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ABSTRACT
This work provides a computationally efficient and statis-
tically consistent moment-based estimator for mixtures of
spherical Gaussians. Under the condition that component
means are in general position, a simple spectral decompo-
sition technique yields consistent parameter estimates from
low-order observable moments, without additional minimum
separation assumptions needed by previous computationally
efficient estimation procedures. Thus computational and
information-theoretic barriers to efficient estimation in mix-
ture models are precluded when the mixture components
have means in general position and spherical covariances.
Some connections are made to estimation problems related
to independent component analysis.

Categories and Subject Descriptors
I.2.6 [Learning]: Parameter learning

General Terms
Algorithms, Theory

Keywords
Mixtures of Gaussians; mixture models; method of moments;
spectral decomposition

1. INTRODUCTION
The Gaussian mixture model [25, 26] is one of the most

well-studied and widely-used models in applied statistics and
machine learning. An important special case of this model
(the primary focus of this work) restricts the Gaussian com-
ponents to have spherical covariance matrices; this prob-
abilistic model is closely related to the (non-probabilistic)
k-means clustering problem [21].
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The mixture of spherical Gaussians model is specified as
follows. Let wi be the probability of choosing component i ∈
[k] := {1, 2, . . . , k}, let µ1, µ2, . . . , µk ∈ Rd be the component
mean vectors, and let σ2

1 , σ
2
2 , . . . , σ

2
k ≥ 0 be the component

variances. Define

w := [w1, w2, . . . , wk]> ∈ Rk, A := [µ1|µ2| · · · |µk] ∈ Rd×k;

so w is a probability vector, and A is the matrix whose
columns are the component means. Let x ∈ Rk be the (ob-
served) random vector given by

x := µh + z,

where h is the discrete random variable with Pr(h = i) = wi
for i ∈ [k], and z is a random vector whose conditional
distribution given h = i (for some i ∈ [k]) is the multivariate
Gaussian N (0, σ2

i I) with mean zero and covariance σ2
i I.

The estimation task is to accurately recover the model pa-
rameters (component means, variances, and mixing weights)
{(µi, σ2

i , wi) : i ∈ [k]} from independent copies of x.
This work gives a procedure for efficiently and exactly

recovering the parameters using a simple spectral decompo-
sition of low-order moments of x, under the following con-
dition.

Condition 1 (Non-degeneracy). The component means
span a k-dimensional subspace ( i.e., the matrix A has col-
umn rank k), and the vector w has strictly positive entries.

The proposed estimator is based on a spectral decomposi-
tion technique [9, 23, 3], and is easily stated in terms of exact
population moments of the observed x. With finite samples,
one can use a plug-in estimator based on empirical moments
of x in place of exact moments. These empirical moments
converge to the exact moments at a rate of O(n−1/2), where
n is the sample size. Sample complexity bounds for accurate
parameter estimation can be derived using matrix perturba-
tion arguments. Since only low-order moments are required
by the plug-in estimator, the sample complexity is polyno-
mial in the relevant parameters of the estimation problem.

Related work.
The first estimators for the Gaussian mixture models were

based on the method-of-moments, as introduced by Pear-
son [25] (see also [20] and the references therein). Roughly
speaking, these estimators are based on finding parameters
under which the Gaussian mixture distribution has moments
approximately matching the observed empirical moments.
Finding these parameters typically involves solving systems



of multivariate polynomial equations, which is typically com-
putationally challenging. Besides this, the order of the mo-
ments of some of the early moment-based estimators were
either growing with the dimension d or the number of com-
ponents k, which is undesirable because the empirical es-
timates of such high-order moments may only be reliable
when the sample size is exponential in d or k. Both the
computational and sample complexity issues have been ad-
dressed in recent years, at least under various restrictions.
For instance, several distance-based estimators require that
the component means be well-separated in Euclidean space,
by at least some large factor times the directional standard
deviation of the individual component distributions [13, 5,
14, 27, 10], but otherwise have polynomial computational
and sample complexity. Some recent moment-based estima-
tors avoid the minimum separation condition of distance-
based estimators by requiring either computational or data
resources exponential in the number of mixing components
k (but not the dimension d) [6, 19, 22] or by making a non-
degenerate multi-view assumption [3].

By contrast, the moment-based estimator described in
this work does not require a minimum separation condi-
tion, exponential computational or data resources, or non-
degenerate multiple views. Instead, it relies only on the
non-degeneracy condition discussed above together with a
spherical noise condition. The non-degeneracy condition is
much weaker than an explicit minimum separation condi-
tion because the parameters can be arbitrarily close to being
degenerate, as long as the sample size grows polynomially
with a natural quantity measuring this closeness to degener-
acy (akin to a condition number). Like other moment-based
estimators, the proposed estimator is based on solving mul-
tivariate polynomial equations, although these solutions can
be found efficiently because the problems are cast as eigen-
value decompositions of symmetric matrices, which are effi-
cient to compute.

Recent work from [22] demonstrates an information-theoretic
barrier to estimation for general Gaussian mixture models.
More precisely, they construct a pair of one-dimensional
mixtures of Gaussians (with separated component means)
such that the statistical distance between the two mixture
distributions is exponentially small in the number of com-
ponents. This implies that in the worst case, the sample
size required to obtain accurate parameter estimates must
grow exponentially with the number of components, even
when the component distributions are non-negligibly sep-
arated. A consequence of the present work is that natural
non-degeneracy conditions preclude these worst case scenar-
ios. The non-degeneracy condition in this work is similar to
one used for bypassing computational (cryptographic) bar-
riers to estimation for hidden Markov models [9, 23, 17, 3].

