Learning Mixtures of Spherical Gaussians: Moment Methods and Spectral Decompositions

Daniel Hsu and Sham M. Kakade

Microsoft Research, New England

Also based on work with Anima Anandkumar (UCI), Rong Ge (Princeton), Matus Telgarsky (UCSD).

1

Unsupervised machine learning

Many applications in machine learning and statistics:

Lots of high-dimensional data, but mostly unlabeled.

Unsupervised machine learning

- Many applications in machine learning and statistics:
 - Lots of high-dimensional data, but mostly unlabeled.
- Unsupervised learning: discover interesting structure of population from unlabeled data.
 - > This talk: learn about sub-populations in data source.

Learning mixtures of Gaussians

Mixture of Gaussians: $\sum_{i=1}^{k} w_i \mathcal{N}(\vec{\mu}_i, \Sigma_i)$

k sub-populations;

each modeled as multivariate Gaussian $\mathcal{N}(\vec{\mu}_i, \Sigma_i)$ together with mixing weight w_i .

Learning mixtures of Gaussians

Mixture of Gaussians: $\sum_{i=1}^{k} w_i \mathcal{N}(\vec{\mu}_i, \Sigma_i)$

k sub-populations;

each modeled as multivariate Gaussian $\mathcal{N}(\vec{\mu}_i, \Sigma_i)$ together with mixing weight w_i .

Goal: efficient algorithm that approximately recovers parameters from samples.

Learning mixtures of Gaussians

Mixture of Gaussians: $\sum_{i=1}^{k} w_i \mathcal{N}(\vec{\mu}_i, \Sigma_i)$

k sub-populations; each modeled as multivariate Gaussian $\mathcal{N}(\vec{\mu}_i, \Sigma_i)$ together with mixing weight w_i .

Goal: efficient algorithm that approximately recovers parameters from samples.

(Alternative goal: density estimation. Not in this talk.)

▶ Input: i.i.d. sample $S \subset \mathbb{R}^d$ from unknown mixtures of Gaussians with parameters $\theta^* := \{(\vec{\mu}_i^*, \Sigma_i^*, w_i^*) : i \in [k]\}.$

- Input: i.i.d. sample S ⊂ ℝ^d from unknown mixtures of Gaussians with parameters θ^{*} := {(μ_i^{*}, Σ_i^{*}, w_i^{*}) : i ∈ [k]}.
- Each data point drawn from one of k Gaussians N(μ_i^{*}, Σ_i^{*}) (choose N(μ_i^{*}, Σ_i^{*}) with probability w_i^{*}.)

- Input: i.i.d. sample S ⊂ ℝ^d from unknown mixtures of Gaussians with parameters θ^{*} := {(μ_i^{*}, Σ_i^{*}, w_i^{*}) : i ∈ [k]}.
- Each data point drawn from one of k Gaussians N(μ_i^{*}, Σ_i^{*}) (choose N(μ_i^{*}, Σ_i^{*}) with probability w_i^{*}.)

But "labels" are not observed.

- Input: i.i.d. sample S ⊂ ℝ^d from unknown mixtures of Gaussians with parameters θ^{*} := {(μ_i^{*}, Σ_i^{*}, w_i^{*}) : i ∈ [k]}.
- Each data point drawn from one of k Gaussians N(μ_i^{*}, Σ_i^{*}) (choose N(μ_i^{*}, Σ_i^{*}) with probability w_i^{*}.)

- But "labels" are not observed.
- ► **Goal**: estimate parameters $\theta = \{(\vec{\mu}_i, \Sigma_i, w_i) : i \in [k]\}$ such that $\theta \approx \theta^*$.

- Input: i.i.d. sample S ⊂ ℝ^d from unknown mixtures of Gaussians with parameters θ^{*} := {(μ_i^{*}, Σ_i^{*}, w_i^{*}) : i ∈ [k]}.
- Each data point drawn from one of k Gaussians N(μ_i^{*}, Σ_i^{*}) (choose N(μ_i^{*}, Σ_i^{*}) with probability w_i^{*}.)

- But "labels" are not observed.
- ► **Goal**: estimate parameters $\theta = \{(\vec{\mu}_i, \Sigma_i, w_i) : i \in [k]\}$ such that $\theta \approx \theta^*$.
- In practice: local search for maximum-likelihood parameters (E-M algorithm).

