms for many tasks

* Broadcast R=0(1
* Sorting R=00)
* Prefix sum R=0()

* Problems on sparse graphs
[Andoni et al, 2018, Behnezhad et al, 2019, ...]

* Connected components R = log(diameter)
* Minimum spanning forest R = log(diameter)

* Open question: R = o(log N) round algorithm for connectivity?



~

Simulating MPC shu

Machines after shuffle round

GG

F

CPU1 CPU 2 CPU 3 CPU 4

CPU1 CPU 2 CPU 3 CPU 4

Machines before shuffle round

‘le round with self-attention

Output of self-attention head

Y1 Y2 Y3 Y4
P A N
X1 X2 X3 X4

Input to self-attention head




MPC algorithms 2 transformers

Theorem [SHT'24a; Sanford et al, 2024] (informal version):

can be simulated by

— N

®(R)-round \VIPC algorithm O(R)-layer transformer with
with local memory = @(N5) embedding dimension = @(N5)

N~ A

can be simulated by*

Easy for VIPC = Easy for transformer

Hard for MPC = Hard for transformer
*With additional ®(N?) machines



What is hard for MPC?

1-vs-2 cycle problem: Given graph G that is promised to be either cycle
on N vertices or union of two cycles on N /2 vertices each,

s 17 11

1-vs-2 cycle hypothesis (informal version):

decide if G is connected.

Every "efficient" MPC algorithm must use R = (.(log N) rounds

Theorem [sHT'24a]: 1-vs-2 cycle hypothesis implies
necessity of 2(log k) layers in transformers for k-hop



3. Limitations of sequential neural architectures



Computational cost of transformers

For self-attention, quadratic computation appears to be inherent

Y1 Y2 Y3 2

A P N\ N A
) N/ A\
X1 X2 X3 X4

Are there sub-quadratic alternatives to self-attention?



Sequential neural architectures

Recurrent neural network (RNN):
Initialize "hidden state" h,
Fort =1,2,...,N:

h, = update;(h;_1, x;)
ye = output,(he, x¢)
V1 Y2 Y3 Va4
ho ‘I\ hy ‘I\ h, I\:hs I\ hy




Memory bottlenecks in RNNs

Theorem [sHT'23]:
Any RNN that computes Nt output of (1-hop) induction head must use
a (L(N)-bit hidden state

Y1 Y2 Y3 Ya
) ) ) 1
/ / / /
4 / /
/ / / /
/ / / /
1/ 7 1 /
1 1 1 /
1 ) 1 1
1 1 1 1
1 o [ o [ o [ o _
hO ' h’l " hZ 1 " h3 1 " h4-
\ \ \ \
\ \ \ \
\ \ \ \
\ \ \ \
\ \ \ \
\ AN \ \
N N N N
¢ & & $




Further limitations for sequential architectures

Consequences of (Assadi and N, 2021) [sHT'24a] (informal version):

For k-hop induction head, "sequential architectures" require
"depth" > k or "size" = Q(N/k®)

(Applies to multi-layer RNNs, shallow TF with "chain-of-thought", ...)

(Recall: For standard transformer, depth = O(log k), size = O(log N))



Aftermath and open problems

1. Role of depth for in-context learning
* At least two layers are necessary for primitive underlying in-context learning
* For k-fold compositions, log k layers sufficient (and probably necessary)
 What are important function compositions in LLMs?

2. Transformers & MPC

* Coarse reductions between transformers and MPC
* How to characterize power of transformer "shuffle" operation?

3. Limitations of sequential neural architectures
* How do we get around these limitations?

Thank you!