Finally, it is interesting to note that similar algebraic tech-
niques have been developed for certain models in indepen-
dent component analysis (ICA) [11, 8, 18, 12, 4] and other
closely related problems [15, 24]. In contrast to the ICA
setting, handling non-spherical Gaussian noise for mixture
models appears to be a more delicate issue. These connec-
tions and open problems are further discussed in Section 3.

2. MOMENT-BASED ESTIMATION
This section describes a method-of-moments estimator for

the spherical Gaussian mixture model.

The following theorem is the main structural result that
relates the model parameters to observable moments.

Theorem 1 (Observable moment structure). Assume

Condition 1 holds. The average variance σ̄2 :=
∑k
i=1 wiσ

2
i

is the smallest eigenvalue of the covariance matrix E[(x −
E[x])(x− E[x])>]. Let v ∈ Rd be any unit norm eigenvector
corresponding to the eigenvalue σ̄2. Define

M1 := E[x(v>(x− E[x]))2],

M2 := E[x⊗ x]− σ̄2I,

M3 := E[x⊗ x⊗ x]

−
d∑
i=1

(
M1 ⊗ ei ⊗ ei + ei ⊗M1 ⊗ ei + ei ⊗ ei ⊗M1

)
(where ⊗ denotes tensor product, and {e1, e2, . . . , ed} is the
coordinate basis for Rd). Then

M1 =

k∑
i=1

wi σ
2
i µi, M2 =

k∑
i=1

wi µi ⊗ µi,

M3 =

k∑
i=1

wi µi ⊗ µi ⊗ µi.

Remark 1. We note that in the special case where σ2
1 =

σ2
2 = · · · = σ2

k = σ2 ( i.e., the mixture components share a
common spherical covariance matrix), the average variance
σ̄2 is simply σ2, and M3 has a simpler form:

M3 = E[x⊗ x⊗ x]

− σ2
d∑
i=1

(
E[x]⊗ ei ⊗ ei + ei ⊗ E[x]⊗ ei + ei ⊗ ei ⊗ E[x]

)
.

There is no need to refer to the eigenvectors of the covariance
matrix or M1.

Proof of Theorem 1. We first characterize the small-
est eigenvalue of the covariance matrix of x, as well as all
corresponding eigenvectors v. Let µ̄ := E[x] = E[µh] =∑k
i=1 wiµi. The covariance matrix of x is

E[(x− µ̄)⊗ (x− µ̄)] =

k∑
i=1

wi

(
(µi − µ̄)⊗ (µi − µ̄) + σ2

i I

)

=

k∑
i=1

wi (µi − µ̄)⊗ (µi − µ̄) + σ̄2I.

Since the vectors µi − µ̄ for i ∈ [k] are linearly dependent

(
∑k
i=1 wi(µi − µ̄) = 0), the positive semidefinite matrix∑k
i=1 wi(µi − µ̄) ⊗ (µi − µ̄) has rank r ≤ k − 1. Thus,

the d− r smallest eigenvalues are exactly σ̄2, while all other
eigenvalues are strictly larger than σ̄2. The strict separation
of eigenvalues implies that every eigenvector corresponding
to σ̄2 is in the null space of

∑k
i=1 wi(µi− µ̄)⊗ (µi− µ̄); thus

v>(µi − µ̄) = 0 for all i ∈ [k].
Now we can express M1, M2, and M3 in terms of the

parameters wi, µi, and σ2
i . First,

M1 = E[x(v>(x− E[x]))2] = E[(µh + z)(v>(µh − µ̄+ z))2]

= E[(µh + z)(v>z)2] = E[µhσ
2
h],

where the last step uses the fact that z|h ∼ N (0, σ2
hI),

which implies that conditioned on h, E[(v>z)2|h] = σ2
h and



E[z(v>z)2|h] = 0. Next, observe that E[z⊗z] =
∑k
i=1 wiσ

2
i I =

σ̄2I, so

M2 = E[x⊗ x]− σ̄2I

= E[µh ⊗ µh] + E[z ⊗ z]− σ̄2I

= E[µh ⊗ µh] =

k∑
i=1

wi µi ⊗ µi.

Finally, for M3, we first observe that

E[x⊗ x⊗ x] = E[µh ⊗ µh ⊗ µh] + E[µh ⊗ z ⊗ z]
+ E[z ⊗ µh ⊗ z] + E[z ⊗ z ⊗ µh]

(terms such as E[µh⊗µh⊗z] and E[z⊗z⊗z] vanish because
z|h ∼ N (0, σ2

hI)). We now claim that E[µh ⊗ z ⊗ z] =∑d
i=1M1 ⊗ ei ⊗ ei. This holds because

E[µh ⊗ z ⊗ z] = E
[
E[µh ⊗ z ⊗ z|h]

]
= E

[
E
[ d∑
i,j=1

zizj µh ⊗ ei ⊗ ej
∣∣∣h]]

= E
[ d∑
i=1

σ2
h µh ⊗ ei ⊗ ei

]

=

d∑
i=1

M1 ⊗ ei ⊗ ei,

crucially using the fact that E[zizj |h] = 0 for i 6= j and
E[z2i |h] = σ2

h. By the same derivation, we have E[z ⊗ µh ⊗
z] =

∑d
i=1 ei⊗M1⊗ei and E[z⊗z⊗µh] =

∑d
i=1 ei⊗ei⊗M1.

Therefore,

M3 = E[x⊗ x⊗ x]

−
(
E[µh ⊗ z ⊗ z] + E[z ⊗ µh ⊗ z] + E[z ⊗ z ⊗ µh]

)
= E[µh ⊗ µh ⊗ µh] =

k∑
i=1

wiµi ⊗ µi ⊗ µi

as claimed.