When are there efficient algorithms?

Well-separated mixtures: estimation is easier if there is large minimum separation between component means (Dasgupta, '99):

 sep = Ω(d^c) or sep = Ω(k^c): simple clustering methods, perhaps after dimension reduction (Dasgupta, '99; Vempala-Wang, '02; and many more.)

When are there efficient algorithms?

Well-separated mixtures: estimation is easier if there is large minimum separation between component means (Dasgupta, '99):

 sep = Ω(d^c) or sep = Ω(k^c): simple clustering methods, perhaps after dimension reduction (Dasgupta, '99; Vempala-Wang, '02; and many more.)

Recent developments:

No minimum separation requirement, but current methods require exp(Ω(k)) running time / sample size (Kalai-Moitra-Valiant, '10; Belkin-Sinha, '10; Moitra-Valiant, '10)

Overcoming barriers to efficient estimation

Information-theoretic barrier:

Gaussian mixtures in \mathbb{R}^1 can require $\exp(\Omega(k))$ samples to estimate parameters, even when components are well-separated (Moitra-Valiant, '10).

Overcoming barriers to efficient estimation

Information-theoretic barrier:

Gaussian mixtures in \mathbb{R}^1 can require $\exp(\Omega(k))$ samples to estimate parameters, even when components are well-separated (Moitra-Valiant, '10).

These hard instances are degenerate in high-dimensions!

Overcoming barriers to efficient estimation

Information-theoretic barrier:

Gaussian mixtures in \mathbb{R}^1 can require $\exp(\Omega(k))$ samples to estimate parameters, even when components are well-separated (Moitra-Valiant, '10).

These hard instances are degenerate in high-dimensions!

Our result: efficient algorithms for *non-degenerate* models in high-dimensions ($d \ge k$) with *spherical covariances*.

Main result

Theorem (H-Kakade, '13)

Assume $\{\vec{\mu}_1^{\star}, \vec{\mu}_2^{\star}, \dots, \vec{\mu}_k^{\star}\}$ linearly independent, $w_i^{\star} > 0$ for all $i \in [k]$, and $\sum_i^{\star} = \sigma_i^{2\star} I$ for all $i \in [k]$.

There is an algorithm that, given independent draws from a mixture of k spherical Gaussians, returns ε -accurate parameters (up to permutation, under ℓ^2 metric) w.h.p.

The running time and sample complexity are

 $poly(d, k, 1/\varepsilon, 1/w_{min}, 1/\lambda_{min})$

where $\lambda_{\min} = k^{th}$ -largest singular value of $[\vec{\mu}_1^{\star} | \vec{\mu}_2^{\star} | \cdots | \vec{\mu}_k^{\star}]$.

(Also using new techniques from Anandkumar-Ge-H-Kakade-Telgarsky, '12.)

2. Learning algorithm

Introduction

Learning algorithm Method-of-moments Choice of moments Solving the moment equations

Concluding remarks

Method-of-moments

Let $S \subset \mathbb{R}^d$ be an i.i.d. sample from an unknown mixture of spherical Gaussians:

$$\vec{x} \sim \sum_{i=1}^{n} w_i^{\star} \mathcal{N}(\vec{\mu}_i^{\star}, \sigma_i^{2\star}\mathbf{I}).$$

Method-of-moments

Let $S \subset \mathbb{R}^d$ be an i.i.d. sample from an unknown mixture of spherical Gaussians:

$$\vec{\mathbf{x}} \sim \sum_{i=1}^{n} \mathbf{w}_{i}^{\star} \mathcal{N}(\vec{\mu}_{i}^{\star}, \sigma_{i}^{2\star}\mathbf{I}).$$

Estimation via method-of-moments (Pearson, 1894)

Find parameters θ such that

$$\mathbb{E}_{\theta}[\rho(\vec{x})] \approx \hat{\mathbb{E}}_{\vec{x}\in\mathcal{S}}[\rho(\vec{x})]$$

for some functions $p : \mathbb{R}^d \to \mathbb{R}$ (typically multivar. polynomials).

