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Large Language Models (LLMs)

Shannon's N-gram model:
Distribution of next word is determined by last N words

once upon a time and a very

Small N:
Produces garbage; not predictive

Large N:
Too many parameters:  exp(Ω(N)); 
likely overfitting to training data

Today's solution: neural language models



Zoo of neural architectures for language models!
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What sets one neural architecture apart from the others?



RNN versus Transformer

[Figure from Kaplan et al, 2020]

LSTM plateaus after <100 tokens

Transformer improves through the whole context
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The measure of a model

Many aspects may contribute to a 
neural architecture's success:
• Representational power
• Complexity of inference
• Learnability with SGD
• …

"Fair comparisons" of neural 
architectures are difficult:
• Parameter count?
• Inference time or cost?
• Data efficiency?
• …

Focus of this talk:
representational power
enabled by parallelism



Plan for the talk

1. Role of depth for in-context learning
2. Transformers & Massively Parallel Computation
3. Limitations of sequential neural architectures

Joint work with:
Clayton Sanford (Columbia à Google Research)

Matus Telgarsky (New York University)
[NeurIPS 2023, ICML 2024, arXiv:2408.14332]



0. Basics about transformers



Transformers [Vaswani et al, 2017]

Transformer: a kind of sequence-to-sequence map, formed by 
compositions of self-attention heads
Ingredients:

1. Ways to embed tokens into vector space
2. Way to for embedded tokens to "interact" and produce new vectors

once upon a time …

𝑦! 𝑦" 𝑦# 𝑦$ …

input sequence
(tokens or vectors)

output sequence
(vectors)



Word / token embeddings

Represent words with vectors [Deerwester et al, 1990; Mikolov et al, 2013; …] 

Example:
Paris – France + Japan ≈ Tokyo

France

Japan

Paris

Tokyo

cantaloupe

zebra
horse

honeydew

Data-driven "geometry" captures semantics



Self-attention head

1. Independently create 𝑁 query/key/value vectors from 𝑥!, … , 𝑥"
2. For each 𝑖 ∈ [𝑁]: 𝑖th output 𝑦#  = weighted average of all 𝑁 values, 

where weights = "softmax" of ⟨𝑖th query, 𝑗th key⟩ for all 𝑗 ∈ [𝑁]

Token embeddings created 
using "trained" multilayer 

Perceptrons (MLPs)

𝑦# =#
$

exp 𝑞 # , 𝑘 $

𝑍#
𝑣 $

𝑥! 𝑥" 𝑥# 𝑥$ …

𝑦% …

Outputs 𝑦!, … , 𝑦"  can be produced in parallel

𝑞 ! , 𝑘 ! , 𝑣 ! 𝑞 " , 𝑘 " , 𝑣 " 𝑞 # , 𝑘 # , 𝑣 # 𝑞 $ , 𝑘 $ , 𝑣 $



Prototypical attention patterns

Few keys well-align with query
("sparse attention")

All keys equally aligned with query
("uniform averaging")

𝑥! 𝑥" 𝑥# 𝑥$ …

𝑦% …

𝑥! 𝑥" 𝑥# 𝑥$ …

𝑦% …

≈1/3 ≈2/3 1/N 1/N 1/N 1/N

Attention pattern entirely determined by token embeddings (query/key vectors)
(… and tokens' positions via "positional embeddings")



Comparison to feedforward neural networks

Self-attention head
Shared parameterized mapping

𝑥# ↦ 𝑞 # , 𝑘 # , 𝑣 #

Weights 𝛼$
#  determined via softmax

Feedforward neural network
Each "weight" is a separate parameter

𝑦! =&
"#$

%

𝐴!,"𝜎 &
'#$

(

𝑊",'𝑥'

𝑥! 𝑥" 𝑥# 𝑥$ …

𝑦% …

𝑞 ! , 𝑘 ! , 𝑣 ! 𝑞 " , 𝑘 " , 𝑣 " 𝑞 # , 𝑘 # , 𝑣 # 𝑞 $ , 𝑘 $ , 𝑣 $

𝛼!
% 𝛼"

% 𝛼#
% 𝛼$

%

𝑥! 𝑥" 𝑥# 𝑥$ …

𝑦% …

𝑢! 𝑢" 𝑢&…

Universal approximation if 
embedding dimension 𝐷 → ∞ (if width 𝐻 → ∞)



Transformers as compositions

Transformers: compositions of self-attention layers
(layer = one self-attention head, or sum of several self-attention heads)

once upon a time …

ℎ!! ℎ"! ℎ#! ℎ$! …

ℎ!" ℎ"" ℎ#" ℎ$" …

…

Self-attention layer 1

Self-attention layer 2

Why are multiple layers necessary?

