
Transformers, parallelism,
and the role of depth

Daniel Hsu
Columbia University

University of Chicago Booth School of Business
October 31, 2024

Large Language Models (LLMs)

Shannon's N-gram model:
Distribution of next word is determined by last N words

once upon a time and a very

Small N:
Produces garbage; not predictive

Large N:
Too many parameters: exp(Ω(N));
likely overfitting to training data

Today's solution: neural language models

Zoo of neural architectures for language models!

2003

1997

2014

2014

2015

1990

2017

2019

2008

1992

2011

2018

What sets one neural architecture apart from the others?

RNN versus Transformer

[Figure from Kaplan et al, 2020]

LSTM plateaus after <100 tokens

Transformer improves through the whole context

2M

200M

3M

300M

5

4

3

2

6

Token Index in Context
103102101

Transformers asymptotically outperform LSTMs
due to improved use of long contexts

3.6

4.2

3.0

2.4

4.8

5.4

105 108106 107 109

Parameters (non-embedding)

Transformers

LSTMs

1 Layer
2 Layers

4 Layers

Test Loss Per-token
Test Loss

Parameters:

400K

400K

Transformer

LSTM (RNN variant)

(i.e., prediction loss;
smaller is better)

(i.e., 𝑁)

The measure of a model

Many aspects may contribute to a
neural architecture's success:
• Representational power
• Complexity of inference
• Learnability with SGD
• …

"Fair comparisons" of neural
architectures are difficult:
• Parameter count?
• Inference time or cost?
• Data efficiency?
• …

Focus of this talk:
representational power
enabled by parallelism

Plan for the talk

1. Role of depth for in-context learning
2. Transformers & Massively Parallel Computation
3. Limitations of sequential neural architectures

Joint work with:
Clayton Sanford (Columbia à Google Research)

Matus Telgarsky (New York University)
[NeurIPS 2023, ICML 2024, arXiv:2408.14332]

0. Basics about transformers

Transformers [Vaswani et al, 2017]

Transformer: a kind of sequence-to-sequence map, formed by
compositions of self-attention heads
Ingredients:

1. Ways to embed tokens into vector space
2. Way to for embedded tokens to "interact" and produce new vectors

once upon a time …

𝑦! 𝑦" 𝑦# 𝑦$ …

input sequence
(tokens or vectors)

output sequence
(vectors)

Word / token embeddings

Represent words with vectors [Deerwester et al, 1990; Mikolov et al, 2013; …]

Example:
Paris – France + Japan ≈ Tokyo

France

Japan

Paris

Tokyo

cantaloupe

zebra
horse

honeydew

Data-driven "geometry" captures semantics

Self-attention head

1. Independently create 𝑁 query/key/value vectors from 𝑥!, … , 𝑥"
2. For each 𝑖 ∈ [𝑁]: 𝑖th output 𝑦# = weighted average of all 𝑁 values,

where weights = "softmax" of ⟨𝑖th query, 𝑗th key⟩ for all 𝑗 ∈ [𝑁]

Token embeddings created
using "trained" multilayer

Perceptrons (MLPs)

𝑦# =#
$

exp 𝑞 # , 𝑘 $

𝑍#
𝑣 $

𝑥! 𝑥" 𝑥# 𝑥$ …

𝑦% …

Outputs 𝑦!, … , 𝑦" can be produced in parallel

𝑞 ! , 𝑘 ! , 𝑣 ! 𝑞 " , 𝑘 " , 𝑣 " 𝑞 # , 𝑘 # , 𝑣 # 𝑞 $, 𝑘 $, 𝑣 $

Prototypical attention patterns

Few keys well-align with query
("sparse attention")

All keys equally aligned with query
("uniform averaging")

𝑥! 𝑥" 𝑥# 𝑥$ …

𝑦% …

𝑥! 𝑥" 𝑥# 𝑥$ …

𝑦% …

≈1/3 ≈2/3 1/N 1/N 1/N 1/N

Attention pattern entirely determined by token embeddings (query/key vectors)
(… and tokens' positions via "positional embeddings")

Comparison to feedforward neural networks

Self-attention head
Shared parameterized mapping

𝑥# ↦ 𝑞 # , 𝑘 # , 𝑣 #

Weights 𝛼$
determined via softmax

Feedforward neural network
Each "weight" is a separate parameter

𝑦! =&
"#$

%

𝐴!,"𝜎 &
'#$

(

𝑊",'𝑥'

𝑥! 𝑥" 𝑥# 𝑥$ …

𝑦% …

𝑞 ! , 𝑘 ! , 𝑣 ! 𝑞 " , 𝑘 " , 𝑣 " 𝑞 # , 𝑘 # , 𝑣 # 𝑞 $, 𝑘 $, 𝑣 $

𝛼!
% 𝛼"

% 𝛼#
% 𝛼$

%

𝑥! 𝑥" 𝑥# 𝑥$ …

𝑦% …

𝑢! 𝑢" 𝑢&…

Universal approximation if
embedding dimension 𝐷 → ∞ (if width 𝐻 → ∞)

Transformers as compositions

Transformers: compositions of self-attention layers
(layer = one self-attention head, or sum of several self-attention heads)

once upon a time …

ℎ!! ℎ"! ℎ#! ℎ$! …

ℎ!" ℎ"" ℎ#" ℎ$" …

…

Self-attention layer 1

Self-attention layer 2

Why are multiple layers necessary?

