# Learning latent variable models using tensor decompositions

#### Daniel Hsu

Computer Science Department & Data Science Institute Columbia University

Machine Learning Summer School June 29-30, 2018

# El tema (subject matter)

**Learning algorithms** 

for latent variable models

based on decompositions of moment tensors.

## El tema (subject matter)

Learning algorithms (parameter estimation) for latent variable models based on decompositions of moment tensors.

"Method-of-moments" (Pearson, 1894)

## Example #1: summarizing a corpus of documents

Observation: documents express one or more thematic topics.

# Politics Ensnare Mohamed Salah and Switzerland at the World Cup

#### By Rory Smith, James Montague and Tariq Panja

June 24, 2018

MOSCOW — The World Cup was thrust into the combustible mix of politics and soccer — dangerous ground that world soccer takes great pains to avoid — as a growing number of disciplinary proceedings and a star player's threatened retirement brought several sensitive international flash points to the tournament's doorstep this weekend.

## Example #1: summarizing a corpus of documents

Observation: documents express one or more thematic topics.



- ▶ What topics are expressed in a corpus of documents?
- ► How prevalent is each topic in the corpus?

# Topic model (e.g., latent Dirichlet allocation)



K topics (distributions over vocab words). Document  $\equiv$  mixture of topics. Word tokens in doc.  $\stackrel{\text{iid}}{\sim}$  mixture distribution.

# Topic model (e.g., latent Dirichlet allocation)



K topics (distributions over vocab words). Document  $\equiv$  mixture of topics. Word tokens in doc.  $\stackrel{\text{iid}}{\sim}$  mixture distribution.



 $0.7 \times \boldsymbol{P}_{\text{sports}} + 0.3 \times \boldsymbol{P}_{\text{politics}}.$ 

## Topic model (e.g., latent Dirichlet allocation)



K topics (distributions over vocab words). Document  $\equiv$  mixture of topics. Word tokens in doc.  $\stackrel{\text{iid}}{\sim}$  mixture distribution.



$$\overset{\mathrm{iid}}{\sim} ~0.7 \times \boldsymbol{P}_{\mathrm{sports}} + 0.3 \times \boldsymbol{P}_{\mathrm{politics}}.$$

Given corpus of documents (and "hyper-parameters", e.g., K), produce estimates of **model parameters**, e.g.:

- ▶ Distribution  $P_t$  over vocab words, for each  $t \in [K]$ .
- ▶ Weight  $w_t$  of topic t in document corpus, for each  $t \in [K]$ .

## Labels / annotations

Suppose each word token x in document is annotated with source topic  $t_x \in \{1, 2, \dots, K\}$ .

| Politics | Ensnare | Mohamed_Salah | and | Switzerland | at |
|----------|---------|---------------|-----|-------------|----|
| 3        | 3       | 1             | 5   | 3           | 5  |

## Labels / annotations

Suppose each word token x in document is annotated with source topic  $t_x \in \{1, 2, \dots, K\}$ .

| Politics | Ensnare | Mohamed_Salah | and | Switzerland | at |
|----------|---------|---------------|-----|-------------|----|
| 3        | 3       | 1             | 5   | 3           | 5  |

Then estimating the  $\{(P_t, w_t)\}_{t=1}^K$  can be done "directly".

## Labels / annotations

Suppose each word token x in document is annotated with source topic  $t_x \in \{1, 2, \dots, K\}$ .

| Politics | Ensnare | Mohamed_Salah | and | Switzerland | at |
|----------|---------|---------------|-----|-------------|----|
| 3        | 3       | 1             | 5   | 3           | 5  |

Then estimating the  $\{(P_t, w_t)\}_{t=1}^K$  can be done "directly".

► Unfortunately, we often don't have such annotations (i.e., data are *unlabeled* / topics are *hidden*).

"Direct" approach to estimation unavailable.

## Example #2: subpopulations in data



 $\begin{tabular}{ll} \textbf{Data studied by Pearson (1894)}: \\ \textbf{ratio of forehead-width to body-length for $1000$ crabs.} \\ \end{tabular}$ 

## Example #2: subpopulations in data



Data studied by Pearson (1894): ratio of forehead-width to body-length for 1000 crabs.

Sample may be comprised of different sub-species of crabs.



#### Gaussian mixture model

$$H \sim \operatorname{Categorical}(\pi_1, \pi_2, \dots, \pi_K);$$
  
 $\boldsymbol{X} \mid H = t \sim \operatorname{Normal}(\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t), \quad t \in [K].$ 



#### Gaussian mixture model

$$H \sim \operatorname{Categorical}(\pi_1, \pi_2, \dots, \pi_K);$$
 $X \mid H = t \sim \operatorname{Normal}(\mu_t, \Sigma_t), \quad t \in [K].$ 

Estimate **mean vector**, **covariance matrix**, and **mixing weight** of each subpopulation from *unlabeled data*.

▶ No "direct" estimators when some variables are hidden.

- ▶ No "direct" estimators when some variables are hidden.
- ► Maximum likelihood estimator (MLE):

```
\begin{array}{l} \pmb{\theta}_{\mathsf{MLE}} \; := \; \underset{\pmb{\theta} \in \Theta}{\arg\max} \; \log \Pr_{\pmb{\theta}} \left( \mathsf{data} \right) \, . \end{array}
```

- ▶ No "direct" estimators when some variables are hidden.
- Maximum likelihood estimator (MLE):

$$\theta_{\mathsf{MLE}} := \underset{\theta \in \Theta}{\operatorname{arg\,max}} \log \Pr_{\theta} (\mathsf{data}).$$

**Note**: log-likelihood is not necessarily concave function of  $\theta$ .

- ▶ No "direct" estimators when some variables are hidden.
- ► Maximum likelihood estimator (MLE):

$$\theta_{\mathsf{MLE}} := \underset{\theta \in \Theta}{\operatorname{arg\,max}} \log \Pr_{\theta} \left( \mathsf{data} \right).$$

- **Note**: log-likelihood is not necessarily concave function of  $\theta$ .
- For latent variable models, often use local optimization, most notably via Expectation-Maximization (EM) (Dempster, Laird, & Rubin, 1977).

## MLE for Gaussian mixture models

Given data  $\{x_i\}_{i=1}^n$ , find  $\{(\mu_t, \Sigma_t, \pi_t)\}_{t=1}^K$  to maximize

$$\sum_{i=1}^{n} \log \left( \sum_{t=1}^{K} \pi_t \cdot \frac{1}{\det(\boldsymbol{\Sigma}_t)^{1/2}} \exp\left\{ -\frac{1}{2} (\boldsymbol{x}_i - \boldsymbol{\mu}_t)^{\top} \boldsymbol{\Sigma}_t^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}_t) \right\} \right).$$

ç

#### MLE for Gaussian mixture models

Given data  $\{m{x}_i\}_{i=1}^n$ , find  $\{(m{\mu}_t, m{\Sigma}_t, \pi_t)\}_{t=1}^K$  to maximize

$$\sum_{i=1}^{n} \log \left( \sum_{t=1}^{K} \pi_t \cdot \frac{1}{\det(\boldsymbol{\Sigma}_t)^{1/2}} \exp \left\{ -\frac{1}{2} (\boldsymbol{x}_i - \boldsymbol{\mu}_t)^{\top} \boldsymbol{\Sigma}_t^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}_t) \right\} \right).$$

▶ Sensible with restrictions on  $\Sigma_t$  (e.g.,  $\Sigma_t \succeq \sigma^2 I$ ).

## MLE for Gaussian mixture models

Given data  $\{m{x}_i\}_{i=1}^n$ , find  $\{(m{\mu}_t, m{\Sigma}_t, \pi_t)\}_{t=1}^K$  to maximize

$$\sum_{i=1}^{n} \log \left( \sum_{t=1}^{K} \pi_t \cdot \frac{1}{\det(\boldsymbol{\Sigma}_t)^{1/2}} \exp\left\{ -\frac{1}{2} (\boldsymbol{x}_i - \boldsymbol{\mu}_t)^{\top} \boldsymbol{\Sigma}_t^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}_t) \right\} \right) .$$

- ► Sensible with restrictions on  $\Sigma_t$  (e.g.,  $\Sigma_t \succeq \sigma^2 I$ ).
- But NP-hard to maximize (Tosh and Dasgupta, 2018):
  Can't expect efficient algorithms to work for all data sets.

Suppose iid sample of size n is generated by distribution from model with (unknown) parameters  $\theta \in \Theta \subseteq \mathbb{R}^p$ . (p = # params)

Suppose iid sample of size n is generated by distribution from model with (unknown) parameters  $\theta \in \Theta \subseteq \mathbb{R}^p$ . (p = # params)

**Task**: Produce estimate  $\hat{\boldsymbol{\theta}}$  of  $\boldsymbol{\theta}$  such that

$$\mathbb{E} \| \hat{m{ heta}} - m{ heta} \| \ o \ 0$$
 as  $n o \infty$ 

(i.e.,  $\hat{\boldsymbol{\theta}}$  is consistent).

Suppose iid sample of size n is generated by distribution from model with (unknown) parameters  $\theta \in \Theta \subseteq \mathbb{R}^p$ . (p = # params)

**Task**: Produce estimate  $\hat{\boldsymbol{\theta}}$  of  $\boldsymbol{\theta}$  such that

$$\mathbb{E} \|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}\| \to 0 \text{ as } n \to \infty$$

(i.e.,  $\hat{\boldsymbol{\theta}}$  is consistent).

- ► E.g., for spherical Gaussian mixtures:
  - For K=2 (and  $\pi_t=1/2$ ,  $\Sigma_t=I$ ): EM is consistent (Xu,  $\underline{H}$ ., & Maleki, 2016).

Suppose iid sample of size n is generated by distribution from model with (unknown) parameters  $\theta \in \Theta \subseteq \mathbb{R}^p$ . (p = # params)

**Task**: Produce estimate  $\hat{\theta}$  of  $\theta$  such that

$$\mathbb{E} \| \hat{\boldsymbol{\theta}} - \boldsymbol{\theta} \| \to 0 \text{ as } n \to \infty$$

(i.e.,  $\hat{\boldsymbol{\theta}}$  is consistent).

- ► E.g., for spherical Gaussian mixtures:
  - For K=2 (and  $\pi_t=1/2$ ,  $\Sigma_t=I$ ): EM is consistent (Xu,  $\underline{H}$ ., & Maleki, 2016).
  - ► Larger K: easily trapped in local maxima, far from global max (Jin, Zhang, Balakrishnan, Wainwright, & Jordan, 2016).

Suppose iid sample of size n is generated by distribution from model with (unknown) parameters  $\theta \in \Theta \subseteq \mathbb{R}^p$ . (p = # params)

**Task**: Produce estimate  $\hat{\boldsymbol{\theta}}$  of  $\boldsymbol{\theta}$  such that

$$\mathbb{E} \|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}\| \to 0 \text{ as } n \to \infty$$

(i.e.,  $\hat{\boldsymbol{\theta}}$  is consistent).

- ► E.g., for spherical Gaussian mixtures:
  - For K=2 (and  $\pi_t=1/2$ ,  $\Sigma_t=I$ ): EM is consistent (Xu,  $\underline{H}$ ., & Maleki, 2016).
  - ► Larger *K*: easily trapped in local maxima, far from global max (Jin, Zhang, Balakrishnan, Wainwright, & Jordan, 2016).

Practitioners often use EM with many (random) restarts ... but may take a long time to get near the global max.

Suppose iid sample of size n is generated by distribution from model with (unknown) parameters  $\theta \in \Theta \subseteq \mathbb{R}^p$ . (p = # params)

**Task**: Produce estimate  $\hat{\boldsymbol{\theta}}$  of  $\boldsymbol{\theta}$  such that

$$\Pr\left(\|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}\| \le \epsilon\right) \ge 1 - \delta$$

with  $poly(p, 1/\epsilon, 1/\delta, ...)$  sample size and running time.

- ► E.g., for spherical Gaussian mixtures:
  - For K=2 (and  $\pi_t=1/2$ ,  $\Sigma_t=I$ ): EM is consistent (Xu,  $\underline{H}$ ., & Maleki, 2016).
  - ► Larger *K*: easily trapped in local maxima, far from global max (Jin, Zhang, Balakrishnan, Wainwright, & Jordan, 2016).

Practitioners often use EM with many (random) restarts ... but may take a long time to get near the global max.

## **Barriers**

Hard to learn model parameters, even when data is generated by a model distribution.

#### **Barriers**

Hard to learn model parameters, even when data is generated by a model distribution.



Cryptographic hardness (e.g., Mossel & Roch, 2006)



Information-theoretic hardness (e.g., Moitra & Valiant, 2010)

May require  $2^{\Omega(K)}$  running time or  $2^{\Omega(K)}$  sample size.

Separation conditions.

E.g., assume mixture component distributions are far apart.

(Dasgupta, 1999; Arora & Kannan, 2001; Vempala & Wang, 2002; . . . )

Separation conditions.

```
E.g., assume mixture component distributions are far apart. (Dasgupta, 1999; Arora & Kannan, 2001; Vempala & Wang, 2002; ...)
```

Structural assumptions.

```
E.g., sparsity, anchor words.
(Spielman, Wang, & Wright, 2012; Arora, Ge, & Moitra, 2012; ...)
```

Separation conditions.

```
E.g., assume mixture component distributions are far apart. (Dasgupta, 1999; Arora & Kannan, 2001; Vempala & Wang, 2002; ...)
```

Structural assumptions.

```
E.g., sparsity, anchor words.
(Spielman, Wang, & Wright, 2012; Arora, Ge, & Moitra, 2012; ...)
```

Non-degeneracy conditions.

```
E.g., assume \mu_1, \mu_2, \dots, \mu_K are in general position.
```

► Separation conditions.

```
E.g., assume mixture component distributions are far apart. (Dasgupta, 1999; Arora & Kannan, 2001; Vempala & Wang, 2002; ...)
```

Structural assumptions.

```
E.g., sparsity, anchor words. (Spielman, Wang, & Wright, 2012; Arora, Ge, & Moitra, 2012; ...)
```

Non-degeneracy conditions.

```
E.g., assume \mu_1, \mu_2, \dots, \mu_K are in general position.
```

**This lecture**: learning algorithms for non-degenerate instances via *method-of-moments*.

## Method-of-moments at a glance

1. Determine function of model parameters  $\theta$  estimatable from observable data:

$$\mathbb{E}_{\boldsymbol{\theta}}[f(\boldsymbol{X})]$$
 ("moments").