Method-of-moments

Let $S \subset \mathbb{R}^d$ be an i.i.d. sample from an unknown mixture of spherical Gaussians:

$$\vec{\mathbf{x}} \sim \sum_{i=1}^{n} \mathbf{w}_{i}^{\star} \mathcal{N}(\vec{\mu}_{i}^{\star}, \sigma_{i}^{2\star}\mathbf{I}).$$

Estimation via method-of-moments (Pearson, 1894)

Find parameters θ such that

$$\mathbb{E}_{\theta}[\rho(\vec{x})] \approx \hat{\mathbb{E}}_{\vec{x}\in\mathcal{S}}[\rho(\vec{x})]$$

for some functions $p : \mathbb{R}^d \to \mathbb{R}$ (typically multivar. polynomials).

Q1 Which moments to use?

Q2 How to (approx.) solve moment equations?

moment order	reliable estimates?	unique solution?
1 st , 2 nd		

1st- and 2nd-order moments (e.g., mean, covariance)

moment order	reliable estimates?	unique solution?
1 st , 2 nd	 Image: A set of the set of the	

1st- and 2nd-order moments (e.g., mean, covariance)

Fairly easy to get reliable estimates.

 $\mathbb{E}_{\vec{x}\in S}[\vec{x}\otimes\vec{x}]\approx\mathbb{E}_{\theta^{\star}}[\vec{x}\otimes\vec{x}]$

moment order	reliable estimates?	unique solution?
1 st , 2 nd	\checkmark	×

1st- and 2nd-order moments (e.g., mean, covariance)

Fairly easy to get reliable estimates.

 $\mathbb{E}_{\vec{x}\in\mathcal{S}}[\vec{x}\otimes\vec{x}]\approx\mathbb{E}_{\theta^{\star}}[\vec{x}\otimes\vec{x}]$

Can have multiple solutions to moment equations.

 $\mathbb{E}_{\theta_1}[\vec{x} \otimes \vec{x}] \approx \mathbb{E}_{\vec{x} \in S}[\vec{x} \otimes \vec{x}] \approx \mathbb{E}_{\theta_2}[\vec{x} \otimes \vec{x}], \quad \theta_1 \neq \theta_2$

moment order	reliable estimates?	unique solution?
1 st , 2 nd	\checkmark	×
$\Omega(k)^{th}$		

 $\Omega(k)^{\text{th}}$ -order moments $(e.g., \mathbb{E}_{\theta}[\text{degree-}k\text{-poly}(\vec{x})])$

moment order	reliable estimates?	unique solution?
1 st , 2 nd	\checkmark	×
$\Omega(k)^{th}$		✓

 $\Omega(k)^{\text{th}}$ -order moments (*e.g.*, $\mathbb{E}_{\theta}[\text{degree-}k\text{-poly}(\vec{x})])$

Uniquely pins down the solution.

moment order	reliable estimates?	unique solution?
1 st , 2 nd	\checkmark	×
$\Omega(k)^{th}$	×	>

 $\Omega(k)^{\text{th}}$ -order moments (*e.g.*, $\mathbb{E}_{\theta}[\text{degree-}k\text{-poly}(\vec{x})])$

- Uniquely pins down the solution.
- Empirical estimates very unreliable.

moment order	reliable estimates?	unique solution?
1 st , 2 nd	\checkmark	×
$\Omega(k)^{th}$	×	✓

Can we get best-of-both-worlds?

moment order	reliable estimates?	unique solution?
1 st , 2 nd	\checkmark	×
$\Omega(k)^{th}$	×	>

Can we get best-of-both-worlds? Yes!

In high-dimensions ($d \ge k$), low-order multivariate moments suffice.