Theorem 1 shows the relationship between (some func-
tions of) the observable moments and the desired parame-
ters. A simple estimator based on this moment structure
is given in the following theorem. For a third-order tensor
T ∈ Rd×d×d, we define the matrix

T (η) :=

d∑
i1=1

d∑
i2=1

d∑
i3=1

Ti1,i2,i3ηi3 ei1 ⊗ ei2

for any vector η ∈ Rd.

Theorem 2 (Moment-based estimator). The fol-
lowing can be added to the results of Theorem 1. Suppose
η>µ1, η

>µ2, . . . , η
>µk are distinct and non-zero (which is

satisfied almost surely, for instance, if η is chosen uniformly
at random from the unit sphere in Rd). Then the matrix

MGMM(η) := M
†1/2
2 M3(η)M

†1/2
2

is diagonalizable (where † denotes the Moore-Penrose pseu-
doinverse); its non-zero eigenvalue / eigenvector pairs
(λ1, v1), (λ2, v2), . . . , (λk, vk) satisfy λi = η>µπ(i) and

M
1/2
2 vi = si

√
wπ(i)µπ(i) for some permutation π on [k] and

signs s1, s2, . . . , sk ∈ {±1}. The µi, σ
2
i , and wi are recovered

(up to permutation) with

µπ(i) =
λi

η>M
1/2
2 vi

M
1/2
2 vi,

σ2
i =

1

wi
e>i A

†M1,

wi = e>i A
†E[x].

Proof. By Theorem 1,

M1 = Adiag(σ2
1 , σ

2
2 , . . . , σ

2
k)w,

M2 = Adiag(w)A>,

M3(η) = Adiag(w)D1(η)A>,

where D1(η) := diag(η>µ1, η
>µ2, . . . , η

>µk).

Let USR> be the thin SVD of Adiag(w)1/2 (U ∈ Rd×k,

S ∈ Rk×k, and R ∈ Rk×k), so M2 = US2U> and M
†1/2
2 =

US−1U> since Adiag(w)1/2 has rank k by assumption. Also
by assumption, the diagonal entries of D1(η) are distinct and
non-zero. Therefore, every non-zero eigenvalue of the sym-
metric matrix MGMM(η) = UR>D1(η)RU> has geometric
multiplicity one. Indeed, these non-zero eigenvalues λi are
the diagonal entries of D1(η) (up to some permutation π on
[k]), and the corresponding eigenvectors vi are the columns
of UR> up to signs:

λi = η>µπ(i) and vi = siUR
>eπ(i).

Now, since

M
1/2
2 vi = si

√
wπ(i)µπ(i),

λi

η>M
1/2
2 vi

=
η>µπ(i)

si
√
wπ(i)η>µπ(i)

=
1

si
√
wπ(i)

,

it follows that

µπ(i) =
λi

η>M
1/2
2 vi

M
1/2
2 vi, i ∈ [k].

The claims regarding σ2
i and wi are also evident from the

structure of M1 and E[x] = Aw.

An efficiently computable plug-in estimator can be derived
from Theorem 2. We provide one such algorithm (called
LearnGMM) in Appendix C; for simplicity, we restrict
to the case where the components share the same common
spherical covariance, i.e., σ2

1 = σ2
2 = · · · = σ2

k = σ2. The
following theorem provides a sample complexity bound for
accurate estimation of the component means. Since only
low-order moments are used, the sample complexity is poly-
nomial in the relevant parameters of the estimation problem
(in particular, the dimension d and the number of mixing
components k). It is worth noting that the polynomial is
quadratic in the inverse accuracy parameter 1/ε; this owes
to the fact that the empirical moments converge to the pop-
ulation moments at the usual n−1/2 rate as per the central
limit theorem.

Theorem 3 (Finite sample bound). There exists a
polynomial poly(·) such that the following holds. Let M2

be the matrix defined in Theorem 2, and ςt[M2] be its
t-th largest singular value (for t ∈ [k]). Let bmax :=
maxi∈[k] ‖µi‖2 and wmin := mini∈[k] wi. Pick any ε, δ ∈



(0, 1). Suppose the sample size n satisfies

n ≥ poly
(
d, k, 1/ε, log(1/δ), 1/wmin,

ς1[M2]/ςk[M2], b2max/ςk[M2], σ2/ςk[M2],
)
.

Then with probability at least 1− δ over the random sample
and the internal randomness of the algorithm, there exists a
permutation π on [k] such that the {µ̂i : i ∈ [k]} returned by
LearnGMM satisfy

‖µ̂π(i) − µi‖2 ≤
(
‖µi‖2 +

√
ς1[M2]

)
ε

for all i ∈ [k].

It is also easy to obtain accuracy guarantees for estimat-
ing σ2 and w. The role of Condition 1 enters by observ-
ing that ςk[M2] = 0 if either rank(A) < k or wmin = 0, as
M2 = Adiag(w)A>. The sample complexity bound then be-
comes trivial in this case, as the bound grows with 1/ςk[M2]
and 1/wmin. Finally, we also note that LearnGMM is just
one (easy to state) way to obtain an efficient algorithm based
on the structure in Theorem 1. It is also possible to use, for
instance, simultaneous diagonalization techniques [7] or or-
thogonal tensor decompositions [2] to extract the parameters
from (estimates of) M2 and M3; these alternative methods
are more robust to sampling error, and are therefore recom-
mended for practical implementation.

3. DISCUSSION

Multi-view methods and a simpler algorithm in higher
dimensions.