2. Form estimates of moments using data (e.g., iid sample):

$$\widehat{\mathbb{E}}[f(oldsymbol{X})]$$
 ("empirical moments").

3. Approximately solve equations for parameters  $\theta$ :

$$\mathbb{E}_{\boldsymbol{\theta}}[f(\boldsymbol{X})] = \widehat{\mathbb{E}}[f(\boldsymbol{X})].$$

4. ("Fine-tune" estimated parameters with local optimization.)

## Method-of-moments at a glance

1. Determine function of model parameters  $\theta$  estimatable from observable data:

$$\mathbb{E}_{\boldsymbol{\theta}}[f(\boldsymbol{X})]$$
 ("moments").

#### Which moments?

2. Form estimates of moments using data (e.g., iid sample):

$$\widehat{\mathbb{E}}[f(oldsymbol{X})]$$
 ("empirical moments").

3. Approximately solve equations for parameters  $\theta$ :

$$\mathbb{E}_{\boldsymbol{\theta}}[f(\boldsymbol{X})] = \widehat{\mathbb{E}}[f(\boldsymbol{X})].$$

#### How?

4. ("Fine-tune" estimated parameters with local optimization.)

## Method-of-moments at a glance

1. Determine function of model parameters  $\theta$  estimatable from observable data:

$$\mathbb{E}_{\boldsymbol{\theta}}[f(\boldsymbol{X})]$$
 ("moments").

Which moments? Often low-order moments suffice.

2. Form estimates of moments using data (e.g., iid sample):

$$\widehat{\mathbb{E}}[f(oldsymbol{X})]$$
 ("empirical moments").

3. Approximately solve equations for parameters  $\theta$ :

$$\mathbb{E}_{\boldsymbol{\theta}}[f(\boldsymbol{X})] = \widehat{\mathbb{E}}[f(\boldsymbol{X})].$$

**How?** Algorithms for tensor decomposition.

4. ("Fine-tune" estimated parameters with local optimization.)

Let  $X \sim \text{Normal}(\mu, \sigma^2)$ . How to estimate  $\sigma^2$  from iid sample?

Let  $X \sim \text{Normal}(\mu, \sigma^2)$ . How to estimate  $\sigma^2$  from iid sample?

▶ Consider first- and second-moments:  $\mathbb{E}[X]$  and  $\mathbb{E}[X^2]$ .

Let  $X \sim \text{Normal}(\mu, \sigma^2)$ . How to estimate  $\sigma^2$  from iid sample?

- ▶ Consider first- and second-moments:  $\mathbb{E}[X]$  and  $\mathbb{E}[X^2]$ .
- ▶ Formula for  $\sigma^2$  in terms of moments:

$$\mathbb{E}[X^2] - \mathbb{E}[X]^2 = (\sigma^2 + \mu^2) - \mu^2 = \sigma^2.$$

Let  $X \sim \text{Normal}(\mu, \sigma^2)$ . How to estimate  $\sigma^2$  from iid sample?

- ▶ Consider first- and second-moments:  $\mathbb{E}[X]$  and  $\mathbb{E}[X^2]$ .
- ▶ Formula for  $\sigma^2$  in terms of moments:

$$\mathbb{E}[X^2] - \mathbb{E}[X]^2 \ = \ \left(\sigma^2 + \mu^2\right) - \mu^2 \ = \ \sigma^2 \,.$$

Form estimates of  $\mathbb{E}[X]$  and  $\mathbb{E}[X^2]$  from iid sample  $\{x_i\}_{i=1}^n$ : e.g.,

$$\widehat{\mathbb{E}}[X] := \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad \widehat{\mathbb{E}}[X^2] := \frac{1}{n} \sum_{i=1}^{n} x_i^2.$$

14

Let  $X \sim \text{Normal}(\mu, \sigma^2)$ . How to estimate  $\sigma^2$  from iid sample?

- ▶ Consider first- and second-moments:  $\mathbb{E}[X]$  and  $\mathbb{E}[X^2]$ .
- ▶ Formula for  $\sigma^2$  in terms of moments:

$$\mathbb{E}[X^2] - \mathbb{E}[X]^2 \ = \ \left(\sigma^2 + \mu^2\right) - \mu^2 \ = \ \sigma^2 \, .$$

Form estimates of  $\mathbb{E}[X]$  and  $\mathbb{E}[X^2]$  from iid sample  $\{x_i\}_{i=1}^n$ : e.g.,

$$\widehat{\mathbb{E}}[X] := \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad \widehat{\mathbb{E}}[X^2] := \frac{1}{n} \sum_{i=1}^{n} x_i^2.$$

▶ Then estimate  $\sigma^2$  with

$$\hat{\sigma}^2 := \widehat{\mathbb{E}}[X^2] - \widehat{\mathbb{E}}[X]^2$$
.

14

Let  $X \sim \text{Normal}(\mu, \sigma^2)$ . How to estimate  $\sigma^2$  from iid sample?

- ▶ Consider first- and second-moments:  $\mathbb{E}[X]$  and  $\mathbb{E}[X^2]$ .
- ▶ Formula for  $\sigma^2$  in terms of moments:

$$\mathbb{E}[X^2] - \mathbb{E}[X]^2 \ = \ \left(\sigma^2 + \mu^2\right) - \mu^2 \ = \ \sigma^2 \, .$$

Form estimates of  $\mathbb{E}[X]$  and  $\mathbb{E}[X^2]$  from iid sample  $\{x_i\}_{i=1}^n$ : e.g.,

$$\widehat{\mathbb{E}}[X] := \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad \widehat{\mathbb{E}}[X^2] := \frac{1}{n} \sum_{i=1}^{n} x_i^2.$$

▶ Then estimate  $\sigma^2$  with

$$\hat{\sigma}^2 := \widehat{\mathbb{E}}[X^2] - \widehat{\mathbb{E}}[X]^2$$
.

We'll follow this same basic recipe for much richer models!

#### Outline

- 1. Topic model for single-topic documents.
  - ► Identifiability.
  - Parameter recovery via orthogonal tensor decomposition.
- 2. Moment decompositions for other models.
  - Mixtures of Gaussians and linear regressions.
  - Multi-view models (e.g., HMMs).
  - Other models (e.g., single-index models).
- 3. Error analysis.

# Other models amenable to moment tensor decomposition

- ▶ Models for independent components analysis (Comon, 1994; Frieze, Jerrum, & Kannan, 1996; Arora, Ge, Moitra & Sachdeva, 2012; Anandkumar, Foster, H., Kakade, & Liu, 2012, 2015; Belkin, Rademacher, & Voss, 2013; etc.)
- Latent Dirichlet Allocation (Anandkumar, Foster, H., Kakade, & Liu, 2012, 2015; Anderson, Goyal, & Rademacher, 2013)
- Mixed-membership stochastic blockmodels (Anandkumar, Ge, H., & Kakade, 2013, 2014)
- ► Simple probabilistic grammars (<u>H.</u>, Kakade, & Liang, 2012)
- Noisy-or networks (Halpern & Sontag, 2013; Jernite, Halpern & Sontag, 2013; Arora, Ge, Ma, & Risteski, 2016)
- ► Indian buffet process (Tung & Smola, 2014)
- Mixed multinomial logit model (Oh & Shah, 2014)
- ▶ Dawid-Skene model (Zhang, Chen, Zhou, & Jordan, 2014)
- ► Multi-task bandits (Azar, Lazaric, & Brunskill, 2013)
- Partially obs. MDPs (Azizzadenesheli, Lazaric, & Anandkumar, 2016)
- **.**...

1. Topic model for single-topic documents

### General topic model (e.g., Latent Dirichlet Allocation)



K topics (dists. over words)  $\{P_t\}_{t=1}^K$ . Document  $\equiv$  mixture of topics (hidden). Word tokens in doc.  $\stackrel{\text{iid}}{\sim}$  mixture distribution.

#### Topic model for single-topic documents



K topics (dists. over words)  $\{\boldsymbol{P}_t\}_{t=1}^K$ . Pick topic t with prob.  $w_t$  (hidden). Word tokens in doc.  $\stackrel{\text{iid}}{\sim} \boldsymbol{P}_t$ .

#### Topic model for single-topic documents



K topics (dists. over words)  $\{\boldsymbol{P}_t\}_{t=1}^K$ . Pick topic t with prob.  $w_t$  (hidden). Word tokens in doc.  $\stackrel{\text{iid}}{\sim} \boldsymbol{P}_t$ .

Given iid sample of documents of length L, produce estimates of **model parameters**  $\{(P_t, w_t)\}_{t=1}^K$ .

18

#### Topic model for single-topic documents



K topics (dists. over words)  $\{\boldsymbol{P}_t\}_{t=1}^K$ . Pick topic t with prob.  $w_t$  (hidden). Word tokens in doc.  $\stackrel{\text{iid}}{\sim} \boldsymbol{P}_t$ .

Given iid sample of documents of length L, produce estimates of **model parameters**  $\{(P_t, w_t)\}_{t=1}^K$ .

How long must the documents be?

#### Topic model for single-topic documents



K topics (dists. over words)  $\{P_t\}_{t=1}^K$ . Pick topic t with prob.  $w_t$  (hidden). Word tokens in doc.  $\stackrel{\text{iid}}{\sim} P_t$ .

Given iid sample of documents of length L, produce estimates of **model parameters**  $\{(P_t, w_t)\}_{t=1}^K$ .

How long must the documents be?

(Answering this question leads to efficient algorithms for estimating parameters!)

#### **Generative process:**

Pick  $t \sim \text{Categorical}(w_1, w_2, \dots, w_K)$ .

Given t, pick L words from  $P_t$ .

#### **Generative process**:

```
Pick t \sim \text{Categorical}(w_1, w_2, \dots, w_K).
Given t, pick L words from P_t.
```

▶ L = 1: random document (single word)  $\sim \sum_{t=1}^{K} w_t P_t$ .

Are parameters  $\{(\boldsymbol{P}_t, w_t)\}_{t=1}^K$  identifiable from single-word documents?

#### **Generative process:**

```
Pick t \sim \operatorname{Categorical}(w_1, w_2, \dots, w_K).
Given t, pick L words from P_t.
```

▶ L=1: random document (single word)  $\sim \sum_{t=1}^{K} w_t P_t$ .

Are parameters  $\{(P_t, w_t)\}_{t=1}^K$  identifiable from single-word documents?

No.

#### **Generative process**:

Pick  $t \sim \text{Categorical}(w_1, w_2, \dots, w_K)$ .

Given t, pick L words from  $P_t$ .

▶ L=1: random document (single word)  $\sim \sum_{t=1}^{K} w_t P_t$ .

Are parameters  $\{(P_t, w_t)\}_{t=1}^K$  identifiable from single-word documents?

No.



#### **Generative process:**

Pick  $t \sim \text{Categorical}(w_1, w_2, \dots, w_K)$ .

Given t, pick L words from  $P_t$ .

▶ L=1: random document (single word)  $\sim \sum_{t=1}^{K} w_t P_t$ .

Are parameters  $\{(P_t, w_t)\}_{t=1}^K$  identifiable from single-word documents?

No.



#### **Generative process:**

Pick  $t \sim \text{Categorical}(w_1, w_2, \dots, w_K)$ . Given t, pick L words from  $P_t$ .

L = 2:

#### **Generative process**:

Pick  $t \sim \text{Categorical}(w_1, w_2, \dots, w_K)$ .

Given t, pick L words from  $P_t$ .

L = 2:

Regard  $P_t$  as probability vector (*i*th entry of  $P_t$  is  $\Pr[\text{word } i]$ ). Joint distribution of word pairs (for topic t) is given by matrix:



Random document  $\sim \sum_{t=1}^K w_t \boldsymbol{P}_t \boldsymbol{P}_t^{\mathsf{T}}$ .

#### **Generative process**:

Pick  $t \sim \text{Categorical}(w_1, w_2, \dots, w_K)$ . Given t, pick L words from  $P_t$ .

L = 2:

Regard  $P_t$  as probability vector (*i*th entry of  $P_t$  is  $\Pr[\text{word } i]$ ). Joint distribution of word pairs (for topic t) is given by matrix:



Random document  $\sim \sum_{t=1}^{K} w_t P_t P_t^{\top}$ .

Are parameters  $\{(\boldsymbol{P}_t, w_t)\}_{t=1}^K$  identifiable from word pairs?

### Simple observation

Suppose distribution of word pairs (as a matrix) can be written as

$$M = AA^{\top}$$
.

## Simple observation

Suppose distribution of word pairs (as a matrix) can be written as

$$M = AA^{\mathsf{T}}.$$

Then it can also be written as

$$M = (\mathbf{A}\mathbf{R})(\mathbf{A}\mathbf{R})^{\mathsf{T}}$$

for any orthogonal matrix R (because  $R^{ op}R=I$ ).

