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Unsupervised machine learning

I Many applications in machine learning and statistics:
I Lots of high-dimensional data, but mostly unlabeled.

I Unsupervised learning: discover interesting structure of
population from unlabeled data.

I This talk: learn about sub-populations in data source.
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Learning mixtures of Gaussians

Mixture of Gaussians:
∑k

i=1 wi N (~µi , Σi)

k sub-populations;
each modeled as multivariate Gaussian N (~µi , Σi )

together with mixing weight wi .

Goal: efficient algorithm that approximately recovers
parameters from samples.

(Alternative goal: density estimation. Not in this talk.)
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Learning setup
I Input: i.i.d. sample S ⊂ Rd from unknown mixtures of

Gaussians with parameters θ? := {(~µi
?, Σ?

i ,wi
?) : i ∈ [k ]}.

I Each data point drawn from one of k Gaussians N (~µi
?, Σ?

i )
(choose N (~µi

?, Σ?
i ) with probability wi

?.)

I But “labels” are not observed.

I Goal: estimate parameters θ = {(~µi , Σi ,wi) : i ∈ [k ]}
such that θ ≈ θ?.

I In practice: local search for maximum-likelihood
parameters (E-M algorithm).
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When are there efficient algorithms?

Well-separated mixtures: estimation is easier if there is large
minimum separation between component means (Dasgupta, ’99):

sep sep := min
i 6=j

‖~µi − ~µj‖
max{σi , σj}

.

I sep = Ω(dc) or sep = Ω(kc): simple clustering methods,
perhaps after dimension reduction
(Dasgupta, ’99; Vempala-Wang, ’02; and many more.)

Recent developments:
I No minimum separation requirement, but current methods

require exp(Ω(k)) running time / sample size
(Kalai-Moitra-Valiant, ’10; Belkin-Sinha, ’10; Moitra-Valiant, ’10)
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Overcoming barriers to efficient estimation
Information-theoretic barrier:

Gaussian mixtures in R1 can require
exp(Ω(k)) samples to estimate parameters,
even when components are well-separated
(Moitra-Valiant, ’10).

These hard instances are degenerate in high-dimensions!

Our result: efficient algorithms for non-degenerate models
in high-dimensions (d ≥ k ) with spherical covariances.
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Main result

Theorem (H-Kakade, ’13)

Assume {~µ1
?, ~µ2

?, . . . , ~µk
?} linearly independent, wi

? > 0 for
all i ∈ [k ], and Σ?

i = σ2
i
?I for all i ∈ [k ].

There is an algorithm that, given independent draws from a
mixture of k spherical Gaussians, returns ε-accurate
parameters (up to permutation, under `2 metric) w.h.p.

The running time and sample complexity are

poly(d , k ,1/ε,1/wmin,1/λmin)

where λmin = k th-largest singular value of [~µ1
?|~µ2

?| · · · |~µk
?].

(Also using new techniques from Anandkumar-Ge-H-Kakade-Telgarsky, ’12.)
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2. Learning algorithm

Introduction

Learning algorithm
Method-of-moments
Choice of moments
Solving the moment equations

Concluding remarks

8



Method-of-moments

Let S ⊂ Rd be an i.i.d. sample from an unknown mixture of
spherical Gaussians:

~x ∼
k∑

i=1

wi
?N (~µi

?, σ2
i
?I).

Estimation via method-of-moments (Pearson, 1894)

Find parameters θ such that

Eθ[ p(~x) ] ≈ Ê~x∈S[ p(~x) ]

for some functions p : Rd → R (typically multivar. polynomials).

Q1 Which moments to use?
Q2 How to (approx.) solve moment equations?
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Which moments to use?
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Which moments to use?

moment order reliable estimates? unique solution?
1st, 2nd

1st- and 2nd-order moments (e.g., mean, covariance)

[Achlioptas-McSherry, ’05]

1st 2nd Ω(k)thorder of moments

[Vempala-Wang, ’02]

[Chaudhuri-Rao, ’08]
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Which moments to use?

moment order reliable estimates? unique solution?
1st, 2nd 3 7

Ω(k)th 7 3

Can we get best-of-both-worlds? Yes!

In high-dimensions (d ≥ k ),
low-order multivariate moments suffice.

(1st-, 2nd-, and 3rd-order moments)

[Achlioptas-McSherry, ’05]

1st 2nd Ω(k)th

[Prony, 1795]
[Lindsay, ’89]

order of moments

[Belkin-Sinha, ’10]
[Moitra-Valiant, ’10]

[Vempala-Wang, ’02]

[Chaudhuri-Rao, ’08] this work
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Structure of low-order multivariate moments
Second- and third-order multivariate moments:

Eθ[~x ⊗ ~x] =
k∑

i=1

wi ~µi ⊗ ~µi + some sparse matrix;

Eθ[~x ⊗ ~x ⊗ ~x] =
k∑

i=1

wi ~µi ⊗ ~µi ⊗ ~µi + some sparse tensor.

Trick: “sparse stuff” can be estimated and thus removed.

Upshot: the following can be readily estimated (with M̂, T̂ ).

Mθ? :=
k∑

i=1

wi
? ~µi

?⊗ ~µi
? and Tθ? :=

k∑
i=1

wi
? ~µi

?⊗ ~µi
?⊗ ~µi

?.