Some previous work of the authors on moment-based es-
timators for the Gaussian mixture model relies on a non-
degenerate multi-view assumption [3]. In this work, it is
shown that if each mixture component i has an axis-aligned
covariance Σi := diag(σ2

1,i, σ
2
2,i, . . . , σ

2
d,i), then under some

additional mild assumptions (which ultimately require d >
k), a moment-based method can be used to estimate the
model parameters. The idea is to partition the coordinates
[d] into three groups, inducing multiple“views”x = (x1, x2, x3)
with each xt ∈ Rdt for some dt ≥ k such that x1, x2,
and x3 are conditionally independent given h. When the
matrix of conditional means At := [E[xt|h = 1]|E[xt|h =
2]| · · · |E[xt|h = k]] ∈ Rdt×k for each view t ∈ {1, 2, 3} has
rank k, then an efficient technique similar to that described
in Theorem 2 will recover the parameters. Therefore, the
problem is reduced to partitioning the coordinates so that
the resulting matrices At have rank k.

In the case where each component covariance is spherical
(Σi = σ2

i I), we may simply apply a random rotation to x be-
fore (arbitrarily) splitting into the three views. Let x̃ := Θx
for a random orthogonal matrix Θ ∈ Rd×d, and partition
the coordinates so that x̃ = (x̃1, x̃2, x̃3) with x̃t ∈ Rdt and
dt ≥ k. By the rotational invariance of the multivariate
Gaussian distribution, the distribution of x̃ is still a mixture
of spherical Gaussians, and moreover, the matrix of condi-
tional means Ãt := [E[x̃t|h = 1]|E[x̃t|h = 2]| · · · |E[x̃t|h =
k]] ∈ Rdt×k for each view x̃t has rank k with probability 1.
To see this, observe that a random rotation in Rd followed
by a restriction to dt coordinates is simply a random pro-
jection from Rd to Rdt , and that a random projection of a
linear subspace of dimension k (in particular, the range of

A) to Rdt is almost surely injective as long as dt ≥ k. There-
fore it is sufficient to require d ≥ 3k so that it is possible
to split x̃ into three views, each of dimension dt ≥ k. To
guarantee that the k-th largest singular value of each Ãt is
bounded below in terms of the k-th largest singular value of
A (with high probability), we may require d to be somewhat
larger: O(k log k) certainly works (see Appendix B), and we
conjecture c · k for some c > 3 is in fact sufficient.

Spectral decomposition approaches for ICA.
The Gaussian mixture model shares some similarities to a

standard model for independent component analysis (ICA) [11,
8, 18, 12]. Here, let h ∈ Rk be a random vector with inde-
pendent entries, and let z ∈ Rk be multivariate Gaussian
random vector. We think of h as an unobserved signal and
z as noise. The observed random vector is

x := Ah+ z

for some A ∈ Rk×k, where h and z are assumed to be in-
dependent. (For simplicity, we only consider square A, al-
though it is easy to generalize to A ∈ Rd×k for d ≥ k.)

In contrast to this ICA model, the spherical Gaussian mix-
ture model is one where h would take values in {e1, e2, . . . , ek},
and the covariance of z (given h) is spherical.

For ICA, a spectral decomposition approach related to
the one described in Theorem 2 can be used to estimate the
columns of A (up to scale), without knowing the noise co-
variance E[zz>]. Such an estimator can be obtained from
Theorem 4 using techniques commonplace in the ICA liter-
ature; its proof is given in Appendix A for completeness.

Theorem 4. In the ICA model described above, assume
E[hi] = 0, E[h2

i ] = 1, and κi := E[h4
i ]−3 6= 0 ( i.e., the excess

kurtosis is non-zero), and that A is non-singular. Define
f : Rk → R by

f(η) := 12−1(m4(η)− 3m2(η)2
)

where mp(η) := E[(η>x)p]. Suppose φ ∈ Rk and ψ ∈ Rk

are such that (φ>µ1)
2

(ψ>µ1)2
, (φ>µ2)

2

(ψ>µ2)2
, . . . , (φ>µk)

2

(ψ>µk)
2 ∈ R are distinct.

Then the matrix

MICA(φ, ψ) :=
(
∇2f(φ)

)(
∇2f(ψ)

)−1

is diagonalizable; the eigenvalues are (φ>µ1)
2

(ψ>µ1)2
, (φ>µ2)

2

(ψ>µ2)2
, . . . ,

(φ>µk)
2

(ψ>µk)
2 and each have geometric multiplicity one, and the

corresponding eigenvectors are µ1, µ2, . . . , µk (up to scaling
and permutation).

Again, choosing φ and ψ as random unit vectors ensures
the distinctness assumption is satisfied almost surely, and a
finite sample analysis can be given using standard matrix
perturbation techniques [3]. A number of related determin-
istic algorithms based on algebraic techniques are discussed
in [12]. Recent work in [4] provides a finite sample complex-
ity analysis for an efficient estimator based on local search.

Non-degeneracy.
The non-degeneracy assumption (Condition 1) is quite

natural, and its has the virtue of permitting tractable and
consistent estimators. Although previous work has typically
tied it with additional assumptions, this work shows that
they are largely unnecessary.



One drawback of Condition 1 is that it prevents the straight-
forward application of these techniques to certain problem
domains (e.g., automatic speech recognition (ASR), where
the number of mixture components is typically enormous,
but the dimension of observations is relatively small; alter-
natively, the span of the means has dimension < k). To com-
pensate, one may require multiple views, which are granted
by a number of models, including hidden Markov models
used in ASR [17, 3], and combining these views in a tensor
product fashion [1]. This increases the complexity of the
estimator, but that may be inevitable as estimation for cer-
tain singular models is conjectured to be computationally
intractable [23].
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APPENDIX
A. CONNECTION TO INDEPENDENT COM-

PONENT ANALYSIS
Proof of Theorem 4. It can be shown that

m2(η) = E[(η>Ah)2] + E[(η>z)2],

m4(η) = E[(η>Ah)4]− 3E[(η>Ah)2]2 + 3m2(η)2.