# Identifiability: L=2 counterexample

Parameters  $\{(\boldsymbol{P}_1,w_1),(\boldsymbol{P}_2,w_2)\}$  and  $\{(\widetilde{\boldsymbol{P}}_1,\tilde{w}_1),(\widetilde{\boldsymbol{P}}_2,\tilde{w}_2)\}$ 

$$(\mathbf{P}_{1}, w_{1}) = \left( \begin{bmatrix} 0.40 \\ 0.60 \end{bmatrix}, 0.5 \right), \quad (\mathbf{P}_{2}, w_{2}) = \left( \begin{bmatrix} 0.60 \\ 0.40 \end{bmatrix}, 0.5 \right);$$

$$(\tilde{\mathbf{P}}_{1}, \tilde{w}_{1}) = \left( \begin{bmatrix} 0.55 \\ 0.45 \end{bmatrix}, 0.8 \right), \quad (\tilde{\mathbf{P}}_{2}, \tilde{w}_{2}) = \left( \begin{bmatrix} 0.30 \\ 0.70 \end{bmatrix}, 0.2 \right)$$

# Identifiability: L=2 counterexample

Parameters  $\{(\boldsymbol{P}_1,w_1),(\boldsymbol{P}_2,w_2)\}$  and  $\{(\widetilde{\boldsymbol{P}}_1,\tilde{w}_1),(\widetilde{\boldsymbol{P}}_2,\tilde{w}_2)\}$ 

$$(\mathbf{P}_{1}, w_{1}) = \left( \begin{bmatrix} 0.40 \\ 0.60 \end{bmatrix}, 0.5 \right), \quad (\mathbf{P}_{2}, w_{2}) = \left( \begin{bmatrix} 0.60 \\ 0.40 \end{bmatrix}, 0.5 \right);$$

$$(\tilde{\mathbf{P}}_{1}, \tilde{w}_{1}) = \left( \begin{bmatrix} 0.55 \\ 0.45 \end{bmatrix}, 0.8 \right), \quad (\tilde{\mathbf{P}}_{2}, \tilde{w}_{2}) = \left( \begin{bmatrix} 0.30 \\ 0.70 \end{bmatrix}, 0.2 \right)$$

satisfy

$$w_1 \mathbf{P}_1 \mathbf{P}_1^{\top} + w_2 \mathbf{P}_2 \mathbf{P}_2^{\top} = \tilde{w}_1 \tilde{\mathbf{P}}_1 \tilde{\mathbf{P}}_1^{\top} + \tilde{w}_2 \tilde{\mathbf{P}}_2 \tilde{\mathbf{P}}_2^{\top} = \begin{bmatrix} 0.26 & 0.24 \\ 0.24 & 0.26 \end{bmatrix}.$$

22

# Identifiability: L=2 counterexample

Parameters  $\{(\boldsymbol{P}_1,w_1),(\boldsymbol{P}_2,w_2)\}$  and  $\{(\widetilde{\boldsymbol{P}}_1,\tilde{w}_1),(\widetilde{\boldsymbol{P}}_2,\tilde{w}_2)\}$ 

$$(\mathbf{P}_{1}, w_{1}) = \left( \begin{bmatrix} 0.40 \\ 0.60 \end{bmatrix}, 0.5 \right), \quad (\mathbf{P}_{2}, w_{2}) = \left( \begin{bmatrix} 0.60 \\ 0.40 \end{bmatrix}, 0.5 \right);$$

$$(\tilde{\mathbf{P}}_{1}, \tilde{w}_{1}) = \left( \begin{bmatrix} 0.55 \\ 0.45 \end{bmatrix}, 0.8 \right), \quad (\tilde{\mathbf{P}}_{2}, \tilde{w}_{2}) = \left( \begin{bmatrix} 0.30 \\ 0.70 \end{bmatrix}, 0.2 \right)$$

satisfy

$$w_1 \mathbf{P}_1 \mathbf{P}_1^{\top} + w_2 \mathbf{P}_2 \mathbf{P}_2^{\top} = \tilde{w}_1 \tilde{\mathbf{P}}_1 \tilde{\mathbf{P}}_1^{\top} + \tilde{w}_2 \tilde{\mathbf{P}}_2 \tilde{\mathbf{P}}_2^{\top} = \begin{bmatrix} 0.26 & 0.24 \\ 0.24 & 0.26 \end{bmatrix}.$$

Cannot identify parameters from length-two documents.

### Documents of length L=3

Joint distribution of word triple (for topic t) is given by *tensor*.



Random document  $\sim \sum_{t=1}^K w_t \mathbf{P}_t \otimes \mathbf{P}_t \otimes \mathbf{P}_t$ .

23

**Claim**: If  $\{P_t\}_{t=1}^K$  are linearly independent & all  $w_t > 0$ , then parameters  $\{(P_t, w_t)\}_{t=1}^K$  are identifiable from word triples.

**Claim**: If  $\{P_t\}_{t=1}^K$  are linearly independent & all  $w_t > 0$ , then parameters  $\{(P_t, w_t)\}_{t=1}^K$  are identifiable from word triples.

Claim implied by uniqueness of certain tensor decompositions.

**Claim**: If  $\{P_t\}_{t=1}^K$  are linearly independent & all  $w_t > 0$ , then parameters  $\{(P_t, w_t)\}_{t=1}^K$  are identifiable from word triples.

- Claim implied by uniqueness of certain tensor decompositions.
- Proof is constructive: i.e., comes with an algorithm!

**Claim**: If  $\{P_t\}_{t=1}^K$  are linearly independent & all  $w_t > 0$ , then parameters  $\{(P_t, w_t)\}_{t=1}^K$  are identifiable from word triples.

- Claim implied by uniqueness of certain tensor decompositions.
- ▶ Proof is *constructive*: i.e., comes with an algorithm!

**Next**: Brief overview of tensors.

### Tensors of order two

### Matrices (tensors of order two): $M \in \mathbb{R}^{d \times d}$ .

▶ Regard as *bi-linear function*  $M: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ :

$$M(a\mathbf{x} + \mathbf{x}', \mathbf{y}) = aM(\mathbf{x}, \mathbf{y}) + M(\mathbf{x}', \mathbf{y});$$
  
 $M(\mathbf{x}, a\mathbf{y} + \mathbf{y}') = aM(\mathbf{x}, \mathbf{y}) + M(\mathbf{x}, \mathbf{y}').$ 

### Tensors of order two

### Matrices (tensors of order two): $M \in \mathbb{R}^{d \times d}$ .

▶ Regard as *bi-linear function* M:  $\mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ :

$$M(ax + x', y) = aM(x, y) + M(x', y);$$
  
 $M(x, ay + y') = aM(x, y) + M(x, y').$ 

► Can describe M by  $d^2$  values  $M(e_i, e_j) =: M_{i,j}$ . ( $e_i$  is ith coordinate basis vector.)

### Tensors of order two

### Matrices (tensors of order two): $M \in \mathbb{R}^{d \times d}$ .

▶ Regard as *bi-linear function*  $M: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ :

$$M(ax + x', y) = aM(x, y) + M(x', y);$$
  
 $M(x, ay + y') = aM(x, y) + M(x, y').$ 

- ► Can describe M by  $d^2$  values  $M(e_i, e_j) =: M_{i,j}$ . ( $e_i$  is ith coordinate basis vector.)
- Formula using matrix representation:

$$oldsymbol{M}(oldsymbol{x},oldsymbol{y}) \ = \ oldsymbol{x}^ op oldsymbol{M}oldsymbol{y} = \ oldsymbol{\Sigma}_{i,j} \, M_{i,j} \cdot x_i y_j \, .$$

### Tensors of order two

## Matrices (tensors of order two): $M \in \mathbb{R}^{d \times d}$ .

▶ Regard as *bi-linear function*  $M: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ :

$$M(ax + x', y) = aM(x, y) + M(x', y);$$
  
 $M(x, ay + y') = aM(x, y) + M(x, y').$ 

- ► Can describe M by  $d^2$  values  $M(e_i, e_j) =: M_{i,j}$ . ( $e_i$  is ith coordinate basis vector.)
- Formula using matrix representation:

$$oldsymbol{M}(oldsymbol{x},oldsymbol{y}) \ = \ oldsymbol{x}^ op oldsymbol{M}oldsymbol{y} = \ oldsymbol{\Sigma}_{i,j} \, M_{i,j} \cdot x_i y_j \, .$$

Tensors are *multi-linear* generalization.

p-linear functions:  $T : \mathbb{R}^d \times \mathbb{R}^d \times \cdots \times \mathbb{R}^d \to \mathbb{R}$ .

*p*-linear functions:  $T: \mathbb{R}^d \times \mathbb{R}^d \times \cdots \times \mathbb{R}^d \to \mathbb{R}$ .

 $lackbox{\ }$  Can describe T by  $d^p$  values  $T(m{e}_{i_1},m{e}_{i_2},\ldots,m{e}_{i_p})=:T_{i_1,i_2,\ldots,i_p}.$ 

p-linear functions:  $T \colon \mathbb{R}^d \times \mathbb{R}^d \times \cdots \times \mathbb{R}^d \to \mathbb{R}$ .

- $lackbox{\ }$  Can describe  $m{T}$  by  $d^p$  values  $m{T}(m{e}_{i_1},m{e}_{i_2},\ldots,m{e}_{i_p})=:T_{i_1,i_2,\ldots,i_p}.$
- ldentify T with multi-index array  $T \in \mathbb{R}^{d \times d \times \cdots \times d}$ .

p-linear functions:  $T \colon \mathbb{R}^d \times \mathbb{R}^d \times \cdots \times \mathbb{R}^d \to \mathbb{R}$ .

- lacksquare Can describe  $m{T}$  by  $d^p$  values  $m{T}(m{e}_{i_1},m{e}_{i_2},\ldots,m{e}_{i_p})=:T_{i_1,i_2,\ldots,i_p}.$
- ldentify T with multi-index array  $T \in \mathbb{R}^{d \times d \times \cdots \times d}$ . Formula for function value:

$$T(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \dots, \boldsymbol{x}^{(p)}) = \sum_{i_1, i_2, \dots, i_p} T_{i_1, i_2, \dots, i_p} \cdot x_{i_1}^{(1)} x_{i_2}^{(2)} \cdots x_{i_p}^{(p)}.$$

p-linear functions:  $T \colon \mathbb{R}^d \times \mathbb{R}^d \times \cdots \times \mathbb{R}^d \to \mathbb{R}$ .

- lacksquare Can describe T by  $d^p$  values  $T(m{e}_{i_1},m{e}_{i_2},\ldots,m{e}_{i_p})=:T_{i_1,i_2,\ldots,i_p}.$
- ▶ Identify T with multi-index array  $T \in \mathbb{R}^{d \times d \times \cdots \times d}$ . Formula for function value:

$$T(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \dots, \boldsymbol{x}^{(p)}) = \sum_{i_1, i_2, \dots, i_p} T_{i_1, i_2, \dots, i_p} \cdot x_{i_1}^{(1)} x_{i_2}^{(2)} \cdots x_{i_p}^{(p)}.$$

lacksquare Rank-1 tensor:  $m{T}=m{v}^{(1)}\otimesm{v}^{(2)}\otimes\cdots\otimesm{v}^{(p)}$ ,

$$T(\pmb{x}^{(1)}, \pmb{x}^{(2)}, \dots, \pmb{x}^{(p)}) = \langle \pmb{v}^{(1)}, \pmb{x}^{(1)} \rangle \langle \pmb{v}^{(2)}, \pmb{x}^{(2)} \rangle \cdots \langle \pmb{v}^{(p)}, \pmb{x}^{(p)} \rangle.$$

p-linear functions:  $T : \mathbb{R}^d \times \mathbb{R}^d \times \cdots \times \mathbb{R}^d \to \mathbb{R}$ .

- $lackbox{\ }$  Can describe T by  $d^p$  values  $T(oldsymbol{e}_{i_1},oldsymbol{e}_{i_2},\ldots,oldsymbol{e}_{i_p})=:T_{i_1,i_2,\ldots,i_p}.$
- ▶ Identify T with multi-index array  $T \in \mathbb{R}^{d \times d \times \cdots \times d}$ . Formula for function value:

$$T(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \dots, \boldsymbol{x}^{(p)}) = \sum_{i_1, i_2, \dots, i_p} T_{i_1, i_2, \dots, i_p} \cdot x_{i_1}^{(1)} x_{i_2}^{(2)} \cdots x_{i_p}^{(p)}.$$

lacksquare Rank-1 tensor:  $T=oldsymbol{v}^{(1)}\otimesoldsymbol{v}^{(2)}\otimes\cdots\otimesoldsymbol{v}^{(p)}$  ,

$$T(m{x}^{(1)},m{x}^{(2)},\dots,m{x}^{(p)}) \,=\, \langle m{v}^{(1)},m{x}^{(1)}
angle \langle m{v}^{(2)},m{x}^{(2)}
angle \cdots \langle m{v}^{(p)},m{x}^{(p)}
angle \,.$$

Symmetric rank-1 tensor:  $T=v^{\otimes p}=v\otimes v\otimes\cdots\otimes v$ ,

$$T(oldsymbol{x}^{(1)},oldsymbol{x}^{(2)},\ldots,oldsymbol{x}^{(p)}) \;=\; \langle v,oldsymbol{x}^{(1)}
angle\langle v,oldsymbol{x}^{(2)}
angle\cdots\langle v,oldsymbol{x}^{(p)}
angle\,.$$

### Usual caveat

(Hillar & Lim, 2013)

#### **Most Tensor Problems Are NP-Hard**

CHRISTOPHER J. HILLAR, Mathematical Sciences Research Institute LEK-HENG LIM, University of Chicago

We prove that multilinear (tensor) analogues of many efficiently computable problems in numerical linear algebra are NP-hard. Our list includes: determining the feasibility of a system of bilinear equations, deciding whether a 3-tensor possesses a given eigenvalue, singular value, or spectral norm; approximating an eigenvalue, eigenvector, singular vector, or the spectral norm; and determining the rank or best rank-1 approximation of a 3-tensor. Furthermore, we show that restricting these problems to symmetric tensors does not alleviate their NP-hardness. We also explain how deciding nonnegative definiteness of a symmetric 4-tensor is NP-hard and how computing the combinatorial hyperdeterminant is NP-, #P-, and VNP-hard.

ightharpoonup Rank of T: smallest r s.t. T is sum of r rank-1 tensors.

 $\blacktriangleright \ \, {\sf Rank of} \,\, T\hbox{: smallest} \,\, r \,\, {\sf s.t.} \,\, T \,\, {\sf is sum of} \,\, r \,\, {\sf rank-1 tensors}.$ 

(Computing this is NP-hard.)

- Rank of T: smallest r s.t. T is sum of r rank-1 tensors. (Computing this is NP-hard.)
- ▶ "Border rank" of T: smallest r s.t. there exists sequence  $(T_k)_{k\in\mathbb{N}}$  of rank-r tensors with  $\lim_{k\to\infty}T_k=T$ .