(1st-, 2nd-, and 3rd-order moments)

Second- and third-order multivariate moments:

$$\mathbb{E}_{\theta}[\vec{x} \otimes \vec{x}] = \sum_{i=1}^{k} \mathbf{w}_{i} \ \vec{\mu}_{i} \otimes \vec{\mu}_{i} + \text{ some sparse matrix;}$$
$$\mathbb{E}_{\theta}[\vec{x} \otimes \vec{x} \otimes \vec{x}] = \sum_{i=1}^{k} \mathbf{w}_{i} \ \vec{\mu}_{i} \otimes \vec{\mu}_{i} \otimes \vec{\mu}_{i} + \text{ some sparse tensor.}$$

Second- and third-order multivariate moments:

$$\mathbb{E}_{\theta}[\vec{x} \otimes \vec{x}] = \sum_{i=1}^{k} \mathbf{w}_{i} \ \vec{\mu}_{i} \otimes \vec{\mu}_{i} + \text{ some sparse matrix;}$$
$$\mathbb{E}_{\theta}[\vec{x} \otimes \vec{x} \otimes \vec{x}] = \sum_{i=1}^{k} \mathbf{w}_{i} \ \vec{\mu}_{i} \otimes \vec{\mu}_{i} \otimes \vec{\mu}_{i} + \text{ some sparse tensor.}$$

Trick: "sparse stuff" can be estimated and thus removed.

Second- and third-order multivariate moments:

$$\mathbb{E}_{\theta}[\vec{x} \otimes \vec{x}] = \sum_{i=1}^{k} \mathbf{w}_{i} \ \vec{\mu}_{i} \otimes \vec{\mu}_{i} + \text{ some sparse matrix;}$$
$$\mathbb{E}_{\theta}[\vec{x} \otimes \vec{x} \otimes \vec{x}] = \sum_{i=1}^{k} \mathbf{w}_{i} \ \vec{\mu}_{i} \otimes \vec{\mu}_{i} \otimes \vec{\mu}_{i} + \text{ some sparse tensor.}$$

Trick: "sparse stuff" can be estimated and thus removed.

Upshot: the following can be readily estimated (with \widehat{M} , \widehat{T}).

$$M_{\theta^{\star}} := \sum_{i=1}^{k} w_{i}^{\star} \vec{\mu}_{i}^{\star} \otimes \vec{\mu}_{i}^{\star} \quad \text{and} \quad T_{\theta^{\star}} := \sum_{i=1}^{k} w_{i}^{\star} \vec{\mu}_{i}^{\star} \otimes \vec{\mu}_{i}^{\star} \otimes \vec{\mu}_{i}^{\star}.$$

Second- and third-order multivariate moments:

$$\mathbb{E}_{\theta}[\vec{x} \otimes \vec{x}] = \sum_{i=1}^{k} \mathbf{w}_{i} \ \vec{\mu}_{i} \otimes \vec{\mu}_{i} + \text{ some sparse matrix;}$$
$$\mathbb{E}_{\theta}[\vec{x} \otimes \vec{x} \otimes \vec{x}] = \sum_{i=1}^{k} \mathbf{w}_{i} \ \vec{\mu}_{i} \otimes \vec{\mu}_{i} \otimes \vec{\mu}_{i} + \text{ some sparse tensor.}$$

Trick: "sparse stuff" can be estimated and thus removed.

Upshot: the following can be readily estimated (with \widehat{M} , \widehat{T}).

$$M_{\theta^{\star}} := \sum_{i=1}^{k} \mathbf{w}_{i}^{\star} \,\vec{\mu}_{i}^{\star} \otimes \vec{\mu}_{i}^{\star} \quad \text{and} \quad T_{\theta^{\star}} := \sum_{i=1}^{k} \mathbf{w}_{i}^{\star} \,\vec{\mu}_{i}^{\star} \otimes \vec{\mu}_{i}^{\star} \otimes \vec{\mu}_{i}^{\star}.$$

Claim: $\{(\vec{\mu}_i, w_i)\}$ uniquely determined by M_{θ} and T_{θ} .

Variational argument for parameter uniquness

View $M_{\theta} : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ and $T_{\theta} : \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ as bi-linear and tri-linear functions.

Variational argument for parameter uniquness

View $M_{\theta} : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ and $T_{\theta} : \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ as bi-linear and tri-linear functions.

Lemma

If $\{\vec{\mu}_i\}$ are linearly independent and all $w_i > 0$, then each of the k distinct, isolated local maximizers \vec{u}^* of

$$\max_{\vec{u}\in\mathbb{R}^d} T_{\theta}(\vec{u},\vec{u},\vec{u}) \quad s.t. \quad M_{\theta}(\vec{u},\vec{u}) \leq 1$$

satisfies, for some $i \in [k]$,

 $M_{\theta}(\cdot,\vec{u}^*) = \sqrt{w_i} \ \vec{\mu}_i, \qquad T_{\theta}(\vec{u}^*,\vec{u}^*,\vec{u}^*) = \frac{1}{\sqrt{w_i}}.$

Variational argument for parameter uniquness

View $M_{\theta} : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ and $T_{\theta} : \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ as bi-linear and tri-linear functions.