By the assumptions,

E[(η>Ah)4] =

k∑
i=1

(η>µi)
4E[h4

i ] + 3
∑
i 6=j

(η>µi)
2(η>µj)

2

=

k∑
i=1

κi(η
>µi)

4 + 3
∑
i,j

(η>µi)
2(η>µj)

2

=

k∑
i=1

κi(η
>µi)

4 + 3E[(η>Ah)2]2,



and therefore

f(η) = 12−1(E[(η>Ah)4]− 3E[(η>Ah)2]2
)

= 12−1
k∑
i=1

κi(η
>µi)

4.

The Hessian of f is given by

∇2f(η) =

k∑
i=1

κi(η
>µi)

2µiµ
>
i .

Define the diagonal matrices

K := diag(κ1, κ2, . . . , κk),

D2(η) := diag((η>µ1)2, (η>µ2)2, . . . , (η>µk)2)

and observe that

∇2f(η) = AKD2(η)A>.

By assumption, the diagonal entries of D2(φ)D2(ψ)−1 are
distinct, and therefore

MICA(φ, ψ) =
(
∇2f(φ)

)(
∇2f(ψ)

)−1
= AD2(φ)D2(ψ)−1A−1

is diagonalizable, and every eigenvalue has geometric multi-
plicity one.

B. INCOHERENCE AND RANDOM ROTA-
TIONS

The multi-view technique from [3] can be used to esti-
mate mixtures of product distributions, which include, as
special cases, mixtures of Gaussians with axis-aligned co-
variances Σi = diag(σ2

1,i, σ
2
2,i, . . . , σ

2
d,i). Spherical covari-

ances Σi = σ2
i I are, of course, also axis-aligned. The idea is

to randomly partition the coordinates [d] into three groups,
inducing multiple“views”x = (x1, x2, x3) with each xt ∈ Rdt
for some dt ≥ k such that x1, x2, and x3 are conditionally
independent given h. When the matrix of conditional means
At := [E[xt|h = 1]|E[xt|h = 2]| · · · |E[xt|h = k]] ∈ Rdt×k for
each view t ∈ {1, 2, 3} has rank k, then an efficient tech-
nique similar to that described in Theorem 2 will recover
the parameters (for details, see [3, 2]).

It is shown in [3] that if A has rank k and also satisfies
a mild incoherence condition, then a random partitioning
guarantees that each At has rank k, and lower-bounds the
k-th largest singular value of each At by that of A. The
condition is similar to the spreading condition of [10].

Define coherence(A) := maxi∈[d]{e>i ΠAei} to be the largest
diagonal entry of the ortho-projector ΠA to the range of
A. When A has rank k, we have coherence(A) ∈ [k/d, 1];
it is maximized when range(A) = span{e1, e2, . . . , ek} and
minimized when the range is spanned by a subset of the
Hadamard basis of cardinality k. Roughly speaking, if the
matrix of conditional means has low coherence, then its full-
rank property is witnessed by many partitions of [d]; this is
made formal in the following lemma.

Lemma 1. Assume A has rank k and that coherence(A) ≤
(ε2/6)/ ln(3k/δ) for some ε, δ ∈ (0, 1). With probability at
least 1− δ, a random partitioning of the dimensions [d] into
three groups (for each i ∈ [d], independently pick t ∈ {1, 2, 3}
uniformly at random and put i in group t) has the following
property. For each t ∈ {1, 2, 3}, the matrix At obtained by
selecting the rows of A in group t has full column rank, and

the k-th largest singular value of At is at least
√

(1− ε)/3
times that of A.

For a mixture of spherical Gaussians, one can randomly
rotate x before applying the random coordinate partitioning.
This is because if Θ ∈ Rd×d is an orthogonal matrix, then
the distribution of x̃ := Θx is also a mixture of spherical
Gaussians. Its matrix of conditional means is given by Ã :=
ΘA. The following lemma implies that multiplying a tall
matrix A by a random rotation Θ causes the product to
have low coherence.

Lemma 2 ([16]). Let A ∈ Rd×k be a fixed matrix with
rank k, and let Θ ∈ Rd×d be chosen uniformly at random
among all orthogonal d × d matrices. For any η ∈ (0, 1),

with probability at least 1− η, the matrix Ã := ΘA satisfies

coherence(Ã) ≤
k +

√
2k ln(d/η) + 2 ln(d/η)

d
(
1− 1/(4d)− 1/(360d3)

)2 .
Take η from Lemma 2 and ε, δ from Lemma 1 to be con-

stants. Then the incoherence condition of Lemma 1 is satsi-
fied provided that d ≥ c · (k log k) for some positive constant
c.

C. LEARNING ALGORITHM AND SKETCH
OF FINITE SAMPLE ANALYSIS

In this section, we state and sketch an analysis of a learn-
ing algorithm based on the estimator from Theorem 2, which
assumed availability of exact moments of x. The full analysis
is provided in the full version of the paper. The proposed al-
gorithm only uses a finite sample to estimate moments, and
also explicitly deals with the eigenvalue separation condition
assumed in Theorem 2 via internal randomization.

C.1 Notation
For a matrix X ∈ Rm×m, we use ςt[X] to denote the t-th

largest singular value of a matrix X, and ‖X‖2 to denote its
spectral norm (so ‖X‖2 = ς1[X]).