- ▶ Rank of T: smallest r s.t. T is sum of r rank-1 tensors. (Computing this is NP-hard.)
- ▶ "Border rank" of T: smallest r s.t. there exists sequence  $(T_k)_{k\in\mathbb{N}}$  of rank-r tensors with  $\lim_{k\to\infty}T_k=T$ .
- ► Rank is not same as border rank!

Define

$$T := x \otimes x \otimes y + x \otimes y \otimes x + y \otimes x \otimes x,$$

which has rank 3.

- Rank of T: smallest r s.t. T is sum of r rank-1 tensors. (Computing this is NP-hard.)
- ▶ "Border rank" of T: smallest r s.t. there exists sequence  $(T_k)_{k\in\mathbb{N}}$  of rank-r tensors with  $\lim_{k\to\infty}T_k=T$ .
- ► Rank is not same as border rank!

Define

$$T := x \otimes x \otimes y + x \otimes y \otimes x + y \otimes x \otimes x$$
,

which has rank 3.

Define

$$m{T}_{1/\epsilon} \; := \; rac{1}{\epsilon}(m{x} + \epsilon m{y}) \otimes (m{x} + \epsilon m{y}) \otimes (m{x} + \epsilon m{y}) - rac{1}{\epsilon} m{x} \otimes m{x} \otimes m{x} \, ,$$

which have rank 2.

- Rank of T: smallest r s.t. T is sum of r rank-1 tensors. (Computing this is NP-hard.)
- ▶ "Border rank" of T: smallest r s.t. there exists sequence  $(T_k)_{k\in\mathbb{N}}$  of rank-r tensors with  $\lim_{k\to\infty}T_k=T$ .
- Rank is not same as border rank!

Define

$$T := x \otimes x \otimes y + x \otimes y \otimes x + y \otimes x \otimes x,$$

which has rank 3.

Define

$$egin{aligned} m{T}_{1/\epsilon} \; := \; rac{1}{\epsilon}(m{x} + \epsilon m{y}) \otimes (m{x} + \epsilon m{y}) \otimes (m{x} + \epsilon m{y}) - rac{1}{\epsilon} m{x} \otimes m{x} \otimes m{x} \,, \end{aligned}$$

which have rank 2.

For 
$$\epsilon = 1/k$$
, have  $\lim_{k \to \infty} T_k = T$ .

## Aside: eigenvalue decomposition

**Recall**: every symmetric matrix  $M \in \mathbb{R}^{d \times d}$  of rank K has an eigen-decomposition (which can be efficiently computed):

$$M = \sum_{t=1}^K \lambda_t v_t v_t^{\top},$$

## Aside: eigenvalue decomposition

**Recall**: every symmetric matrix  $M \in \mathbb{R}^{d \times d}$  of rank K has an eigen-decomposition (which can be efficiently computed):

$$m{M} \ = \ \sum_{t=1}^K \lambda_t m{v}_t m{v}_t^{ op} \,,$$

- ▶  $\{\lambda_t\}_{t=1}^K$  are eigenvalues,
- $\{v_t\}_{t=1}^K$  are the corresponding *eigenvectors*, which are orthonormal (i.e., orthogonal & unit length).
- ▶ Decomposition is unique iff  $\{\lambda_t\}_{t=1}^K$  are distinct. (Up to sign of  $v_t$ s.)

## Aside: eigenvalue decomposition

**Recall**: every symmetric matrix  $M \in \mathbb{R}^{d \times d}$  of rank K has an eigen-decomposition (which can be efficiently computed):

$$m{M} \ = \ \sum_{t=1}^K \lambda_t m{v}_t m{v}_t^{ op} \,,$$

- $\blacktriangleright \{\lambda_t\}_{t=1}^K$  are eigenvalues,
- $\{v_t\}_{t=1}^K$  are the corresponding *eigenvectors*, which are orthonormal (i.e., orthogonal & unit length).
- ▶ Decomposition is unique iff  $\{\lambda_t\}_{t=1}^K$  are distinct. (Up to sign of  $v_t$ s.)

For (symmetric) tensors of order  $p \geq 3$ : an analogous decomposition is **not** guaranteed to exist.

Suppose we have (estimates of) moments of the form

$$M \ = \ \sum_{t=1}^K v_t \otimes v_t \,,$$
 (e.g., word pairs) and  $T \ = \ \sum_{t=1}^K \lambda_t \cdot v_t \otimes v_t \otimes v_t \,.$  (e.g., word triples)

Here, we assume  $\{v_t\}_{t=1}^K$  are linearly independent, and  $\{\lambda_t\}_{t=1}^K$  are positive.

Suppose we have (estimates of) moments of the form

$$M \ = \ \sum_{t=1}^K v_t \otimes v_t \,,$$
 (e.g., word pairs) and  $T \ = \ \sum_{t=1}^K \lambda_t \cdot v_t \otimes v_t \otimes v_t \,.$  (e.g., word triples)

Here, we assume  $\{v_t\}_{t=1}^K$  are linearly independent, and  $\{\lambda_t\}_{t=1}^K$  are positive.

M is positive semidefinite of rank K.

Suppose we have (estimates of) moments of the form

$$M \ = \ \sum_{t=1}^K v_t \otimes v_t \,,$$
 (e.g., word pairs) and  $T \ = \ \sum_{t=1}^K \lambda_t \cdot v_t \otimes v_t \otimes v_t \,.$  (e.g., word triples)

Here, we assume  $\{v_t\}_{t=1}^K$  are linearly independent, and  $\{\lambda_t\}_{t=1}^K$  are positive.

- ightharpoonup M is positive semidefinite of rank K.
- ▶ M determines inner product system on  $\mathrm{span}\,\{v_t\}_{t=1}^K$  s.t.  $\{v_t\}_{t=1}^K$  are **orthonormal**:

$$\langle oldsymbol{x}, oldsymbol{y} 
angle_M \; \coloneqq \; oldsymbol{x}^ op M^\dagger oldsymbol{y} \, .$$

Suppose we have (estimates of) moments of the form

$$M \ = \ \sum_{t=1}^K v_t \otimes v_t \,,$$
 (e.g., word pairs) and  $T \ = \ \sum_{t=1}^K \lambda_t \cdot v_t \otimes v_t \otimes v_t \,.$  (e.g., word triples)

Here, we assume  $\{v_t\}_{t=1}^K$  are linearly independent, and  $\{\lambda_t\}_{t=1}^K$  are positive.

- M is positive semidefinite of rank K.
- ▶ M determines inner product system on  $\mathrm{span}\,\{v_t\}_{t=1}^K$  s.t.  $\{v_t\}_{t=1}^K$  are **orthonormal**:

$$\langle oldsymbol{x}, oldsymbol{y} 
angle_M \; \coloneqq \; oldsymbol{x}^ op M^\dagger oldsymbol{y} \, .$$

ightharpoonup .: Can assume d=K and  $\{v_t\}_{t=1}^d$  are orthonormal. (Similar to PCA; called "whitening" in signal processing context.)

# Orthogonally decomposable tensors (d = K)

**Goal**: Given tensor  $T = \sum_{t=1}^d \lambda_t \cdot v_t \otimes v_t \otimes v_t \in \mathbb{R}^{d \times d \times d}$  where:

- $\triangleright \{v_t\}_{t=1}^d$  are orthonormal;
- ightharpoonup all  $\lambda_t > 0$ ;

approximately recover  $\{(\boldsymbol{v}_t, \lambda_t)\}_{t=1}^d$ .

## Exact orthogonally decomposable tensor

(Zhang & Golub, 2001)

### Matching moments:

$$\{(\hat{oldsymbol{v}}_t,\hat{\lambda}_t)\}_{t=1}^d := \left. rg\min_{\{(oldsymbol{x}_t,\sigma_t)\}_{t=1}^d} \left\| T - \sum_{t=1}^d \sigma_t \cdot oldsymbol{x}_t \otimes oldsymbol{x}_t \otimes oldsymbol{x}_t \otimes oldsymbol{x}_t 
ight\|_F^2 \; .$$

(Here,  $\|\cdot\|_F$  is "Frobenius norm", just like for matrices.)

## Exact orthogonally decomposable tensor

(Zhang & Golub, 2001)

### Matching moments:

$$\{(\hat{oldsymbol{v}}_t,\hat{\lambda}_t)\}_{t=1}^d := \left. rg\min_{\{(oldsymbol{x}_t,\sigma_t)\}_{t=1}^d} \left\| T - \sum_{t=1}^d \sigma_t \cdot oldsymbol{x}_t \otimes oldsymbol{x}_t \otimes oldsymbol{x}_t \otimes oldsymbol{x}_t 
ight\|_F^2 \; .$$

(Here,  $\|\cdot\|_F$  is "Frobenius norm", just like for matrices.)

- Greedy approach:
  - Find best rank-1 approximation:

$$(\hat{v}, \hat{\lambda}) := \underset{\|\boldsymbol{x}\|=1, \sigma \geq 0}{\arg \min} \|T - \sigma \cdot \boldsymbol{x} \otimes \boldsymbol{x} \otimes \boldsymbol{x}\|_F^2.$$

lackbox "Deflate"  $T := T - \hat{\lambda} \cdot \hat{v} \otimes \hat{v} \otimes \hat{v}$  and repeat.

## Exact orthogonally decomposable tensor

(Zhang & Golub, 2001)

### Matching moments:

$$\{(\hat{m{v}}_t,\hat{\lambda}_t)\}_{t=1}^d := \left. rg\min_{\{(m{x}_t,\sigma_t)\}_{t=1}^d} \left\| T - \sum_{t=1}^d \sigma_t \cdot m{x}_t \otimes m{x}_t \otimes m{x}_t \otimes m{x}_t 
ight.
ight.$$

(Here,  $\|\cdot\|_F$  is "Frobenius norm", just like for matrices.)

- Greedy approach:
  - Find best rank-1 approximation:

$$\hat{v} := rg \max_{\|oldsymbol{x}\|=1} T(oldsymbol{x}, oldsymbol{x}, oldsymbol{x}) \, , \quad \hat{\lambda} := T(\hat{v}, \hat{v}, \hat{v}) \, .$$

lackbox "Deflate"  $T := T - \hat{\lambda} \cdot \hat{v} \otimes \hat{v} \otimes \hat{v}$  and repeat.

## Rank-1 approximation problem

#### Claim: Local maximizers of the function

$$m{x} \mapsto T(m{x}, m{x}, m{x}) = \sum_{i,j,k} T_{i,j,k} \cdot x_i x_j x_k$$

(over the unit ball) are  $\{v_t\}_{t=1}^d$ , and

$$T(v_t, v_t, v_t) = \lambda_t, \quad t \in [d].$$

## Rank-1 approximation problem

#### Claim: Local maximizers of the function

$$\boldsymbol{x} \mapsto \boldsymbol{T}(\boldsymbol{x}, \boldsymbol{x}, \boldsymbol{x}) = \sum_{i,j,k} T_{i,j,k} \cdot x_i x_j x_k = \sum_{t=1}^{a} \lambda_t \cdot \langle v_t, \boldsymbol{x} \rangle^3$$

(over the unit ball) are  $\{oldsymbol{v}_t\}_{t=1}^d$ , and

$$T(v_t, v_t, v_t) = \lambda_t, \quad t \in [d].$$

## Rank-1 approximation problem

Claim: Local maximizers of the function

$$m{x} \mapsto m{T}(m{x}, m{x}, m{x}) = \sum_{i,j,k} T_{i,j,k} \cdot x_i x_j x_k = \sum_{t=1}^d \lambda_t \cdot \langle v_t, m{x} \rangle^3$$

(over the unit ball) are  $\{oldsymbol{v}_t\}_{t=1}^d$ , and

$$T(v_t, v_t, v_t) = \lambda_t, \quad t \in [d].$$

**Corollary**: decomposition of T as  $\sum_{t=1}^{K} \lambda_t \cdot v_t^{\otimes 3}$  is unique!

By linearity and orthogonality:

$$T(oldsymbol{v}_t,oldsymbol{v}_t,oldsymbol{v}_t) \,=\, \sum_{s=1}^d (\lambda_s{\cdot}oldsymbol{v}_s^{\otimes 3})(oldsymbol{v}_t,oldsymbol{v}_t,oldsymbol{v}_t)$$

By linearity and orthogonality:

$$T(v_t,v_t,v_t) = \sum_{s=1}^d (\lambda_s \cdot v_s^{\otimes 3})(v_t,v_t,v_t) = \sum_{s=1}^d egin{cases} \lambda_s & ext{if } s=t \ 0 & ext{if } s 
eq t \end{cases}$$

By linearity and orthogonality:

$$T(v_t,v_t,v_t) \,=\, \sum_{s=1}^d (\lambda_s \cdot v_s^{\otimes 3})(v_t,v_t,v_t) \,=\, \sum_{s=1}^d egin{cases} \lambda_s & ext{if } s=t \ 0 & ext{if } s
eq t \end{cases} = \, \lambda_t \,.$$

By linearity and orthogonality:

$$T(v_t,v_t,v_t) \,=\, \sum_{s=1}^d (\lambda_s \cdot v_s^{\otimes 3})(v_t,v_t,v_t) \,=\, \sum_{s=1}^d egin{cases} \lambda_s & ext{if } s=t \ 0 & ext{if } s
eq t \end{cases} = \, \lambda_t \,.$$

WLOG assume  $v_t = e_t$ , so optimization problem is

$$\max_{x \in \mathbb{R}^d} \sum_{t=1}^d \lambda_t x_t^3 \quad \text{s.t.} \quad \sum_{t=1}^d x_t^2 \leq 1 \,.$$

By linearity and orthogonality:

$$T(v_t,v_t,v_t) \,=\, \sum_{s=1}^d (\lambda_s \cdot v_s^{\otimes 3})(v_t,v_t,v_t) \,=\, \sum_{s=1}^d egin{cases} \lambda_s & ext{if } s=t \ 0 & ext{if } s
eq t \end{cases} = \, \lambda_t \,.$$