Self-attention layer 3



1. Role of depth for in-context learning



In-context learning
[Brown et al, 2020]

[Figure from Xie and Min, 2022]





Basic mechanism for in-context learning
[Anthropic: Elhage et al, 2021; Olsson et al, 2022]

Prompt (after tokenization):
[Mr] [and] [Mrs] [Durs] [ley] [,] [of] [number] [four] [,] [Pri] [vet] [Drive] 
[,] [were] [proud] [to] [say] [that] [they] [were] [perfectly] [normal] [,] 
[thank] [you] [very] [much] [.] [They] [were] [the] [last] [people] [you] 
['d] [expect] [to] [be] [involved] [in] [anything] [strange] [or] 
[mysterious] [,] [because] [they] [just] [didn] ['t] [hold] [with] [such] 
[nonsense] [.] [Mr] [Durs]



Basic mechanism for in-context learning
[Anthropic: Elhage et al, 2021; Olsson et al, 2022]

Prompt (after tokenization):
[Mr] [and] [Mrs] [Durs] [ley] [,] [of] [number] [four] [,] [Pri] [vet] [Drive] 
[,] [were] [proud] [to] [say] [that] [they] [were] [perfectly] [normal] [,] 
[thank] [you] [very] [much] [.] [They] [were] [the] [last] [people] [you] 
['d] [expect] [to] [be] [involved] [in] [anything] [strange] [or] 
[mysterious] [,] [because] [they] [just] [didn] ['t] [hold] [with] [such] 
[nonsense] [.] [Mr] [Durs]

b a c b … c a b d b a



Induction heads abstraction
[Anthropic: Elhage et al, 2021; Olsson et al, 2022]

Induction head: abstraction of a salient sub-circuit found in LLMs
• 𝑖th output: Find last position 𝑗 < 𝑖 where 𝑥#  occurs, output 𝑥+,!

[a] [b] [a]……

[b]……

Position 𝑗 Position 𝑗 + 1 Position 𝑖

Input

Output



Induction heads implementation

Composition of two "small" self-attention heads [e.g., Bietti et al, 2023]

Layer 1: copy prev. token's key

(…,qaj) (kaj,qbj+1) (…,qai)……

Layer 2: find ⟨𝑘, 𝑞⟩ match

[b]……

[a] [b] [a]……
Position 𝑗 Position 𝑗 + 1 Position 𝑖

Notation: (KEY, QUERY/VALUE)

Input

Output

Token embedding dimension 
𝑂 log𝑁  suffices



Necessity of two layers

Theorem [SHT'24b]:
Single self-attention head* (one layer) with embedding dimension 𝐷 
cannot implement induction head for length 𝑁 sequences unless

𝐷 ≥ 0Ω 𝑁

*Using polylog𝑁 bits of numerical precision, even for 𝑂(1)-size input alphabet, allowing arbitrary size MLPs

Corroborates prior empirical findings
[Elhage et al, 2021; Olsson et al, 2022; Bietti et al, 2023]

Exponentially larger than what's 
sufficient with two layers



Rudimentary in-context learning

Prompt: whale 1 dog 1 frog 0 shark 0 bat 1 owl 0 wolf

"Nearest neighbor"-like in-context learning:
Word embeddings + induction head

(Layers before induction head: help with prompt formatting, perhaps?)



Beyond two layers?

Multi-step reasoning problem [Peng, Narayanan, Papadimitriou, 2024]:
Prompt: "Jane is a teacher. Helen is a doctor. […] The mother of John is Helen. 
The mother of Charlotte is Eve. […] What's the profession of John's mother?"
Answer: doctor

b a c b c a b d b a
2-hop induction head



2-hop induction head

b a c b c a b d b a

qb
1 kb1,qa

2 ka2,qc
3 kc3,qb

4 kb4,qc
5 kc5,qa

6 ka6,qb
7 kb7,qd

8 kd8,qb
9 kb9,qa

10

⊥ ⊥ ⊥ kb1,qa
2 kc3,qb

4 ka2,qc
3 kb4,qc

5 ⊥ kb7,qd
8 ka6,qb

7

⊥ ⊥ ⊥ ⊥ a ⊥ b ⊥ ⊥ c

Key idea: Layers 1 & 2 solve 1-hop for all positions in parallel

Layer 2

Layer 1

Layer 3



𝑘-hop induction head

Theorem [SHT'24a]:
There is a 2 + ⌈log- 𝑘⌉ layer transformer* that implements 𝑘-hop …

*Using one self-attention head per layer, log𝑁 dimensional embeddings, log𝑁 bits of numerical precision, 
assuming poly(𝑁)-size input alphabet

Main idea: Each additional layer doubles the "reach"

… & under plausible conjecture about massively parallel computation, 
Ω(log 𝑘) layers are necessary (under similar size constraints)

Empirical surprise: SGD finds this Θ(log 𝑘)-layer solution!