For a third-order tensor Y ∈ Rm×m×m and U, V,W ∈
Rm×n, we use the notation Y [U, V,W ] ∈ Rn×n×n to denote
the third-order tensor given by

Y [U, V,W ]j1,j2,j3 =
∑

1≤i1,i2,i3≤m

Ui1,j1Vi2,j2Wi3,j3Yi1,i2,i3

for all j1, j2, j3 ∈ [n]. Note that this is the analogue of
U>XV ∈ Rn×n for a matrix X ∈ Rm×m and U, V ∈ Rm×n.
For Y ∈ Rm×m×m, we use ‖Y ‖2 to denote its operator
(or supremum) norm ‖Y ‖2 := sup{|Y [u, v, w]| : u, v, w ∈
Rm, ‖u‖2 = ‖v‖2 = ‖w‖2 = 1}.

C.2 Algorithm
The proposed algorithm, called LearnGMM, is described

in Figure 1. The algorithm essentially implements the de-
composition strategy in Theorem 2 using plug-in moments.
To simplify the analysis, we split our sample (say, initially of
size 2n) in two: we use the first half for empirical moments

(µ̂ and M̂2) used in constructing σ̂2, M̂2, Ŵ , and B̂; and

we use the second half for empirical moments (Ŵ>µ̂ and

M̂3[Ŵ , Ŵ , Ŵ ] used in constructing M̂3[Ŵ , Ŵ , Ŵ ]. Observe

that this ensures M̂3 is independent of Ŵ .
Let {(xi, hi) : i ∈ [n]} be n i.i.d. copies of (x, h), and write
S := {x1, x2, . . . , xn}. Let S be an independent copy of S.



Furthermore, define the following moments and empirical
moments:

µ := E[x], M2 := E[xx>],

M3 := E[x⊗ x⊗ x], µ̂ :=
1

|S|
∑
x∈S

x,

M̂2 :=
1

|S|
∑
x∈S

xx>, M̂3 :=
1

|S|
∑
x∈S

x⊗ x⊗ x,

µ̂ :=
1

|S|
∑
x∈S

x.

So S represents the first half of the sample, and S represents
the second half of the sample.

C.3 Structure of the moments
We first recall the basic structure of the moments µ,M2,

and M3 as established in Theorem 2; for simplicity, we re-
strict to the special case where σ2

1 = σ2
2 = · · · = σ2

k = σ2.

Lemma 3.

µ =

k∑
i=1

wiµi, M2 =

k∑
i=1

wiµiµ
>
i + σ2I,

M3 =

k∑
i=1

wiµi ⊗ µi ⊗ µi

+ σ2
d∑
j=1

(
µ⊗ ej ⊗ ej + ej ⊗ µ⊗ ej + ej ⊗ ej ⊗ µ

)
.

C.4 Concentration behavior of empirical quan-
tities

In this subsection, we prove concentration properties of
empirical quantities based on S; clearly the same properties
hold for S.

Let Si := {xj ∈ S : hj = i} and ŵi := |Si|/|S| for i ∈ [k].
Also, define the following (empirical) conditional moments:

µi := E[x|h = i], M2,i := E[xx>|h = i],

M3,i := E[x⊗ x⊗ x|h = i], µ̂i :=
1

|Si|
∑
x∈Si

x,

M̂2,i :=
1

|Si|
∑
x∈Si

xx>, M̂3,i :=
1

|Si|
∑
x∈Si

x⊗ x⊗ x.

Lemma 4. Pick any δ ∈ (0, 1/2). With probability at least
1− 2δ,

|ŵi − wi| ≤
√

2wi(1− wi) ln(2k/δ)

n
+

2 ln(2k/δ)

3n
, ∀i ∈ [k];( k∑

i=1

(ŵi − wi)2
)1/2

≤
1 +

√
ln(1/δ)√
n

.

Lemma 5. Pick any δ ∈ (0, 1) and any matrix R ∈ Rd×r
of rank r.

1. First-order moments: with probability at least 1− δ,

‖R>(µ̂i−µi)‖2 ≤ σ‖R‖2

√
r + 2

√
r ln(k/δ) + 2 ln(k/δ)

ŵin

for all i ∈ [k].

LearnGMM

1. Using the first half of the sample, compute empirical

mean µ̂ and empirical second-order moments M̂2.

2. Let σ̂2 be the k-th largest eigenvalue of the empiri-

cal covariance matrix M̂2 − µ̂µ̂>.

3. Let M̂2 be the best rank-k approximation to M̂2−
σ̂2I

M̂2 := arg min
X∈Rd×d:rank(X)≤k

‖(M̂2 − σ̂2I)−X‖2

which can be obtained via the singular value de-
composition.

4. Let Û ∈ Rd×k be the matrix of left orthonormal
singular vectors of M̂2.

5. Let Ŵ := Û(Û>M̂2Û)†1/2, where X† denotes the
Moore-Penrose pseudoinverse of a matrix X.

Also define B̂ := Û(Û>M̂2Û)1/2.

6. Using the second half of the sample, compute

whitened empirical averages Ŵ>µ̂ and third-order

moments M̂3[Ŵ , Ŵ , Ŵ ].

7. Let M̂3[Ŵ , Ŵ , Ŵ ] := M̂3[Ŵ , Ŵ , Ŵ ] −
σ̂2∑d

i=1

(
(Ŵ>µ̂) ⊗ (Ŵ>ei) ⊗ (Ŵ>ei) + (Ŵ>ei) ⊗

(Ŵ>µ̂)⊗ (Ŵ>ei) + (Ŵ>ei)⊗ (Ŵ>ei)⊗ (Ŵ>µ̂)
)
.

8. Repeat the following steps t times (where t :=
dlog2(1/δ)e for confidence 1− δ):

(a) Choose θ ∈ Rk uniformly at random from the
unit sphere in Rk.