WLOG assume  $v_t=e_t$ , so optimization problem is

$$\max_{\boldsymbol{x} \in \mathbb{R}^d} \sum_{t=1}^d \lambda_t x_t^3 \quad \text{s.t.} \quad \sum_{t=1}^d x_t^2 \leq 1 \,.$$

If both  $x_1$  and  $x_2$  are non-zero, then

$$\lambda_1 x_1^3 + \lambda_2 x_2^3 < \lambda_1 x_1^2 + \lambda_2 x_2^2$$

By linearity and orthogonality:

$$T(v_t,v_t,v_t) \,=\, \sum_{s=1}^d (\lambda_s \cdot v_s^{\otimes 3})(v_t,v_t,v_t) \,=\, \sum_{s=1}^d egin{cases} \lambda_s & ext{if } s=t \ 0 & ext{if } s
eq t \end{cases} = \, \lambda_t \,.$$

WLOG assume  $v_t = e_t$ , so optimization problem is

$$\max_{\boldsymbol{x} \in \mathbb{R}^d} \sum_{t=1}^d \lambda_t x_t^3 \quad \text{s.t.} \quad \sum_{t=1}^d x_t^2 \leq 1 \,.$$

If both  $x_1$  and  $x_2$  are non-zero, then

$$\lambda_1 x_1^3 + \lambda_2 x_2^3 < \lambda_1 x_1^2 + \lambda_2 x_2^2 \le \max\{\lambda_1, \lambda_2\}.$$

By linearity and orthogonality:

$$T(v_t,v_t,v_t) \,=\, \sum_{s=1}^d (\lambda_s \cdot v_s^{\otimes 3})(v_t,v_t,v_t) \,=\, \sum_{s=1}^d egin{cases} \lambda_s & ext{if } s=t \ 0 & ext{if } s 
eq t \end{cases} = \, \lambda_t \,.$$

WLOG assume  $v_t = e_t$ , so optimization problem is

$$\max_{\boldsymbol{x} \in \mathbb{R}^d} \sum_{t=1}^d \lambda_t x_t^3 \quad \text{s.t.} \quad \sum_{t=1}^d x_t^2 \leq 1 \,.$$

If both  $x_1$  and  $x_2$  are non-zero, then

$$\lambda_1 x_1^3 + \lambda_2 x_2^3 < \lambda_1 x_1^2 + \lambda_2 x_2^2 \le \max\{\lambda_1, \lambda_2\}.$$

So better to put all energy on a single coordinate.

 $\therefore$  Local maximizers are  $e_1, e_2, \dots, e_d$ .

By linearity and orthogonality:

$$T(v_t,v_t,v_t) \,=\, \sum_{s=1}^d (\lambda_s \cdot v_s^{\otimes 3})(v_t,v_t,v_t) \,=\, \sum_{s=1}^d egin{cases} \lambda_s & ext{if } s=t \ 0 & ext{if } s 
eq t \end{cases} = \, \lambda_t \,.$$

WLOG assume  $v_t = e_t$ , so optimization problem is

$$\max_{x \in \mathbb{R}^d} \sum_{t=1}^d \lambda_t x_t^3 \quad \text{s.t.} \quad \sum_{t=1}^d x_t^2 \le 1 \,.$$

If both  $x_1$  and  $x_2$  are non-zero, then

$$\lambda_1 x_1^3 + \lambda_2 x_2^3 < \lambda_1 x_1^2 + \lambda_2 x_2^2 \le \max\{\lambda_1, \lambda_2\}.$$

So better to put all energy on a single coordinate.

 $\therefore$  Local maximizers are  $v_1, v_2, \dots, v_d$ .

## Uniqueness of orthogonal decompositions

#### What we have seen so far:

- 1. When components  $\{v_t\}_{t=1}^d$  are linearly independent:
  - Reduce decomposition problem to orthogonal tensor decomposition, where components are orthonormal.

## Uniqueness of orthogonal decompositions

#### What we have seen so far:

- 1. When components  $\{v_t\}_{t=1}^d$  are linearly independent:
  - Reduce decomposition problem to orthogonal tensor decomposition, where components are orthonormal.
- 2. For orthogonally decomposable tensors T, local maximizers of the function

$$x \mapsto T(x, x, x)$$

(over the unit ball) are  $\{oldsymbol{v}_t\}_{t=1}^d.$ 

## Uniqueness of orthogonal decompositions

#### What we have seen so far:

- 1. When components  $\{v_t\}_{t=1}^d$  are linearly independent:
  - Reduce decomposition problem to orthogonal tensor decomposition, where components are orthonormal.
- 2. For orthogonally decomposable tensors T, local maximizers of the function

$$x \mapsto T(x, x, x)$$

(over the unit ball) are  $\{oldsymbol{v}_t\}_{t=1}^d$ .

**Algorithm**: use gradient ascent to find all of the local maximizers, which are exactly  $\boldsymbol{v}_t$ .

(Can use "deflation" to remove components from T that you've already found.)

Probabilities of word triples as third-order tensor:

$$T = \sum_{t=1}^{K} w_t \mathbf{P}_t \otimes \mathbf{P}_t \otimes \mathbf{P}_t = \sum_{t=1}^{K} \mathbf{v}_t \otimes \mathbf{v}_t \otimes \mathbf{v}_t$$

for 
$$v_t = w_t^{1/3} \boldsymbol{P}_t$$
.

Probabilities of word triples as third-order tensor:

$$T = \sum_{t=1}^{K} w_t \mathbf{P}_t \otimes \mathbf{P}_t \otimes \mathbf{P}_t = \sum_{t=1}^{K} v_t \otimes v_t \otimes v_t$$

for  $\boldsymbol{v}_t = w_t^{1/3} \boldsymbol{P}_t$ .

lacksquare About linear independence condition on  $\{oldsymbol{v}_t\}_{t=1}^K$ :

 $\{oldsymbol{v}_t\}_{t=1}^K$  are linearly independent

 $\Leftrightarrow \{P_t\}_{t=1}^K$  are linearly independent and all  $w_t > 0$ .

Probabilities of word triples as third-order tensor:

$$T = \sum_{t=1}^{K} w_t \mathbf{P}_t \otimes \mathbf{P}_t \otimes \mathbf{P}_t = \sum_{t=1}^{K} v_t \otimes v_t \otimes v_t$$

for  $v_t = w_t^{1/3} \boldsymbol{P}_t$ .

 $\blacktriangleright$  About linear independence condition on  $\{\boldsymbol{v}_t\}_{t=1}^K$  :

$$\{v_t\}_{t=1}^K$$
 are linearly independent  $\Leftrightarrow \{P_t\}_{t=1}^K$  are linearly independent and all  $w_t>0$ .

► Can recover  $\{P_t\}_{t=1}^K$  from  $\{c_t v_t\}_{t=1}^K$  for any  $c_t \neq 0$ .

Probabilities of word triples as third-order tensor:

$$T = \sum_{t=1}^{K} w_t \mathbf{P}_t \otimes \mathbf{P}_t \otimes \mathbf{P}_t = \sum_{t=1}^{K} v_t \otimes v_t \otimes v_t$$

for  $v_t = w_t^{1/3} \boldsymbol{P}_t$ .

lacksquare About linear independence condition on  $\{oldsymbol{v}_t\}_{t=1}^K$ :

$$\{v_t\}_{t=1}^K$$
 are linearly independent  $\Leftrightarrow \{P_t\}_{t=1}^K$  are linearly independent and all  $w_t>0$ .

- ► Can recover  $\{P_t\}_{t=1}^K$  from  $\{c_t v_t\}_{t=1}^K$  for any  $c_t \neq 0$ .
- ► Can recover  $\{(P_t, w_t)\}_{t=1}^K$  from  $\{P_t\}_{t=1}^K$  and T.

36

## Recap

Parameters of topic model for single-topic documents (satisfying linear independence condition) can be efficiently recovered from distribution of three-word documents.

## Recap

- Parameters of topic model for single-topic documents (satisfying linear independence condition) can be efficiently recovered from distribution of three-word documents.
- ► Two-word documents not sufficient (without further assumptions).

## Recap

- Parameters of topic model for single-topic documents (satisfying linear independence condition) can be efficiently recovered from distribution of three-word documents.
- ► Two-word documents not sufficient (without further assumptions).
- Variational characterization of orthogonally decomposable tensors leads to simple and efficient algorithms!

- ► Corpus: 300,000 New York Times articles.
- ▶ Vocabulary size: 102,660 words.
- ▶ Set number of topics K := 50.

#### Model predictive performance:

 $\approx 4\text{--}8\times$  speed-up over Gibbs sampling for LDA; comparable to "FastLDA" (Porteous, Newman, Ihler, Asuncion, Smyth, & Welling, 2008).



#### **Sample topics**: (showing top 10 words for each topic)

| Econ.     | Baseball | Edu.      | Health care | Golf       |
|-----------|----------|-----------|-------------|------------|
| sales     | run      | school    | drug        | player     |
| economic  | inning   | student   | patient     | tiger_wood |
| consumer  | hit      | teacher   | million     | won        |
| major     | game     | program   | company     | shot       |
| home      | season   | official  | doctor      | play       |
| indicator | home     | public    | companies   | round      |
| weekly    | right    | children  | percent     | win        |
| order     | games    | high      | cost        | tournament |
| claim     | dodger   | education | program     | tour       |
| scheduled | left     | district  | health      | right      |

**Sample topics**: (showing top 10 words for each topic)

| Invest.    | Election     | auto race | Child's Lit. | Afghan War    |
|------------|--------------|-----------|--------------|---------------|
| percent    | al_gore      | car       | book         | taliban       |
| stock      | campaign     | race      | children     | attack        |
| market     | president    | driver    | ages         | afghanistan   |
| fund       | george_bush  | team      | author       | official      |
| investor   | bush         | won       | read         | military      |
| companies  | clinton      | win       | newspaper    | u_s           |
| analyst    | vice         | racing    | web          | united_states |
| money      | presidential | track     | writer       | terrorist     |
| investment | million      | season    | written      | war           |
| economy    | democratic   | lap       | sales        | bin           |

### **Sample topics**: (showing top 10 words for each topic)

| Web         | Antitrust  | TV         | Movies    | Music    |
|-------------|------------|------------|-----------|----------|
| com         | court      | show       | film      | music    |
| www         | case       | network    | movie     | song     |
| site        | law        | season     | director  | group    |
| web         | lawyer     | nbc        | play      | part     |
| sites       | federal    | cb         | character | new_york |
| information | government | program    | actor     | company  |
| online      | decision   | television | show      | million  |
| mail        | trial      | series     | movies    | band     |
| internet    | microsoft  | night      | million   | show     |
| telegram    | right      | new_york   | part      | album    |

etc.

**Caveat**: forming and computing with a third-order tensor T generally requires cubic space.

**Caveat**: forming and computing with a third-order tensor T generally requires cubic space.

Fortunately, the tensor we often work with is an empirical estimate of a T: e.g.,

$$\widehat{T} = \frac{1}{n} \sum_{i=1}^{n} \operatorname{data}_{i},$$

where  $data_i$  is a tensor involving only the i-th data point.

**Caveat**: forming and computing with a third-order tensor T generally requires cubic space.

Fortunately, the tensor we often work with is an empirical estimate of a T: e.g.,

$$\widehat{T} = \frac{1}{n} \sum_{i=1}^{n} \operatorname{data}_{i},$$

where  $data_i$  is a tensor involving only the *i*-th data point.

 $lackbox{ Our algorithms will only involve } \widehat{T} \mbox{ through } evaluations \mbox{ of } \widehat{T}$  at (several) given arguments, say, x,y,z.

**Caveat**: forming and computing with a third-order tensor T generally requires cubic space.

Fortunately, the tensor we often work with is an empirical estimate of a T: e.g.,

$$\widehat{T} = \frac{1}{n} \sum_{i=1}^{n} \operatorname{data}_{i},$$

where  $data_i$  is a tensor involving only the *i*-th data point.

 $lackbox{ Our algorithms will only involve } \widehat{T}$  through evaluations of  $\widehat{T}$  at (several) given arguments, say, x,y,z.

By linearity:

$$\widehat{T}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = \frac{1}{n} \sum_{i=1}^{n} \operatorname{data}_{i}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}).$$

**Caveat**: forming and computing with a third-order tensor T generally requires cubic space.

► Fortunately, the tensor we often work with is an *empirical* estimate of a *T*: e.g.,

$$\widehat{T} = \frac{1}{n} \sum_{i=1}^{n} \operatorname{data}_{i},$$

where  $data_i$  is a tensor involving only the *i*-th data point.

 $lackbox{ Our algorithms will only involve } \widehat{T}$  through evaluations of  $\widehat{T}$  at (several) given arguments, say, x,y,z.

By linearity:

$$\widehat{T}(oldsymbol{x},oldsymbol{y},oldsymbol{z}) \ = \ rac{1}{n}\sum_{i=1}^n \mathrm{data}_i(oldsymbol{x},oldsymbol{y},oldsymbol{z}) \,.$$

▶ Often:  $data_i(x, y, z)$  is easy to compute, even without forming any tensors!

**Caveat**: forming and computing with a third-order tensor T generally requires cubic space.

Fortunately, the tensor we often work with is an empirical estimate of a T: e.g.,

$$\widehat{T} = \frac{1}{n} \sum_{i=1}^{n} \operatorname{data}_{i},$$

where  $data_i$  is a tensor involving only the *i*-th data point.

 $lackbox{ Our algorithms will only involve } \widehat{T}$  through evaluations of  $\widehat{T}$  at (several) given arguments, say, x,y,z.

By linearity:

$$\widehat{T}(oldsymbol{x},oldsymbol{y},oldsymbol{z}) \; = \; rac{1}{n} \sum_{i=1}^n \mathrm{data}_i(oldsymbol{x},oldsymbol{y},oldsymbol{z}) \, .$$

▶ Often:  $data_i(x, y, z)$  is easy to compute, even without forming any tensors!  $\longrightarrow$  Linear time/space algorithms.

- Estimation via method-of-moments:
  - 1. Estimate distribution of three-word documents  $\to \widehat{T}$  (empirical moment tensor).
  - 2. Approximately decompose  $\widehat{T} \rightarrow \text{estimates } \{(\widehat{P}_t, \hat{w}_t)\}_{t=1}^K$ .