2. Transformers & Massively Parallel Computation



Massively Parallel Computation (MPC)

[Karloff et al, 2010; Goodrich et al, 2011; Beame et al, 2013; Andoni et al, 2014]



MPC model of computation

Input data size: 𝑁 words   [𝑁 ≤ 𝑀	×	𝑆]
Number of machines: 𝑀
Memory size per machine: 𝑆 words [𝑆 = Θ(𝑁.) for small 𝛿 ∈ (0,1)]

N/M
N/M

N/M

N/M

Communication constraints 
per "shuffle" round:
Each machine sends ≤ 𝑆 words
Each machine receives ≤ 𝑆 words

Between "shuffle" rounds:
Each machine performs arbitrary 
computation on local memory

Main question: How many rounds 𝑅 are needed?

Input data



MPC algorithms for many tasks

• Broadcast    𝑅 = 𝑂(1)
• Sorting    𝑅 = 𝑂(1)

• Prefix sum    𝑅 = 𝑂(1)

• Problems on sparse graphs
[Andoni et al, 2018, Behnezhad et al, 2019, …]
• Connected components  𝑅 = log(diameter)
• Minimum spanning forest 𝑅 = log diameter
• …

• …
• Open question: 𝑅 = 𝑜(log𝑁) round algorithm for connectivity?



Simulating MPC shuffle round with self-attention

CPU 1

𝑥! 𝑥" 𝑥# 𝑥$ …

𝑦! 𝑦" 𝑦# 𝑦$ …

CPU 2 CPU 3 CPU 4

CPU 1 CPU 2 CPU 3 CPU 4

…

…

Machines before shuffle round

Machines after shuffle round

Input to self-attention head

Output of self-attention head



MPC algorithms ⇄ transformers

Theorem [SHT'24a; Sanford et al, 2024] (informal version):

Easy for MPC ⇒ Easy for transformer

Hard for MPC ⇒ Hard for transformer

Θ 𝑅 -round MPC algorithm 
with local memory ≈ Θ 𝑁.

Θ 𝑅 -layer transformer with 
embedding dimension ≈ Θ 𝑁.

can be simulated by

can be simulated by*

*With additional Θ 𝑁"  machines



What is hard for MPC?

1-vs-2 cycle problem: Given graph 𝐺 that is promised to be either cycle 
on 𝑁 vertices or union of two cycles on 𝑁/2 vertices each,

decide if 𝐺 is connected.

versus

Theorem [SHT'24a]: 1-vs-2 cycle hypothesis implies 
necessity of Ω(log 𝑘) layers in transformers for 𝑘-hop

1-vs-2 cycle hypothesis (informal version):
Every "efficient" MPC algorithm must use 𝑅 = Ω log𝑁  rounds



3. Limitations of sequential neural architectures



Computational cost of transformers

For self-attention, quadratic computation appears to be inherent

𝑥! 𝑥" 𝑥# 𝑥$ …

𝑦! 𝑦" 𝑦# 𝑦$ …

Are there sub-quadratic alternatives to self-attention?



Sequential neural architectures

Recurrent neural network (RNN):
Initialize "hidden state" ℎ/
For 𝑡 = 1,2, … , 𝑁:

ℎ0 = update0 ℎ01!, 𝑥0
𝑦0 = output0(ℎ0 , 𝑥0)

𝑥! 𝑥" 𝑥# 𝑥$

ℎ' ℎ! ℎ" ℎ# ℎ$

…

…

𝑦! 𝑦" 𝑦# 𝑦$ …



Memory bottlenecks in RNNs

Theorem [SHT'23]:
Any RNN that computes 𝑁th output of (1-hop) induction head must use 
a Ω(𝑁)-bit hidden state

𝑥! 𝑥" 𝑥# 𝑥$

ℎ' ℎ! ℎ" ℎ# ℎ$

…

…

𝑦! 𝑦" 𝑦# 𝑦$ …



Further limitations for sequential architectures

Consequences of (Assadi and N, 2021) [SHT'24a] (informal version):
For 𝑘-hop induction head, "sequential architectures" require

"depth" ≥ 𝑘	 or	 "size" = Ω 𝑁/𝑘2

(Applies to multi-layer RNNs, shallow TF with "chain-of-thought", …)

(Recall: For standard transformer, depth = O(log 𝑘), size = 𝑂(log𝑁))



Aftermath and open problems

1. Role of depth for in-context learning
• At least two layers are necessary for primitive underlying in-context learning
• For 𝑘-fold compositions, log 𝑘 layers sufficient (and probably necessary)
• What are important function compositions in LLMs?

2. Transformers & MPC
• Coarse reductions between transformers and MPC
• How to characterize power of transformer "shuffle" operation?

3. Limitations of sequential neural architectures
• How do we get around these limitations?

Thank you!