(b) Let {(v̂i, λ̂i) : i ∈ [k]} be the eigenvec-

tor/eigenvalue pairs of M̂3[Ŵ , Ŵ , Ŵ θ].

Retain the results for which min
(
{|λ̂i − λ̂j | : i 6=

j} ∪ {|λ̂i| : i ∈ [k]}
)

is largest.

9. Return the parameter estimates σ̂2,

µ̂i :=
λ̂i
θ>v̂i

B̂v̂i, i ∈ [k],

ŵ := [µ̂1|µ̂2| · · · |µ̂k]†µ̂.

Figure 1: Algorithm for learning mixtures of Gaus-
sians with common spherical covariance.



2. Second-order moments: with probability at least 1− δ,

‖R>(M̂2,i −M2,i)R‖2 ≤ σ2‖R‖22(√
128(r ln 9 + ln(2k/δ))

ŵin
+

4(r ln 9 + ln(2k/δ))

ŵin

)

+ 2σ‖R>µi‖2‖R‖2

√
r + 2

√
r ln(2k/δ) + 2 ln(2k/δ)

ŵin

for all i ∈ [k].

3. Third-order moments: with probability at least 1− δ,

‖(M̂3,i −M3,i)[R,R,R]‖2 ≤ σ3‖R‖32√
108e3dr ln 13 + ln(3k/δ)e3

ŵin

+ 3σ2‖R>µi‖2‖R‖22(√
128(r ln 9 + ln(3k/δ))

ŵin
+

4(r ln 9 + ln(3k/δ))

ŵin

)
+ 3σ‖R>µi‖22‖R‖2√

r + 2
√
r ln(3k/δ) + 2 ln(3k/δ)

ŵin

for all i ∈ [k].

We now bound the accuracy of µ̂, M̂2, and M̂3 in terms
of the accuracy of the conditional moments and the ŵi.

Lemma 6. Fix a matrix R ∈ Rd×r. Define B1,R :=
maxi∈[k] ‖R>µi‖2, B2,R := maxi∈[k] ‖R>M2,iR‖2, B3,R :=
maxi∈[k] ‖M3,i[R,R,R]‖2, E1,R := maxi∈[k] ‖R>(µ̂i −
µi)‖2, E2,R := maxi∈[k] ‖R>(M̂2,i − M2,i)R‖2, E3,R :=

maxi∈[k] ‖M̂3,i[R,R,R] − M3,i[R,R,R]‖2, and Ew :=

(
∑k
i=1(ŵi − wi)2)1/2. Then

‖R>(µ̂− µ)‖2 ≤ (1 +
√
kEw)E1,R +

√
kB1,REw;

‖R>(M̂2 −M2)R‖2 ≤ (1 +
√
kEw)E2,R +

√
kB2,REw;

‖(M̂3 −M3)[R,R,R]‖2 ≤ (1 +
√
kEw)E3,R +

√
kB3,REw.

C.5 Estimation of σ2, M2, and M3

The covariance matrix can be written as M2 − µµ>, and

the empirical covariance matrix can be written as M̂2−µ̂µ̂>.
Recall that the estimate of σ2, denoted by σ̂2, is given by
the k-th largest eigenvalue of the empirical covariance matrix

M̂2 − µ̂µ̂>; and that the estimate of M2, denoted by M̂2,

is the best rank-k approximation to M̂2 − σ̂2I. Of course,
the singular values of a positive semi-definite matrix are the

same as its eigenvalues; in particular, σ̂2 = ςk[M̂2 − µ̂µ̂>].

Lemma 7 (Accuracy of σ̂2 and M̂2).

1. |σ̂2 − σ2| ≤ ‖M̂2 −M2‖2 + 2‖µ‖2‖µ̂− µ‖2 + ‖µ̂− µ‖22.

2. ‖M̂2−M2‖2 ≤ 4‖M̂2−M2‖2 +4‖µ‖2‖µ̂−µ‖2 +2‖µ̂−
µ‖22.

Lemma 8 (Accuracy of M̂3). For any matrix R ∈ Rd×r,

‖M̂3[R,R,R]−M3[R,R,R]‖2
≤ ‖M̂3[R,R,R]−M3[R,R,R]‖2

+ 3‖R‖22(‖R>(µ̂− µ)‖2 + ‖R>µ‖2)

(‖M̂2 −M2‖2 + 2‖µ‖2‖µ̂− µ‖2 + ‖µ̂− µ‖22)

+ σ2‖R‖22‖R>(µ̂− µ)‖2.

C.6 Properties of projection and whitening op-
erators

Recall that Û ∈ Rd×k is the matrix of left orthonormal
singular vectors of M̂2, and let Ŝ ∈ Rk×k be the diagonal
matrix of corresponding singular values. Analogously define
U and S relative to M2.

Define EM2 := ‖M̂2−M2‖2/ςk[M2]. The following lemma
can be shown using standard matrix perturbation arguments.

Lemma 9 (Properties of projection operators).
Assume EM2 ≤ 1/3. Then

1. (1 + EM2)S � Û>M̂2Û = Ŝ � (1− EM2)S � 0.

2. ςk[Û>U ] ≥
√

1− (9/4)E2M2
> 0.

3. ςk[Û>M2Û ] ≥ (1− (9/4)E2M2
)ςk[M2] > 0.

4. ‖(I − Û Û>)UU>‖2 ≤ (3/2)EM2 .

Recall that Ŵ = Û(Û>M̂2Û)†1/2. We now show that Ŵ
indeed has the effect of whitening M2.

Lemma 10 (Properties of whitening operators).

Define W := Ŵ (Ŵ>M2Ŵ )†1/2. Assume EM2 ≤ 1/3. Then

1. Ŵ>M2Ŵ is symmetric positive definite, W>M2W =
I, and W>Adiag(w)1/2 is orthogonal.