Self-attention layer 3

1. Role of depth for in-context learning

In-context learning
[Brown et al, 2020]

[Figure from Xie and Min, 2022]

Basic mechanism for in-context learning
[Anthropic: Elhage et al, 2021; Olsson et al, 2022]

Prompt (after tokenization):
[Mr] [and] [Mrs] [Durs] [ley] [,] [of] [number] [four] [,] [Pri] [vet] [Drive]
[,] [were] [proud] [to] [say] [that] [they] [were] [perfectly] [normal] [,]
[thank] [you] [very] [much] [.] [They] [were] [the] [last] [people] [you]
['d] [expect] [to] [be] [involved] [in] [anything] [strange] [or]
[mysterious] [,] [because] [they] [just] [didn] ['t] [hold] [with] [such]
[nonsense] [.] [Mr] [Durs]

Basic mechanism for in-context learning
[Anthropic: Elhage et al, 2021; Olsson et al, 2022]

Prompt (after tokenization):
[Mr] [and] [Mrs] [Durs] [ley] [,] [of] [number] [four] [,] [Pri] [vet] [Drive]
[,] [were] [proud] [to] [say] [that] [they] [were] [perfectly] [normal] [,]
[thank] [you] [very] [much] [.] [They] [were] [the] [last] [people] [you]
['d] [expect] [to] [be] [involved] [in] [anything] [strange] [or]
[mysterious] [,] [because] [they] [just] [didn] ['t] [hold] [with] [such]
[nonsense] [.] [Mr] [Durs]

b a c b … c a b d b a

Induction heads abstraction
[Anthropic: Elhage et al, 2021; Olsson et al, 2022]

Induction head: abstraction of a salient sub-circuit found in LLMs
• 𝑖th output: Find last position 𝑗 < 𝑖 where 𝑥# occurs, output 𝑥+,!

[a] [b] [a]……

[b]……

Position 𝑗 Position 𝑗 + 1 Position 𝑖

Input

Output

Induction heads implementation

Composition of two "small" self-attention heads [e.g., Bietti et al, 2023]

Layer 1: copy prev. token's key

(…,qaj) (kaj,qbj+1) (…,qai)……

Layer 2: find ⟨𝑘, 𝑞⟩ match

[b]……

[a] [b] [a]……
Position 𝑗 Position 𝑗 + 1 Position 𝑖

Notation: (KEY, QUERY/VALUE)

Input

Output

Token embedding dimension
𝑂 log𝑁 suffices

Necessity of two layers

Theorem [SHT'24b]:
Single self-attention head* (one layer) with embedding dimension 𝐷
cannot implement induction head for length 𝑁 sequences unless

𝐷 ≥ 0Ω 𝑁

*Using polylog𝑁 bits of numerical precision, even for 𝑂(1)-size input alphabet, allowing arbitrary size MLPs

Corroborates prior empirical findings
[Elhage et al, 2021; Olsson et al, 2022; Bietti et al, 2023]

Exponentially larger than what's
sufficient with two layers

Rudimentary in-context learning

Prompt: whale 1 dog 1 frog 0 shark 0 bat 1 owl 0 wolf

"Nearest neighbor"-like in-context learning:
Word embeddings + induction head

(Layers before induction head: help with prompt formatting, perhaps?)

Beyond two layers?

Multi-step reasoning problem [Peng, Narayanan, Papadimitriou, 2024]:
Prompt: "Jane is a teacher. Helen is a doctor. […] The mother of John is Helen.
The mother of Charlotte is Eve. […] What's the profession of John's mother?"
Answer: doctor

b a c b c a b d b a
2-hop induction head

2-hop induction head

b a c b c a b d b a

qb
1 kb1,qa

2 ka2,qc
3 kc3,qb

4 kb4,qc
5 kc5,qa

6 ka6,qb
7 kb7,qd

8 kd8,qb
9 kb9,qa

10

⊥ ⊥ ⊥ kb1,qa
2 kc3,qb

4 ka2,qc
3 kb4,qc

5 ⊥ kb7,qd
8 ka6,qb

7

⊥ ⊥ ⊥ ⊥ a ⊥ b ⊥ ⊥ c

Key idea: Layers 1 & 2 solve 1-hop for all positions in parallel

Layer 2

Layer 1

Layer 3

𝑘-hop induction head

Theorem [SHT'24a]:
There is a 2 + ⌈log- 𝑘⌉ layer transformer* that implements 𝑘-hop …

*Using one self-attention head per layer, log𝑁 dimensional embeddings, log𝑁 bits of numerical precision,
assuming poly(𝑁)-size input alphabet

Main idea: Each additional layer doubles the "reach"

… & under plausible conjecture about massively parallel computation,
Ω(log 𝑘) layers are necessary (under similar size constraints)

Empirical surprise: SGD finds this Θ(log 𝑘)-layer solution!