Lemma

If $\{\vec{\mu}_i\}$ are linearly independent and all $w_i > 0$, then each of the k distinct, isolated local maximizers \vec{u}^* of

 $\max_{\vec{u}\in\mathbb{R}^d} T_{\theta}(\vec{u},\vec{u},\vec{u}) \quad s.t. \quad M_{\theta}(\vec{u},\vec{u}) \leq 1$

satisfies, for some $i \in [k]$,

 $M_{\theta}(\cdot, \vec{u}^*) = \sqrt{w_i} \, \vec{\mu}_i, \qquad T_{\theta}(\vec{u}^*, \vec{u}^*, \vec{u}^*) = \frac{1}{\sqrt{w_i}}.$

 $\therefore \{(\vec{\mu_i}, w_i) : i \in [k]\}$ uniquely determined by M_{θ}, T_{θ} .

 $\max_{\vec{u} \in \mathbb{R}^d} T_{\theta}(\vec{u},\vec{u},\vec{u}) \text{ s.t. } M_{\theta}(\vec{u},\vec{u}) \leq 1$

$$\max_{\vec{u} \in \mathbb{R}^d} \sum_{i=1}^k \frac{w_i}{\langle \vec{\mu_i}, \vec{u} \rangle^3} \text{ s.t. } \sum_{i=1}^k \frac{w_i}{\langle \vec{\mu_i}, \vec{u} \rangle^2} \le 1$$

$$\max_{\vec{u} \in \mathbb{R}^d} \sum_{i=1}^k w_i \ \langle \vec{\mu_i}, \vec{u} \rangle^3 \ \text{ s.t. } \sum_{i=1}^k w_i \ \langle \vec{\mu_i}, \vec{u} \rangle^2 \leq 1$$

Maximizers are directions \vec{u}^* orthogonal to all but one $\vec{\mu}_i$.

$$\max_{\vec{u} \in \mathbb{R}^d} \sum_{i=1}^k w_i \ \langle \vec{\mu}_i, \vec{u} \rangle^3 \ \text{ s.t. } \sum_{i=1}^k w_i \ \langle \vec{\mu}_i, \vec{u} \rangle^2 \leq 1$$

Maximizers are directions \vec{u}^* orthogonal to all but one $\vec{\mu}_i$.

Combine with constraints $w_j \langle \vec{\mu}_j, \vec{u}^* \rangle^2 \leq 1$ to get

$$M\vec{u}^* = \left(\sum_{i=1}^k \mathbf{w}_i \ \vec{\mu}_i \otimes \vec{\mu}_i\right) \vec{u}^* = \sum_{i=1}^k \mathbf{w}_i \ \vec{\mu}_i \langle \vec{\mu}_i, \vec{u}^* \rangle = \pm \sqrt{\mathbf{w}_j} \ \vec{\mu}_j. \blacksquare$$

Effectively want to solve

$$\min_{\theta} \|T_{\theta} - \widehat{T}\|^2 \quad \text{s.t.} \quad M_{\theta} = \widehat{M}. \tag{\dagger}$$

Effectively want to solve

$$\min_{\theta} \| T_{\theta} - \widehat{T} \|^2 \quad \text{s.t.} \quad M_{\theta} = \widehat{M}. \tag{\dagger}$$

Not convex in parameters $\theta = \{(\vec{\mu}_i, w_i)\}$.

Effectively want to solve

$$\min_{\theta} \| T_{\theta} - \hat{T} \|^2 \quad \text{s.t.} \quad M_{\theta} = \hat{M}. \tag{\dagger}$$

Not convex in parameters $\theta = \{(\vec{\mu}_i, w_i)\}$.