2. ‖Ŵ‖2 ≤ 1√
(1−EM2

)ςk[M2]
.

3. ‖(Ŵ>M2Ŵ )1/2 − I‖2 ≤ (3/2)EM2 ,

‖(Ŵ>M2Ŵ )−1/2 − I‖2 ≤ (3/2)EM2 ,

‖Ŵ>Adiag(w)1/2‖2 ≤
√

1 + (3/2)EM2 ,

‖(Ŵ−W )>Adiag(w)1/2‖2 ≤ (3/2)
√

1 + (3/2)EM2EM2 .

We now show the effect of applying the whitening matrix

Ŵ to the tensor M3. Define T̂ := M̂3[Ŵ , Ŵ , Ŵ ] and T :=
M3[W,W,W ], both symmetric tensors in Rk×k×k. Also, de-
fine

T̂ [u] := M̂3[Ŵ , Ŵ , Ŵu]

and

T [u] := M3[W,W,Wu],

both symmetric matrices in Rk×k.

Lemma 11 (Tensor structure). Define

vi := W>Adiag(w)1/2ei

for all i ∈ [k]. The tensor T can be written as

T =

k∑
i=1

1√
wi
vi ⊗ vi ⊗ vi

where the vectors {vi : i ∈ [k]} are orthonormal. Further-
more, the eigenvectors of T [u] are {vi : i ∈ [k]} and the
corresponding eigenvalues are {u>W>µi : i ∈ [k]}.



Lemma 12 (Tensor accuracy). Assume EM2 ≤ 1/3.
Then

‖T̂ − T‖2 ≤ ‖M̂3[Ŵ , Ŵ , Ŵ ]−M3[Ŵ , Ŵ , Ŵ ]‖2 +
6√
wmin

EM2 .

C.7 Eigendecomposition analysis
Using Lemma 11 and Lemma 12, it is possible to show

that an approximate orthogonal tensor decomposition of T̂
approximately recovers the vi and 1/

√
wi. Computing such

a decomposition is a bit more involved, but can be achieved
efficiently [2]. A simpler-to-state randomized approach in-
volving just an eigendecomposition has the same effect, al-
beit with worse final sample complexity; we analyze this
method for sake of simplicity.

Define

γ :=
1

2
√
wmax

√
ek
(
k+1
2

) (1)

where wmax := maxi∈[k] wi.

Lemma 13 (Random separation). Let θ ∈ Rk be a
random vector distributed uniformly over the unit sphere in
Rk. Let Q := {ei − ej : {i, j} ∈

(
k
2

)
} ∪ {ei : i ∈ [k]}. Then

Pr
[
min
q∈Q
|θ>W>Aq| > γ

]
≥ 1

2

where the probability is taken with respect to the distribution
of θ.

Let ET := ‖T̂ − T‖2/γ. Let θ1, θ2, . . . , θt be the random

unit vectors in Rk drawn by the algorithm. Define T̂ [θt′ ] :=

M̂3[Ŵ , Ŵ , Ŵ θt′ ] and T [θt′ ] := M3[W,W,Wθt′ ]. Also, let
∆(t′) := min{|λi − λj | : i 6= j} ∪ {|λi| : i ∈ [k]} for the

eigenvalues {λi : i ∈ [k]} of T [θt′ ], and let ∆̂(t′) := min{|λ̂i−
λ̂j | : i 6= j} ∪ {|λi| : i ∈ [k]} for the eigenvalues {λ̂i : i ∈ [k]}
of T̂ [θt′ ].

Lemma 14 (Eigenvalue gap). Pick any δ ∈ (0, 1). If
t ≥ log2(1/δ), then with probability at least 1 − δ, the trial

τ̂ := arg maxt′∈[t] ∆̂(t′) satisfies

∆̂(τ̂) ≥ γ − 2ET γ.

We now just consider the trial τ̂ retained by the algo-
rithm. Let {(vi, λi) : i ∈ [k]} be the eigenvector/eigenvalue

pairs of T [θτ̂ ], and let {(v̂i, λ̂i) : i ∈ [k]} be the eigenvec-

tor/eigenvalue pairs of T̂ [θτ̂ ].

Lemma 15 (Eigendecomposition). Assume the 1− δ
probability event in Lemma 14 holds, and also assume that
ET ≤ 1/4. Then there exists a permutation π on [k] and
signs s1, s2, . . . , sk ∈ {±1} such that, for all i ∈ [k],

‖vi − siv̂π(i)‖2 ≤ 4
√

2ET
|λi − λ̂π(i)| ≤ ET γ.

C.8 Overall error analysis
Define

κ[M2] := ς1[M2]/ςk[M2],

ε0 :=

(
5.5EM2 + 7ET

)
/
√
wmin,

ε1 :=
1

γ
√
wmin

(
1.25‖M2‖1/22 ε0/

√
wmin

ςk[M2]1/2

+ 2EM2 + γ
√
wminET

)
.

Lemma 16 (Error bound). Assume the 1 − δ proba-
bility event of Lemma 14 holds, and also assume that EM2 ≤
1/3, ET ≤ 1/4, and ε1 ≤ 1/3. Then there exists a permuta-
tion π on [k] such that

‖µ̂π(i) − µi‖2 ≤ 3‖µi‖2ε1 + 2‖M2‖1/22 ε0, i ∈ [k].

The proof of Theorem 3 now follows by combining the
error bounds in Lemma 4, Lemma 5, Lemma 6, Lemma 7,
Lemma 8, Lemma 10, Lemma 12, and Lemma 16 together
with the probabilitistic analysis of Lemma 14.