2. Transformers & Massively Parallel Computation

Massively Parallel Computation (MPC)

[Karloff et al, 2010; Goodrich et al, 2011; Beame et al, 2013; Andoni et al, 2014]

MPC model of computation

Input data size: 𝑁 words [𝑁 ≤ 𝑀	×	𝑆]
Number of machines: 𝑀
Memory size per machine: 𝑆 words [𝑆 = Θ(𝑁.) for small 𝛿 ∈ (0,1)]

N/M
N/M

N/M

N/M

Communication constraints
per "shuffle" round:
Each machine sends ≤ 𝑆 words
Each machine receives ≤ 𝑆 words

Between "shuffle" rounds:
Each machine performs arbitrary
computation on local memory

Main question: How many rounds 𝑅 are needed?

Input data

MPC algorithms for many tasks

• Broadcast 𝑅 = 𝑂(1)
• Sorting 𝑅 = 𝑂(1)

• Prefix sum 𝑅 = 𝑂(1)

• Problems on sparse graphs
[Andoni et al, 2018, Behnezhad et al, 2019, …]
• Connected components 𝑅 = log(diameter)
• Minimum spanning forest 𝑅 = log diameter
• …

• …
• Open question: 𝑅 = 𝑜(log𝑁) round algorithm for connectivity?

Simulating MPC shuffle round with self-attention

CPU 1

𝑥! 𝑥" 𝑥# 𝑥$ …

𝑦! 𝑦" 𝑦# 𝑦$ …

CPU 2 CPU 3 CPU 4

CPU 1 CPU 2 CPU 3 CPU 4

…

…

Machines before shuffle round

Machines after shuffle round

Input to self-attention head

Output of self-attention head

MPC algorithms ⇄ transformers

Theorem [SHT'24a; Sanford et al, 2024] (informal version):

Easy for MPC ⇒ Easy for transformer

Hard for MPC ⇒ Hard for transformer

Θ 𝑅 -round MPC algorithm
with local memory ≈ Θ 𝑁.

Θ 𝑅 -layer transformer with
embedding dimension ≈ Θ 𝑁.

can be simulated by

can be simulated by*

*With additional Θ 𝑁" machines

What is hard for MPC?

1-vs-2 cycle problem: Given graph 𝐺 that is promised to be either cycle
on 𝑁 vertices or union of two cycles on 𝑁/2 vertices each,

decide if 𝐺 is connected.

versus

Theorem [SHT'24a]: 1-vs-2 cycle hypothesis implies
necessity of Ω(log 𝑘) layers in transformers for 𝑘-hop

1-vs-2 cycle hypothesis (informal version):
Every "efficient" MPC algorithm must use 𝑅 = Ω log𝑁 rounds

3. Limitations of sequential neural architectures

Computational cost of transformers

For self-attention, quadratic computation appears to be inherent

𝑥! 𝑥" 𝑥# 𝑥$ …

𝑦! 𝑦" 𝑦# 𝑦$ …

Are there sub-quadratic alternatives to self-attention?

Sequential neural architectures

Recurrent neural network (RNN):
Initialize "hidden state" ℎ/
For 𝑡 = 1,2, … , 𝑁:

ℎ0 = update0 ℎ01!, 𝑥0
𝑦0 = output0(ℎ0 , 𝑥0)

𝑥! 𝑥" 𝑥# 𝑥$

ℎ' ℎ! ℎ" ℎ# ℎ$

…

…

𝑦! 𝑦" 𝑦# 𝑦$ …

Memory bottlenecks in RNNs

Theorem [SHT'23]:
Any RNN that computes 𝑁th output of (1-hop) induction head must use
a Ω(𝑁)-bit hidden state

𝑥! 𝑥" 𝑥# 𝑥$

ℎ' ℎ! ℎ" ℎ# ℎ$

…

…

𝑦! 𝑦" 𝑦# 𝑦$ …

Further limitations for sequential architectures

Consequences of (Assadi and N, 2021) [SHT'24a] (informal version):
For 𝑘-hop induction head, "sequential architectures" require

"depth" ≥ 𝑘	 or	 "size" = Ω 𝑁/𝑘2

(Applies to multi-layer RNNs, shallow TF with "chain-of-thought", …)

(Recall: For standard transformer, depth = O(log 𝑘), size = 𝑂(log𝑁))

Aftermath and open problems

1. Role of depth for in-context learning
• At least two layers are necessary for primitive underlying in-context learning
• For 𝑘-fold compositions, log 𝑘 layers sufficient (and probably necessary)
• What are important function compositions in LLMs?

2. Transformers & MPC
• Coarse reductions between transformers and MPC
• How to characterize power of transformer "shuffle" operation?

3. Limitations of sequential neural architectures
• How do we get around these limitations?

Thank you!