What we do: find one component $(\vec{\mu}_i, w_i)$ at a time, using local optimization of related (also non-convex) objective function.

$$\max_{\vec{u}\in\mathbb{R}^d} \sum_{i,j,k} \widehat{T}_{i,j,k} \ u_i u_j u_k \quad \text{s.t.} \quad \sum_{i,j} \widehat{M}_{i,j} \ u_i u_j \leq 1 \tag{\ddagger}$$

Effectively want to solve

$$\min_{\theta} \| T_{\theta} - \widehat{T} \|^2 \quad \text{s.t.} \quad M_{\theta} = \widehat{M}. \tag{\dagger}$$

Not convex in parameters $\theta = \{(\vec{\mu}_i, w_i)\}$.

What we do: find one component $(\vec{\mu}_i, w_i)$ at a time, using local optimization of related (also non-convex) objective function.

$$\max_{\vec{u}\in\mathbb{R}^d} \quad \widehat{T}(\vec{u},\vec{u},\vec{u}) \quad \text{s.t.} \quad \widehat{M}(\vec{u},\vec{u}) \le 1 \tag{\ddagger}$$

Effectively want to solve

$$\min_{\theta} \| T_{\theta} - \widehat{T} \|^2 \quad \text{s.t.} \quad M_{\theta} = \widehat{M}. \tag{(\dagger)}$$

Not convex in parameters $\theta = \{(\vec{\mu}_i, w_i)\}$.

What we do: find one component $(\vec{\mu}_i, w_i)$ at a time, using local optimization of related (also non-convex) objective function.

Effectively want to solve

$$\min_{\theta} \| T_{\theta} - \widehat{T} \|^2 \quad \text{s.t.} \quad M_{\theta} = \widehat{M}. \tag{(\dagger)}$$

Not convex in parameters $\theta = \{(\vec{\mu}_i, w_i)\}$.

What we do: find one component $(\vec{\mu}_i, w_i)$ at a time, using local optimization of related (also non-convex) objective function.

New robust algorithm for "tensor eigen-decomposition" efficiently approximates *all* local optima, each corresponding to a component. \rightarrow Near-optimal solution to (†).

Want to find all local maximizers of

$$\max_{\vec{u}\in\mathbb{R}^d} \quad \widehat{T}(\vec{u},\vec{u},\vec{u}) \quad \text{s.t.} \quad \widehat{M}(\vec{u},\vec{u}) \le 1. \tag{\ddagger}$$

Must address initialization and convergence issues.

Want to find all local maximizers of

$$\max_{\vec{u}\in\mathbb{R}^d} \ \widehat{T}(\vec{u},\vec{u},\vec{u}) \quad \text{s.t.} \ \widehat{M}(\vec{u},\vec{u}) \le 1.$$
 (‡)

Must address initialization and convergence issues.

Crucially using special tensor structure of $\hat{T} \approx T_{\theta^*}$, together with non-linearity of $\vec{u} \mapsto \hat{T}(\cdot, \vec{u}, \vec{u})$:

Random initialization is good with significant probability.
 ("Good" ⇒ simple iteration will quickly converge to some local max.)

Want to find all local maximizers of

$$\max_{\vec{u}\in\mathbb{R}^d} \ \widehat{T}(\vec{u},\vec{u},\vec{u}) \quad \text{s.t.} \ \widehat{M}(\vec{u},\vec{u}) \le 1.$$
 (‡)

Must address initialization and convergence issues.

Crucially using special tensor structure of $\hat{T} \approx T_{\theta^*}$, together with non-linearity of $\vec{u} \mapsto \hat{T}(\cdot, \vec{u}, \vec{u})$:

- Random initialization is good with significant probability.
 ("Good" ⇒ simple iteration will quickly converge to some local max.)
- Can check if initialization was good by checking objective value after a few steps.

Want to find all local maximizers of

$$\max_{\vec{u}\in\mathbb{R}^d} \ \widehat{T}(\vec{u},\vec{u},\vec{u}) \quad \text{s.t.} \ \widehat{M}(\vec{u},\vec{u}) \le 1.$$
 (‡)

Must address initialization and convergence issues.

Crucially using special tensor structure of $\hat{T} \approx T_{\theta^*}$, together with non-linearity of $\vec{u} \mapsto \hat{T}(\cdot, \vec{u}, \vec{u})$:

- Random initialization is good with significant probability.
 ("Good" ⇒ simple iteration will quickly converge to some local max.)
- Can check if initialization was good by checking objective value after a few steps.
 - If value large enough: initialization was good; improve by taking a few more steps.