- Estimation via method-of-moments:
  - 1. Estimate distribution of three-word documents  $\to \widehat{T}$  (empirical moment tensor).
  - 2. Approximately decompose  $\widehat{T} \to \text{estimates } \{(\widehat{P}_t, \hat{w}_t)\}_{t=1}^K.$
- Issues:
  - 1. Accuracy of moment estimates?

2. Robustness of (approximate) tensor decomposition?

3. Generality beyond simple topic models?

- Estimation via method-of-moments:
  - 1. Estimate distribution of three-word documents  $\to \widehat{T}$  (empirical moment tensor).
  - 2. Approximately decompose  $\widehat{T} \rightarrow \text{estimates } \{(\widehat{P}_t, \hat{w}_t)\}_{t=1}^K$ .

#### Issues:

- Accuracy of moment estimates?
   Can more reliably estimate lower-order moments; distribution-specific sample complexity bounds.
- Robustness of (approximate) tensor decomposition?
   In some sense, more stable than matrix eigen-decomposition (Mu, <u>H.</u>, & Goldfarb, 2015)!
- 3. Generality beyond simple topic models?

- Estimation via method-of-moments:
  - 1. Estimate distribution of three-word documents  $\to \widehat{T}$  (empirical moment tensor).
  - 2. Approximately decompose  $\widehat{T} \rightarrow \text{estimates } \{(\widehat{P}_t, \hat{w}_t)\}_{t=1}^K$ .

#### Issues:

- Accuracy of moment estimates?
   Can more reliably estimate lower-order moments; distribution-specific sample complexity bounds.
- Robustness of (approximate) tensor decomposition?
   In some sense, more stable than matrix eigen-decomposition (Mu, H., & Goldfarb, 2015)!
- 3. *Generality* beyond simple topic models?

Next: Moment decompositions for other models.

2. Moment decompositions for other models

## Moment decompositions

### Some examples of usable moment decompositions.

- 1. Two classical mixture models.
- 2. Models with multi-view structure.
- 3. Single-index models.

# Mixture model #1: Mixtures of spherical Gaussians

$$H \sim \operatorname{Categorical}(\pi_1, \pi_2, \dots, \pi_K)$$
 (hidden);  
 $\boldsymbol{X} \mid H = t \sim \operatorname{Normal}(\boldsymbol{\mu}_t, \sigma_t^2 \boldsymbol{I}_d), \quad t \in [K].$ 



## Mixture model #1: Mixtures of spherical Gaussians

$$H \sim \operatorname{Categorical}(\pi_1, \pi_2, \dots, \pi_K)$$
 (hidden);  $\boldsymbol{X} \mid H = t \sim \operatorname{Normal}(\boldsymbol{\mu}_t, \sigma^2 \boldsymbol{I}_d), \quad t \in [K].$  (For simplicity, restrict  $\sigma_1 = \sigma_2 = \dots = \sigma_K = \sigma$ .)



# Mixture model #1: Mixtures of spherical Gaussians

$$H \sim \operatorname{Categorical}(\pi_1, \pi_2, \dots, \pi_K)$$
 (hidden);  $\boldsymbol{X} \mid H = t \sim \operatorname{Normal}(\boldsymbol{\mu}_t, \sigma^2 \boldsymbol{I}_d), \quad t \in [K].$  (For simplicity, restrict  $\sigma_1 = \sigma_2 = \dots = \sigma_K = \sigma$ .)



### Generative process:

$$X = Y + \sigma Z$$

 $\begin{aligned} &\text{where } \Pr(\boldsymbol{Y} = \boldsymbol{\mu}_t) = \pi_t, \text{ and} \\ &\boldsymbol{Z} \sim \operatorname{Normal}(\boldsymbol{0}, \boldsymbol{I}_d) \quad \text{(indep. of } \boldsymbol{Y}). \end{aligned}$ 

# Using moments for spherical Gaussian mixtures

We'll see two ways to use low-order moments.

## Using moments for spherical Gaussian mixtures

We'll see two ways to use low-order moments.

#### First- and second-order moments:

$$\mathbb{E}(m{X}) \in \mathbb{R}^d$$
 and  $\mathbb{E}(m{X} \otimes m{X}) \in \mathbb{R}^{d imes d}$ .

## Using moments for spherical Gaussian mixtures

We'll see two ways to use low-order moments.

#### First- and second-order moments:

$$\mathbb{E}(oldsymbol{X}) \in \mathbb{R}^d$$
 and  $\mathbb{E}(oldsymbol{X} \otimes oldsymbol{X}) \in \mathbb{R}^{d imes d}$ .

**Key fact**: k-dimensional PCA subspace (based on  $\mathbb{E}(X \otimes X)$ ) captures as much of overall variance as any other k-dim. subspace.

**Key fact**: k-dimensional PCA subspace (based on  $\mathbb{E}(X \otimes X)$ ) captures as much of overall variance as any other k-dim. subspace.

K = 1 (just a single Gaussian): What is the 1-dimensional PCA subspace?

**Key fact**: k-dimensional PCA subspace (based on  $\mathbb{E}(X \otimes X)$ ) captures as much of overall variance as any other k-dim. subspace.

K = 1 (just a single Gaussian): What is the 1-dimensional PCA subspace?



$$\mathbb{E}(\boldsymbol{X}\otimes\boldsymbol{X}) = \boldsymbol{\mu}_1\otimes\boldsymbol{\mu}_1 + \sigma^2\boldsymbol{I}_d.$$

**Key fact**: k-dimensional PCA subspace (based on  $\mathbb{E}(X \otimes X)$ ) captures as much of overall variance as any other k-dim. subspace.

K = 1 (just a single Gaussian): What is the 1-dimensional PCA subspace?



$$\mathbb{E}(\boldsymbol{X} \otimes \boldsymbol{X}) = \boldsymbol{\mu}_1 \otimes \boldsymbol{\mu}_1 + \sigma^2 \boldsymbol{I}_d.$$

Variance in direction v (with ||v|| = 1):

$$oldsymbol{v}^{ op}\, \mathbb{E}(oldsymbol{X} \otimes oldsymbol{X}) oldsymbol{v}$$

48

#### Proof

**Key fact**: k-dimensional PCA subspace (based on  $\mathbb{E}(X \otimes X)$ ) captures as much of overall variance as any other k-dim. subspace.

K = 1 (just a single Gaussian): What is the 1-dimensional PCA subspace?



$$\mathbb{E}(\boldsymbol{X} \otimes \boldsymbol{X}) = \boldsymbol{\mu}_1 \otimes \boldsymbol{\mu}_1 + \sigma^2 \boldsymbol{I}_d.$$

Variance in direction v (with ||v|| = 1):

$$\boldsymbol{v}^{\top} \mathbb{E}(\boldsymbol{X} \otimes \boldsymbol{X}) \boldsymbol{v} = \boldsymbol{v}^{\top} (\boldsymbol{\mu}_{1} \otimes \boldsymbol{\mu}_{1} + \sigma^{2} \boldsymbol{I}_{d}) \boldsymbol{v}$$

#### Proof

**Key fact**: k-dimensional PCA subspace (based on  $\mathbb{E}(X \otimes X)$ ) captures as much of overall variance as any other k-dim. subspace.

K = 1 (just a single Gaussian): What is the 1-dimensional PCA subspace?



$$\mathbb{E}(\boldsymbol{X} \otimes \boldsymbol{X}) = \boldsymbol{\mu}_1 \otimes \boldsymbol{\mu}_1 + \sigma^2 \boldsymbol{I}_d.$$

Variance in direction v (with ||v|| = 1):

$$\boldsymbol{v}^{\top} \mathbb{E}(\boldsymbol{X} \otimes \boldsymbol{X}) \boldsymbol{v} = \boldsymbol{v}^{\top} (\boldsymbol{\mu}_{1} \otimes \boldsymbol{\mu}_{1} + \sigma^{2} \boldsymbol{I}_{d}) \boldsymbol{v} = (\boldsymbol{v}^{\top} \boldsymbol{\mu}_{1})^{2} + \sigma^{2}.$$

### **Proof**

**Key fact**: k-dimensional PCA subspace (based on  $\mathbb{E}(X \otimes X)$ ) captures as much of overall variance as any other k-dim. subspace.

K = 1 (just a single Gaussian): What is the 1-dimensional PCA subspace?



$$\mathbb{E}(\boldsymbol{X}\otimes\boldsymbol{X}) = \boldsymbol{\mu}_1\otimes\boldsymbol{\mu}_1 + \sigma^2\boldsymbol{I}_d.$$

Variance in direction v (with ||v|| = 1):

$$\boldsymbol{v}^{\top} \mathbb{E}(\boldsymbol{X} \otimes \boldsymbol{X}) \boldsymbol{v} = \boldsymbol{v}^{\top} (\boldsymbol{\mu}_{1} \otimes \boldsymbol{\mu}_{1} + \sigma^{2} \boldsymbol{I}_{d}) \boldsymbol{v} = (\boldsymbol{v}^{\top} \boldsymbol{\mu}_{1})^{2} + \sigma^{2}.$$

**Best direction** (1-dim. PCA subspace):  $v = \pm \mu_1/\|\mu_1\|$ .

**Key fact**: k-dimensional PCA subspace (based on  $\mathbb{E}(X \otimes X)$ ) captures as much of overall variance as any other k-dim. subspace.

► K = 1 (just a single Gaussian): What is the k-dimensional PCA subspace?



**Key fact**: k-dimensional PCA subspace (based on  $\mathbb{E}(X \otimes X)$ ) captures as much of overall variance as any other k-dim. subspace.

► K = 1 (just a single Gaussian): What is the k-dimensional PCA subspace?



**Answer**: any k-dim. subspace containing  $\mu_1$ .

**Key fact**: k-dimensional PCA subspace (based on  $\mathbb{E}(X \otimes X)$ ) captures as much of overall variance as any other k-dim. subspace.

▶ General K (mixture of K Gaussians): What is the K-dimensional PCA subspace?

**Key fact**: k-dimensional PCA subspace (based on  $\mathbb{E}(X \otimes X)$ ) captures as much of overall variance as any other k-dim. subspace.

▶ General K (mixture of K Gaussians): What is the K-dimensional PCA subspace?



**Key fact**: k-dimensional PCA subspace (based on  $\mathbb{E}(X \otimes X)$ ) captures as much of overall variance as any other k-dim. subspace.

General K (mixture of K Gaussians): What is the K-dimensional PCA subspace?



**Answer**: any K-dim. subspace containing  $\mu_1, \ldots, \mu_K$ .

**Key fact**: k-dimensional PCA subspace (based on  $\mathbb{E}(X \otimes X)$ ) captures as much of overall variance as any other k-dim. subspace.

General K (mixture of K Gaussians): What is the K-dimensional PCA subspace?



**Answer**: any K-dim. subspace containing  $\mu_1, \ldots, \mu_K$ .  $\square$  How does this help with learning mixtures of Gaussians?

#### Separation (Dasgupta, 1999):

# standard deviations between component means

$$\mathsf{sep} \; := \; \min_{i \neq j} \frac{\|\boldsymbol{\mu}_i - \boldsymbol{\mu}_j\|}{\sigma} \, .$$

#### Separation (Dasgupta, 1999):

# standard deviations between component means

$$\mathsf{sep} \; := \; \min_{i \neq j} \frac{\|\boldsymbol{\mu}_i - \boldsymbol{\mu}_j\|}{\sigma} \, .$$

Distance-based clustering (e.g., EM) works when  ${\sf sep} \gtrsim d^{1/4}$ .

#### Separation (Dasgupta, 1999):

# standard deviations between component means

$$\mathsf{sep} \; := \; \min_{i \neq j} \frac{\|\boldsymbol{\mu}_i - \boldsymbol{\mu}_j\|}{\sigma} \, .$$

- ▶ (Dasgupta & Schulman, 2000): Distance-based clustering (e.g., EM) works when  $\sup \gtrsim d^{1/4}$ .
- Vempala & Wang, 2002): Problem becomes K-dimensional via PCA (assume  $K \leq d$ ). Required separation reduced to  $\operatorname{sep} \gtrsim K^{1/4}$ .

Separation (Dasgupta, 1999):

# standard deviations between component means

$$\mathsf{sep} \; \vcentcolon= \; \min_{i \neq j} \frac{\|\boldsymbol{\mu}_i - \boldsymbol{\mu}_j\|}{\sigma} \, .$$

- ▶ (Dasgupta & Schulman, 2000): Distance-based clustering (e.g., EM) works when  $sep \gtrsim d^{1/4}$ .
- Vempala & Wang, 2002): Problem becomes K-dimensional via PCA (assume  $K \le d$ ). Required separation reduced to sep  $\gtrsim K^{1/4}$ .

Third-order moments identify the mixture distribution when  $\{\mu_t\}_{t=1}^K$  are lin. indpt.; sep may be arbitrarily close to zero.

Separation (Dasgupta, 1999):

# standard deviations between component means

$$\mathsf{sep} \; := \; \min_{i \neq j} \frac{\|\boldsymbol{\mu}_i - \boldsymbol{\mu}_j\|}{\sigma} \, .$$

- ▶ (Dasgupta & Schulman, 2000): Distance-based clustering (e.g., EM) works when  $sep \gtrsim d^{1/4}$ .
- Vempala & Wang, 2002): Problem becomes K-dimensional via PCA (assume  $K \le d$ ). Required separation reduced to sep  $\gtrsim K^{1/4}$ .

**Third-order moments** identify the mixture distribution when  $\{\mu_t\}_{t=1}^K$  are lin. indpt.; sep may be arbitrarily close to zero.

(Belkin & Sinha, 2010; Moitra & Valiant, 2010):

General Gaussians & no minimum sep, but Kth-order moments.

#### **Generative process:**

$$X = Y + \sigma Z$$

where  $\Pr(\boldsymbol{Y} = \boldsymbol{\mu}_t) = \pi_t$ , and  $\boldsymbol{Z} \sim \operatorname{Normal}(\boldsymbol{0}, \boldsymbol{I}_d)$ ,  $\boldsymbol{Y} \perp \!\!\! \perp \boldsymbol{Z}$ .