Claim: {(~µi ,wi)} uniquely determined by Mθ and Tθ.
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Variational argument for parameter uniquness

View Mθ : Rd × Rd → R and Tθ : Rd × Rd × Rd → R
as bi-linear and tri-linear functions.

Lemma
If {~µi} are linearly independent and all wi > 0, then
each of the k distinct, isolated local maximizers ~u∗ of

max
~u∈Rd

Tθ(~u, ~u, ~u) s.t. Mθ(~u, ~u) ≤ 1

satisfies, for some i ∈ [k ],

Mθ(·, ~u∗) =
√

wi ~µi , Tθ(~u∗, ~u∗, ~u∗) =
1√
wi
.

∴ {(~µi ,wi) : i ∈ [k ]} uniquely determined by Mθ,Tθ.
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Main idea for variational lemma

max
~u∈Rd

Tθ(~u, ~u, ~u) s.t. Mθ(~u, ~u) ≤ 1

Maximizers are directions ~u∗ orthogonal to all but one ~µj .

~µ2

~µ3

~u∗ ~µ1

Combine with constraints wj〈~µj , ~u∗〉2 ≤ 1 to get

M~u∗ =

( k∑
i=1

wi ~µi ⊗ ~µi

)
~u∗ =

k∑
i=1

wi ~µi〈~µi , ~u∗〉 = ±
√

wj ~µj .

13
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How to solve the moment equations?

Effectively want to solve

minθ ‖Tθ − T̂‖2 s.t. Mθ = M̂. (†)

Not convex in parameters θ = {(~µi ,wi)}.

What we do: find one component (~µi ,wi) at a time, using
local optimization of related (also non-convex) objective function.

New robust algorithm for “tensor eigen-decomposition”
efficiently approximates all local optima, each corresponding to
a component. −→ Near-optimal solution to (†).
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Local optimization

Want to find all local maximizers of

max
~u∈Rd

T̂ (~u, ~u, ~u) s.t. M̂(~u, ~u) ≤ 1. (‡)

Must address initialization and convergence issues.

Crucially using special tensor structure of T̂ ≈ Tθ? ,
together with non-linearity of ~u 7→ T̂ ( · , ~u, ~u):

I Random initialization is good with significant probability.
(“Good”⇒ simple iteration will quickly converge to some local max.)

I Can check if initialization was good by checking objective
value after a few steps.

I If value large enough: initialization was good; improve by
taking a few more steps.

I Else: abandon and restart.
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Some open problems

I Can also handle mixtures of Gaussians with somewhat
more general covariances, under incoherence conditions

Eθ[~x ⊗ ~x] =
k∑

i=1

wi ~µi ⊗ ~µi︸ ︷︷ ︸
low-rank

+ some sparse matrix

I Question #1: What about mixtures of Gaussians with
arbitrary covariances?

I Question #2: How to handle degenerate cases / k � d?
(Practical relevance: automatic speech recognition)
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Summary

I Learning mixtures of spherical Gaussians:
worst-case (information-theoretically) hard, but
non-degenerate cases are easy.

I Structure in low-order multivariate moments uniquely
determines model parameters under natural
non-degeneracy condition;
⇒ permits computationally efficient algorithm for estimation.

I Similar story for many other statistical models
(e.g., HMMs (Mossel-Roch, ’06; H-Kakade-Zhang, ’09),
topic models (Arora-Ge-Moitra, ’12; Anandkumar et al, ’12),
ICA (Arora et al, ’12)).

I Open problem: efficient estimators for highly
over-complete and general mixture models (k � d).
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Thanks!

Related survey/overview-ish paper:

I Tensor decompositions for latent variable models
(with Anandkumar, Ge, Kakade, and Telgarsky):
http://arxiv.org/abs/1210.7559
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Structure of low-order moments

I First-order moments:

E[~x] =
k∑

i=1

wi ~µi .

I Second-order moments:

E[~x ⊗ ~x] =
k∑

i=1

wi ~µi ⊗ ~µi + σ̄2I

where σ̄2 :=
∑k

i=1 wi σ
2
i .

Fact: σ̄2 is the smallest eigenvalue of
Cov(~x) = E[~x ⊗ ~x]− E[~x]⊗ E[~x].
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Structure of low-order moments

I Third-order moments:

E[~x ⊗ ~x ⊗ ~x] =
k∑

i=1

wi ~µi ⊗ ~µi ⊗ ~µi

+
d∑

i=1

~m ⊗ ei ⊗ ei + ei ⊗ ~m ⊗ ei + ei ⊗ ei ⊗ ~m

where ~m :=
∑k

i=1 wi σ
2
i ~µi .

Fact: ~m = E[ (~u>(~x − E[~x]))2 ~x ] for any unit-norm
eigenvector ~u of Cov(~x) corresponding to eigenvalue σ̄2.
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Proof idea for optimization lemma

max
~u∈Rd

T (~u, ~u, ~u) s.t. M(~u, ~u) ≤ 1

(θi :=
√

wi〈~µi , ~u〉.)

Isolated local maxima are 1√
w1
, 1√

w2
, . . . , achieved at

(1,0,0, . . . ), (0,1,0, . . . ), . . .

Translates to directions ~u∗ orthogonal to all but one ~µj .

~µ2

~µ3

~u∗ ~µ1
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