Want to find all local maximizers of

$$\max_{\vec{u}\in\mathbb{R}^d} \ \widehat{T}(\vec{u},\vec{u},\vec{u}) \quad \text{s.t.} \ \widehat{M}(\vec{u},\vec{u}) \le 1.$$
 (‡)

Must address initialization and convergence issues.

Crucially using special tensor structure of $\hat{T} \approx T_{\theta^*}$, together with non-linearity of $\vec{u} \mapsto \hat{T}(\cdot, \vec{u}, \vec{u})$:

- Random initialization is good with significant probability.
 ("Good" ⇒ simple iteration will quickly converge to some local max.)
- Can check if initialization was good by checking objective value after a few steps.
 - If value large enough: initialization was good; improve by taking a few more steps.
 - Else: abandon and restart.

3. Concluding remarks

Introduction

Learning algorithm

Concluding remarks

Open problems and summary

 Can also handle mixtures of Gaussians with somewhat more general covariances, under incoherence conditions

$$\mathbb{E}_{\theta}[\vec{x} \otimes \vec{x}] = \underbrace{\sum_{i=1}^{k} w_{i} \ \vec{\mu}_{i} \otimes \vec{\mu}_{i}}_{\text{low-rank}} + \text{ some sparse matrix}$$

 Can also handle mixtures of Gaussians with somewhat more general covariances, under incoherence conditions

$$\mathbb{E}_{\theta}[\vec{x} \otimes \vec{x}] = \underbrace{\sum_{i=1}^{k} w_{i} \ \vec{\mu}_{i} \otimes \vec{\mu}_{i}}_{\text{low-rank}} + \text{ some sparse matrix}$$

Question #1: What about mixtures of Gaussians with arbitrary covariances?

 Can also handle mixtures of Gaussians with somewhat more general covariances, under incoherence conditions

$$\mathbb{E}_{\theta}[\vec{x} \otimes \vec{x}] = \underbrace{\sum_{i=1}^{k} w_{i} \ \vec{\mu}_{i} \otimes \vec{\mu}_{i}}_{\text{low-rank}} + \text{ some sparse matrix}$$

- Question #1: What about mixtures of Gaussians with arbitrary covariances?
- Question #2: How to handle degenerate cases / k >> d? (Practical relevance: automatic speech recognition)

 Learning mixtures of spherical Gaussians: worst-case (information-theoretically) hard, but non-degenerate cases are easy.

- Learning mixtures of spherical Gaussians: worst-case (information-theoretically) hard, but non-degenerate cases are easy.
 - Structure in low-order multivariate moments uniquely determines model parameters under natural non-degeneracy condition;
 - \Rightarrow permits computationally efficient algorithm for estimation.

- Learning mixtures of spherical Gaussians: worst-case (information-theoretically) hard, but non-degenerate cases are easy.
 - Structure in low-order multivariate moments uniquely determines model parameters under natural non-degeneracy condition;

 \Rightarrow permits computationally efficient algorithm for estimation.

 Similar story for many other statistical models (*e.g.*, HMMs (Mossel-Roch, '06; H-Kakade-Zhang, '09), topic models (Arora-Ge-Moitra, '12; Anandkumar *et al*, '12), ICA (Arora *et al*, '12)).

- Learning mixtures of spherical Gaussians: worst-case (information-theoretically) hard, but non-degenerate cases are easy.
 - Structure in low-order multivariate moments uniquely determines model parameters under natural non-degeneracy condition;

 \Rightarrow permits computationally efficient algorithm for estimation.

- Similar story for many other statistical models (*e.g.*, HMMs (Mossel-Roch, '06; H-Kakade-Zhang, '09), topic models (Arora-Ge-Moitra, '12; Anandkumar *et al*, '12), ICA (Arora *et al*, '12)).
- Open problem: efficient estimators for highly over-complete and general mixture models (k >> d).

Thanks!