Third-order moment tensor:

$$\mathbb{E}\left(\boldsymbol{X}^{\otimes 3}\right) = \mathbb{E}\left(\left\{\boldsymbol{Y} + \sigma \boldsymbol{Z}\right\}^{\otimes 3}\right)$$

### Generative process:

$$X = Y + \sigma Z$$

where  $\Pr(Y = \mu_t) = \pi_t$ , and  $Z \sim \text{Normal}(\mathbf{0}, I_d)$ ,  $Y \perp \!\!\! \perp Z$ .

Third-order moment tensor:

$$\mathbb{E}\left(\boldsymbol{X}^{\otimes 3}\right) = \mathbb{E}\left(\left\{\boldsymbol{Y} + \sigma \boldsymbol{Z}\right\}^{\otimes 3}\right)$$
$$= \mathbb{E}\left(\boldsymbol{Y}^{\otimes 3}\right) + \sigma^{2} \mathbb{E}\left(\boldsymbol{Y} \otimes \boldsymbol{Z} \otimes \boldsymbol{Z} + \boldsymbol{Z} \otimes \boldsymbol{Y} \otimes \boldsymbol{Z} + \boldsymbol{Z} \otimes \boldsymbol{Z} \otimes \boldsymbol{Y}\right)$$

### Generative process:

$$X = Y + \sigma Z$$

where  $\Pr(Y = \mu_t) = \pi_t$ , and  $Z \sim \text{Normal}(0, I_d)$ ,  $Y \perp Z$ .

Third-order moment tensor:

$$\mathbb{E}\left(\boldsymbol{X}^{\otimes 3}\right) = \mathbb{E}\left(\left\{\boldsymbol{Y} + \sigma \boldsymbol{Z}\right\}^{\otimes 3}\right)$$

$$= \mathbb{E}\left(\boldsymbol{Y}^{\otimes 3}\right) + \sigma^{2} \mathbb{E}\left(\boldsymbol{Y} \otimes \boldsymbol{Z} \otimes \boldsymbol{Z} + \boldsymbol{Z} \otimes \boldsymbol{Y} \otimes \boldsymbol{Z} + \boldsymbol{Z} \otimes \boldsymbol{Z} \otimes \boldsymbol{Y}\right)$$

$$= \sum_{t=1}^{K} \pi_{t} \cdot \boldsymbol{\mu}_{t}^{\otimes 3} + \sigma^{2} \tau(\boldsymbol{\mu}).$$

(Above,  $\mu = \mathbb{E}(X)$  and  $\tau(\mu)$  is a third-order tensor involving only  $\mu$ .)

### Generative process:

$$X = Y + \sigma Z$$

where  $\Pr(Y = \mu_t) = \pi_t$ , and  $Z \sim \text{Normal}(\mathbf{0}, I_d)$ ,  $Y \perp \!\!\! \perp Z$ .

Third-order moment tensor:

$$\mathbb{E}\left(\boldsymbol{X}^{\otimes 3}\right) = \mathbb{E}\left(\left\{\boldsymbol{Y} + \sigma \boldsymbol{Z}\right\}^{\otimes 3}\right)$$

$$= \mathbb{E}\left(\boldsymbol{Y}^{\otimes 3}\right) + \sigma^{2} \mathbb{E}\left(\boldsymbol{Y} \otimes \boldsymbol{Z} \otimes \boldsymbol{Z} + \boldsymbol{Z} \otimes \boldsymbol{Y} \otimes \boldsymbol{Z} + \boldsymbol{Z} \otimes \boldsymbol{Z} \otimes \boldsymbol{Y}\right)$$

$$= \sum_{t=1}^{K} \pi_{t} \cdot \boldsymbol{\mu}_{t}^{\otimes 3} + \sigma^{2} \tau(\boldsymbol{\mu}).$$

(Above,  $\mu = \mathbb{E}(X)$  and  $\tau(\mu)$  is a third-order tensor involving only  $\mu$ .)

**Exercise**: find explicit formula for  $\tau(\mu)$ .

$$\mathbb{E}\left(\boldsymbol{X}^{\otimes 3}\right) = \sum_{t=1}^{K} \pi_t \cdot \boldsymbol{\mu}_t^{\otimes 3} + \sigma^2 \tau(\boldsymbol{\mu}).$$

$$\mathbb{E}\left(\boldsymbol{X}^{\otimes 3}\right) = \sum_{t=1}^{K} \pi_t \cdot \boldsymbol{\mu}_t^{\otimes 3} + \sigma^2 \tau(\boldsymbol{\mu}).$$

**Claim**:  $\mu$  &  $\sigma^2$  are simple functions of  $\mathbb{E}(X)$  &  $\mathbb{E}(X \otimes X)$ .

$$\mathbb{E}\left(\boldsymbol{X}^{\otimes 3}\right) = \sum_{t=1}^{K} \pi_t \cdot \boldsymbol{\mu}_t^{\otimes 3} + \sigma^2 \tau(\boldsymbol{\mu}).$$

**Claim**:  $\mu$  &  $\sigma^2$  are simple functions of  $\mathbb{E}(X)$  &  $\mathbb{E}(X \otimes X)$ .

**Claim**: If  $\{\mu_t\}_{t=1}^K$  are linearly independent and all  $\pi_t>0$ , then  $\{(\mu_t,\pi_t)\}_{t=1}^K$  are identifiable from

$$T := \mathbb{E}(\boldsymbol{X}^{\otimes 3}) - \sigma^2 \tau(\boldsymbol{\mu}) = \sum_{t=1}^K \pi_t \cdot \boldsymbol{\mu}_t^{\otimes 3}.$$

$$\mathbb{E}\left(\boldsymbol{X}^{\otimes 3}\right) = \sum_{t=1}^{K} \pi_t \cdot \boldsymbol{\mu}_t^{\otimes 3} + \sigma^2 \tau(\boldsymbol{\mu}).$$

**Claim**:  $\mu$  &  $\sigma^2$  are simple functions of  $\mathbb{E}(X)$  &  $\mathbb{E}(X \otimes X)$ .

**Claim**: If  $\{\mu_t\}_{t=1}^K$  are linearly independent and all  $\pi_t > 0$ , then  $\{(\mu_t, \pi_t)\}_{t=1}^K$  are identifiable from

$$T := \mathbb{E}(\mathbf{X}^{\otimes 3}) - \sigma^2 \tau(\boldsymbol{\mu}) = \sum_{t=1}^K \pi_t \cdot \boldsymbol{\mu}_t^{\otimes 3}.$$

Can use tensor decomposition to recover  $\{(\mu_t, \pi_t)\}_{t=1}^K$  from T.

### Even more Gaussian mixtures

**Note**: Linear independence condition on  $\{\mu_t\}_{t=1}^K$  requires  $K \leq d$ .

### Even more Gaussian mixtures

**Note**: Linear independence condition on  $\{\mu_t\}_{t=1}^K$  requires  $K \leq d$ .

(Anderson, Belkin, Goyal, Rademacher, & Voss, 2014),
 (Bhaskara, Charikar, Moitra, & Vijayaraghavan, 2014)
 Mixtures of d<sup>O(1)</sup> Gaussians (w/ simple or known covariance)
 via smoothed analysis and O(1)-order moments.

### Even more Gaussian mixtures

**Note**: Linear independence condition on  $\{\mu_t\}_{t=1}^K$  requires  $K \leq d$ .

- (Anderson, Belkin, Goyal, Rademacher, & Voss, 2014),
   (Bhaskara, Charikar, Moitra, & Vijayaraghavan, 2014)
   Mixtures of d<sup>O(1)</sup> Gaussians (w/ simple or known covariance)
   via smoothed analysis and O(1)-order moments.
- ► (Ge, Huang, & Kakade, 2015)
  Also with unknown covariances of arbitrary shape.

# Mixture model #2: Mixtures of linear regressions

$$\begin{split} H \; \sim \; & \mathrm{Categorical}(\pi_1, \pi_2, \dots, \pi_K) \quad \text{(hidden)} \, ; \\ & \boldsymbol{X} \; \sim \; & \mathrm{Normal}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \, ; \\ & Y \mid H = t, \boldsymbol{X} = \boldsymbol{x} \; \sim \; & \mathrm{Normal}(\langle \boldsymbol{\beta}_t, \boldsymbol{x} \rangle, \sigma^2) \, . \end{split}$$

## Mixture model #2: Mixtures of linear regressions



## Mixture model #2: Mixtures of linear regressions



**Second-order moments** (assume  $X \sim \text{Normal}(0, I_d)$ ):

$$\mathbb{E}(Y^2 \boldsymbol{X} \boldsymbol{X}^{\top}) = 2 \sum_{t=1}^{K} \pi_t \cdot \boldsymbol{\beta}_t \boldsymbol{\beta}_t^{\top} + \left( \sigma^2 + \sum_{t=1}^{K} \pi_t \cdot \|\boldsymbol{\beta}_t\|^2 \right) \boldsymbol{I}_d.$$

**Second-order moments** (assume  $X \sim \text{Normal}(0, I_d)$ ):

$$\mathbb{E}(Y^2 \boldsymbol{X} \boldsymbol{X}^{\top}) = 2 \sum_{t=1}^{K} \pi_t \cdot \boldsymbol{\beta}_t \boldsymbol{\beta}_t^{\top} + \left( \sigma^2 + \sum_{t=1}^{K} \pi_t \cdot \|\boldsymbol{\beta}_t\|^2 \right) \boldsymbol{I}_d.$$

▶ Span of top K eigenvectors of  $\mathbb{E}(Y^2 X X^\top)$  contains  $\{\beta_t\}_{t=1}^K$ .

**Second-order moments** (assume  $X \sim \text{Normal}(0, I_d)$ ):

$$\mathbb{E}(Y^2 \boldsymbol{X} \boldsymbol{X}^{\top}) = 2 \sum_{t=1}^{K} \pi_t \cdot \boldsymbol{\beta}_t \boldsymbol{\beta}_t^{\top} + \left( \sigma^2 + \sum_{t=1}^{K} \pi_t \cdot \|\boldsymbol{\beta}_t\|^2 \right) \boldsymbol{I}_d.$$

- ▶ Span of top K eigenvectors of  $\mathbb{E}(Y^2 X X^\top)$  contains  $\{\beta_t\}_{t=1}^K$ .
- ► Using Stein's identity (1973), similar approach works for GLMs (Sun, Ioannidis, & Montanari, 2013).

**Second-order moments** (assume  $X \sim \text{Normal}(0, I_d)$ ):

$$\mathbb{E}(Y^2 \boldsymbol{X} \boldsymbol{X}^{\top}) = 2 \sum_{t=1}^{K} \pi_t \cdot \boldsymbol{\beta}_t \boldsymbol{\beta}_t^{\top} + \left( \sigma^2 + \sum_{t=1}^{K} \pi_t \cdot \|\boldsymbol{\beta}_t\|^2 \right) \boldsymbol{I}_d.$$

- ▶ Span of top K eigenvectors of  $\mathbb{E}(Y^2 X X^\top)$  contains  $\{\beta_t\}_{t=1}^K$ .
- ► Using Stein's identity (1973), similar approach works for GLMs (Sun, Ioannidis, & Montanari, 2013).

#### Tensor decomposition approach:

Can recover parameters  $\{(\boldsymbol{\beta}_t, \pi_t)\}_{t=1}^K$  with higher-order moments (Chaganty & Liang, 2013; Yi, Caramanis, & Sanghavi, 2014, 2016).

**Second-order moments** (assume  $X \sim \text{Normal}(0, I_d)$ ):

$$\mathbb{E}(Y^2\boldsymbol{X}\boldsymbol{X}^\top) \ = \ 2\sum_{t=1}^K \boldsymbol{\pi}_t \cdot \boldsymbol{\beta}_t \boldsymbol{\beta}_t^\top + \left(\boldsymbol{\sigma}^2 + \sum_{t=1}^K \boldsymbol{\pi}_t \cdot \|\boldsymbol{\beta}_t\|^2\right) \boldsymbol{I}_d \,.$$

- ▶ Span of top K eigenvectors of  $\mathbb{E}(Y^2 X X^\top)$  contains  $\{\beta_t\}_{t=1}^K$ .
- ► Using Stein's identity (1973), similar approach works for GLMs (Sun, Ioannidis, & Montanari, 2013).

#### Tensor decomposition approach:

Can recover parameters  $\{(\boldsymbol{\beta}_t, \pi_t)\}_{t=1}^K$  with higher-order moments (Chaganty & Liang, 2013; Yi, Caramanis, & Sanghavi, 2014, 2016).

Also for GLMs, via Stein's identity (Sedghi & Anandkumar, 2014).

# Recap: mixtures of Gaussians and linear regressions

Parameters of Gaussian mixture models and related models (satisfying linear independence condition) can be efficiently recovered from O(1)-order moments.

# Recap: mixtures of Gaussians and linear regressions

- Parameters of Gaussian mixture models and related models (satisfying linear independence condition) can be efficiently recovered from O(1)-order moments.
- Exploit distributional properties to determine usable moments.

## Recap: mixtures of Gaussians and linear regressions

- Parameters of Gaussian mixture models and related models (satisfying linear independence condition) can be efficiently recovered from O(1)-order moments.
- Exploit distributional properties to determine usable moments.
- Smoothed analysis: avoid linear independence condition for "most" mixture distributions.

## Recap: mixtures of Gaussians and linear regressions

- Parameters of Gaussian mixture models and related models (satisfying linear independence condition) can be efficiently recovered from O(1)-order moments.
- Exploit distributional properties to determine usable moments.
- Smoothed analysis: avoid linear independence condition for "most" mixture distributions.

**Next**: Multi-view approach to finding usable moments.

#### **Recall**: Topic model for single-topic documents



K topics (dists. over words)  $\{P_t\}_{t=1}^K$ . Pick topic H=t with prob.  $w_t$  (hidden). Word tokens  $X_1, X_2, \ldots, X_L \overset{\text{ind}}{\sim} P_H$ .