Related survey/overview-ish paper:

 Tensor decompositions for latent variable models (with Anandkumar, Ge, Kakade, and Telgarsky): http://arxiv.org/abs/1210.7559

Structure of low-order moments

First-order moments:

$$\mathbb{E}[\vec{x}] = \sum_{i=1}^{k} \mathbf{w}_i \, \vec{\mu}_i.$$

Second-order moments:

$$\mathbb{E}[\vec{x} \otimes \vec{x}] = \sum_{i=1}^{k} \mathbf{w}_{i} \, \vec{\mu}_{i} \otimes \vec{\mu}_{i} + \bar{\sigma}^{2} \mathbf{I}$$

where $\bar{\sigma}^2 := \sum_{i=1}^k \mathbf{w}_i \sigma_i^2$.

Fact: $\bar{\sigma}^2$ is the smallest eigenvalue of $\text{Cov}(\vec{x}) = \mathbb{E}[\vec{x} \otimes \vec{x}] - \mathbb{E}[\vec{x}] \otimes \mathbb{E}[\vec{x}].$

Structure of low-order moments

Third-order moments:

$$\mathbb{E}[\vec{x} \otimes \vec{x} \otimes \vec{x}] = \sum_{i=1}^{k} w_{i} \vec{\mu}_{i} \otimes \vec{\mu}_{i} \otimes \vec{\mu}_{i} \\ + \sum_{i=1}^{d} \vec{m} \otimes e_{i} \otimes e_{i} + e_{i} \otimes \vec{m} \otimes e_{i} + e_{i} \otimes \vec{m}$$

where $\vec{m} := \sum_{i=1}^{k} w_i \sigma_i^2 \vec{\mu}_i$.

Fact: $\vec{m} = \mathbb{E}[(\vec{u}^{\top}(\vec{x} - \mathbb{E}[\vec{x}]))^2 \vec{x}]$ for any unit-norm eigenvector \vec{u} of Cov (\vec{x}) corresponding to eigenvalue $\bar{\sigma}^2$.

$$\max_{\vec{u}\in\mathbb{R}^d} T(\vec{u},\vec{u},\vec{u}) \text{ s.t. } M(\vec{u},\vec{u}) \leq 1$$

$$\max_{\vec{u}\in\mathbb{R}^d}\sum_{i=1}^k \frac{w_i \langle \vec{\mu}_i, \vec{u} \rangle^3}{\text{s.t.}} \sum_{i=1}^k \frac{w_i \langle \vec{\mu}_i, \vec{u} \rangle^2 \leq 1}{|\vec{u}_i|^2}$$

$$\max_{\vec{\theta} \in \mathbb{R}^{k}} \sum_{i=1}^{k} \frac{1}{\sqrt{w_{i}}} \theta_{i}^{3} \text{ s.t. } \sum_{i=1}^{k} \theta_{i}^{2} \leq 1$$
$$(\theta_{i} := \sqrt{w_{i}} \langle \vec{\mu}_{i}, \vec{u} \rangle.)$$

$$\max_{\vec{\theta} \in \mathbb{R}^{k}} \sum_{i=1}^{k} \frac{1}{\sqrt{w_{i}}} \theta_{i}^{3} \text{ s.t. } \sum_{i=1}^{k} \theta_{i}^{2} \leq 1$$
$$(\theta_{i} := \sqrt{w_{i}} \langle \vec{\mu}_{i}, \vec{u} \rangle.)$$

Isolated local maxima are $\frac{1}{\sqrt{w_1}}, \frac{1}{\sqrt{w_2}}, \ldots$, achieved at

$$(1, 0, 0, \dots), (0, 1, 0, \dots), \dots$$

$$\max_{\vec{\theta} \in \mathbb{R}^k} \sum_{i=1}^k \frac{1}{\sqrt{w_i}} \theta_i^3 \text{ s.t. } \sum_{i=1}^k \theta_i^2 \le 1$$
$$(\theta_i := \sqrt{w_i} \langle \vec{\mu}_i, \vec{u} \rangle.)$$

Isolated local maxima are $\frac{1}{\sqrt{w_1}}, \frac{1}{\sqrt{w_2}}, \ldots$, achieved at

$$(1,0,0,\ldots), (0,1,0,\ldots), \ldots$$

Translates to directions \vec{u}^* orthogonal to all but one $\vec{\mu}_i$.