#### **Recall**: Topic model for single-topic documents



K topics (dists. over words)  $\{P_t\}_{t=1}^K$ . Pick topic H=t with prob.  $w_t$  (hidden). Word tokens  $X_1, X_2, \ldots, X_L \overset{\text{id}}{\sim} P_H$ .

#### Key property:

 $X_1, X_2, \ldots, X_L$  conditionally independent given H.

#### **Recall**: Topic model for single-topic documents



K topics (dists. over words)  $\{P_t\}_{t=1}^K$ . Pick topic H=t with prob.  $w_t$  (hidden). Word tokens  $X_1, X_2, \ldots, X_L \overset{\text{ind}}{\sim} P_H$ .

#### Key property:

 $X_1, X_2, \dots, X_L$  conditionally independent given H.

Each word token  $X_i$  provides new "view" of hidden variable H.

#### **Recall**: Topic model for single-topic documents



K topics (dists. over words)  $\{P_t\}_{t=1}^K$ . Pick topic H=t with prob.  $w_t$  (hidden). Word tokens  $X_1, X_2, \ldots, X_L \overset{\text{ind}}{\sim} P_H$ .

#### Key property:

 $X_1, X_2, \dots, X_L$  conditionally independent given H.

Each word token  $X_i$  provides new "view" of hidden variable H.

#### Some previous analyses:

- (Blum & Mitchell, 1998)Co-training in semi-supervised learning.
- (Chaudhuri, Kakade, Livescu, & Sridharan, 2009) Multi-view Gaussian mixture models.









Tensor decomposition approach works in this asymmetric case as long as  $\{\mu_t^{(j)}\}_{t=1}^K$  are lin. indpt. for each j, and all  $\pi_t > 0$ .

(Mossel & Roch, 2006; Anandkumar, <u>H.</u>, & Kakade, 2012)

Mixtures of high-dimensional product distributions.
 (E.g., mixtures of axis-aligned Gaussians, other topic models.)

(Mossel & Roch, 2006; Anandkumar, H., & Kakade, 2012)

- Mixtures of high-dimensional product distributions.
   (E.g., mixtures of axis-aligned Gaussians, other topic models.)
- 2. Hidden Markov models.



(Mossel & Roch, 2006; Anandkumar, H., & Kakade, 2012)

- Mixtures of high-dimensional product distributions.
   (E.g., mixtures of axis-aligned Gaussians, other topic models.)
- 2. Hidden Markov models.



- 3. Phylogenetic trees.
  - $\triangleright$   $X_1, X_2, X_3$ : genes of three extant species.
  - ▶ *H*: LCA of most closely related pair of species.

(Mossel & Roch, 2006; Anandkumar, H., & Kakade, 2012)

- Mixtures of high-dimensional product distributions.
   (E.g., mixtures of axis-aligned Gaussians, other topic models.)
- 2. Hidden Markov models.



- Phylogenetic trees.
  - $\triangleright$   $X_1, X_2, X_3$ : genes of three extant species.
  - ▶ *H*: LCA of most closely related pair of species.
- 4. . . .

(Mossel & Roch, 2006; Anandkumar, H., & Kakade, 2012)

- Mixtures of high-dimensional product distributions.
   (E.g., mixtures of axis-aligned Gaussians, other topic models.)
- 2. Hidden Markov models.



- Phylogenetic trees.
  - $\triangleright$   $X_1, X_2, X_3$ : genes of three extant species.
  - ► *H*: LCA of most closely related pair of species.
- 4. . . .

**Next**: Single index models.

$$m{X} \sim \operatorname{Normal}(\mathbf{0}, m{I});$$
  
 $Y \mid m{X} = m{x} \sim \operatorname{Normal}(g(\langle m{\beta}, m{x} \rangle), \sigma^2).$ 

Here,  $g \colon \mathbb{R} \to \mathbb{R}$  is the *link function*.

$$m{X} \sim \operatorname{Normal}(\mathbf{0}, m{I});$$
  
 $Y \mid m{X} = m{x} \sim \operatorname{Normal}(g(\langle m{\beta}, m{x} \rangle), \sigma^2).$ 

Here,  $g: \mathbb{R} \to \mathbb{R}$  is the *link function*.

- **Phase retrieval** (real signals): assume  $g(z) = z^2$ .
- ▶ **1-bit compressed sensing**: assume g(z) = sign(z).
- ▶ **Isotonic regression**: assume g is monotone (e.g.,  $g' \ge 0$ ).
- **Convex regression**: assume g is convex (e.g.,  $g'' \ge 0$ ).
- **•** ...

$$m{X} \sim \operatorname{Normal}(\mathbf{0}, m{I});$$
  
 $Y \mid m{X} = m{x} \sim \operatorname{Normal}(g(\langle m{eta}, m{x} \rangle), \sigma^2).$ 

Here,  $g: \mathbb{R} \to \mathbb{R}$  is the *link function*.

- **Phase retrieval** (real signals): assume  $g(z) = z^2$ .
- ▶ **1-bit compressed sensing**: assume g(z) = sign(z).
- ▶ **Isotonic regression**: assume g is monotone (e.g.,  $g' \ge 0$ ).
- **Convex regression**: assume g is convex (e.g.,  $g'' \ge 0$ ).

When g is unknown, model is generally called **single-index model**.

$$m{X} \sim \operatorname{Normal}(\mathbf{0}, m{I});$$
  
 $Y \mid m{X} = m{x} \sim \operatorname{Normal}(g(\langle m{\beta}, m{x} \rangle), \sigma^2).$ 

Here,  $g: \mathbb{R} \to \mathbb{R}$  is the *link function*.

- **Phase retrieval** (real signals): assume  $g(z) = z^2$ .
- ▶ **1-bit compressed sensing**: assume g(z) = sign(z).
- ▶ **Isotonic regression**: assume g is monotone (e.g.,  $g' \ge 0$ ).
- **Convex regression**: assume g is convex (e.g.,  $g'' \ge 0$ ).

When g is unknown, model is generally called **single-index model**.

**Semi-parametric estimation**: regard g as nuisance parameter; focus on estimating  $\beta$ .

## Aside: symmetric tensors and homogeneous polynomials

Recall formula for tensor function value:

$$T(\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(p)}) = \sum_{i_1,\ldots,i_p} T_{i_1,\ldots,i_p} \cdot x_{i_1}^{(1)} \cdots x_{i_p}^{(p)}.$$

## Aside: symmetric tensors and homogeneous polynomials

Recall formula for tensor function value:

$$T(\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(p)}) = \sum_{i_1,\ldots,i_p} T_{i_1,\ldots,i_p} \cdot x_{i_1}^{(1)} \cdots x_{i_p}^{(p)}.$$

If T is symmetric (i.e.,  $T_{i_1,\dots,i_p}=T_{\pi(i_1),\dots,\pi(i_p)}$  for any permutation  $\pi$ ), then evaluating at  $\boldsymbol{x}^{(1)}=\dots=\boldsymbol{x}^{(p)}=\boldsymbol{x}$  gives

$$T(\boldsymbol{x},\ldots,\boldsymbol{x}) = c_p \sum_{i_1 \leq \cdots \leq i_p} T_{i_1,\ldots,i_p} \cdot x_{i_1} \cdots x_{i_p},$$

which is just the formula for a degree-  $\!p\!$  homogeneous polynomial.

## Aside: symmetric tensors and homogeneous polynomials

Recall formula for tensor function value:

$$T(\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(p)}) = \sum_{i_1,\ldots,i_p} T_{i_1,\ldots,i_p} \cdot x_{i_1}^{(1)} \cdots x_{i_p}^{(p)}.$$

If T is symmetric (i.e.,  $T_{i_1,\dots,i_p}=T_{\pi(i_1),\dots,\pi(i_p)}$  for any permutation  $\pi$ ), then evaluating at  $\boldsymbol{x}^{(1)}=\dots=\boldsymbol{x}^{(p)}=\boldsymbol{x}$  gives

$$T(\boldsymbol{x},\ldots,\boldsymbol{x}) = c_p \sum_{i_1 \leq \cdots \leq i_p} T_{i_1,\ldots,i_p} \cdot x_{i_1} \cdots x_{i_p},$$

which is just the formula for a degree-p homogeneous polynomial.

p-th order symmetric tensors  $\simeq$  degree-p homogeneous polynomials.

## Using orthogonal polynomials

(Dudeja & <u>H.</u>, 2018)

Let  $H_p \colon \mathbb{R} \to \mathbb{R}$  denote the degree-p Hermite polynomial.

Assume (for  $Z \sim \text{Normal}(0, 1)$ ):

- $ightharpoonup \mathbb{E}[g(Z)^2] = 1$  (normalization—this is WLOG);
- ▶  $\mathbb{E}[g'(Z)^2] \ge \epsilon$  (necessary for identifiability);
- g is smooth and  $\mathbb{E}[g''(Z)^2] = O(1)$ .

# Using orthogonal polynomials (Dudeja & H., 2018)

Let  $H_p \colon \mathbb{R} \to \mathbb{R}$  denote the degree-p Hermite polynomial.

Assume (for  $Z \sim \text{Normal}(0, 1)$ ):

- $ightharpoonup \mathbb{E}[g(Z)^2] = 1$  (normalization—this is WLOG);
- ▶  $\mathbb{E}[g'(Z)^2] \ge \epsilon$  (necessary for identifiability);
- g is smooth and  $\mathbb{E}[g''(Z)^2] = O(1)$ .

There exists  $p = O(1/\epsilon)$  such that

$$\mathbb{E}[YH_p(\langle \boldsymbol{v}, \boldsymbol{X} \rangle)] = (\lambda \boldsymbol{\beta}^{\otimes p})(\boldsymbol{v}), \quad \boldsymbol{v} \in \mathbb{R}^d$$

for some  $\lambda \neq 0$  with  $|\lambda| = \Omega(\epsilon/\sqrt{p})$ .

# Using orthogonal polynomials (Dudeja & H., 2018)

Let  $H_p \colon \mathbb{R} \to \mathbb{R}$  denote the degree-p Hermite polynomial.

Assume (for  $Z \sim \text{Normal}(0, 1)$ ):

- ▶  $\mathbb{E}[g(Z)^2] = 1$  (normalization—this is WLOG);
- ▶  $\mathbb{E}[g'(Z)^2] \ge \epsilon$  (necessary for identifiability);
- g is smooth and  $\mathbb{E}[g''(Z)^2] = O(1)$ .

There exists  $p = O(1/\epsilon)$  such that

$$\mathbb{E}[YH_p(\langle \boldsymbol{v}, \boldsymbol{X} \rangle)] = (\lambda \boldsymbol{\beta}^{\otimes p})(\boldsymbol{v}), \quad \boldsymbol{v} \in \mathbb{R}^d$$

for some  $\lambda \neq 0$  with  $|\lambda| = \Omega(\epsilon/\sqrt{p})$ .

 $\Rightarrow$  Get efficient algorithms for semi-parametric estimation of single-index model parameters, for very general link functions.

## Recap

Parameters of many latent variable models (satisfying non-degeneracy conditions) can be efficiently recovered from O(1)-order moments.

## Recap

- Parameters of many latent variable models (satisfying non-degeneracy conditions) can be efficiently recovered from O(1)-order moments.
- ► Exploit distributional properties, multi-view structure, and other structure to determine usable moments.

## Recap

- Parameters of many latent variable models (satisfying non-degeneracy conditions) can be efficiently recovered from O(1)-order moments.
- Exploit distributional properties, multi-view structure, and other structure to determine usable moments.
- Estimation via method-of-moments:
  - 1. Estimate moments  $\rightarrow$  empirical moment tensor  $\widehat{T}$ .
  - 2. Approximately decompose  $\widehat{T} \rightarrow \text{parameter estimate } \widehat{\pmb{\theta}}.$

3. Error analysis

#### Moment estimates

Estimation of  $\mathbb{E}[\boldsymbol{X}^{\otimes 3}]$  (say) from iid sample  $\{\boldsymbol{x}_i\}_{i=1}^n$ :

$$\widehat{\mathbb{E}}[\boldsymbol{X}^{\otimes 3}] := \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}^{\otimes 3}.$$

#### Moment estimates

Estimation of  $\mathbb{E}[\boldsymbol{X}^{\otimes 3}]$  (say) from iid sample  $\{\boldsymbol{x}_i\}_{i=1}^n$ :

$$\widehat{\mathbb{E}}[\boldsymbol{X}^{\otimes 3}] := \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}^{\otimes 3}.$$

Inevitably expect error of order  $n^{-1/2}$  in some norm, e.g.,

$$\begin{split} \|T\| \;&:=\; \sup_{\|x\|=\|y\|=\|z\|=1} T(x,y,z) \quad \text{(injective/"spectral" norm)}\,, \\ \|T\|_F \;&:=\; \left(\sum_{i,j,k} T_{i,j,k}^2\right)^{1/2} \quad \text{(Frobenius norm)}\,. \end{split}$$

## Nearly orthogonally decomposable tensor

(Mu, H., & Goldfarb, 2015)

Let 
$$\varepsilon = \| \boldsymbol{E} \|$$
 for  $\boldsymbol{E} := \widehat{\boldsymbol{T}} - \boldsymbol{T}$ .

Claim: Let 
$$\hat{v} := rg \max_{\|x\|=1} \widehat{T}(x,x,x)$$
 and  $\hat{\lambda} := \widehat{T}(\hat{v},\hat{v},\hat{v})$ .

Then

$$|\hat{\lambda} - \lambda_t| \leq \varepsilon, \qquad \|\hat{v} - v_t\| \leq O\left(\frac{\varepsilon}{\lambda_t} + \left(\frac{\varepsilon}{\lambda_t}\right)^2\right)$$

for some  $t \in [d]$  with  $\lambda_t \geq \max_{t'} \lambda_{t'} - 2\varepsilon$ .

## Nearly orthogonally decomposable tensor

(Mu, H., & Goldfarb, 2015)

Let 
$$\varepsilon = || \mathbf{\underline{E}} ||$$
 for  $\mathbf{\underline{E}} := \widehat{T} - T$ .

Claim: Let 
$$\hat{v} := rg \max_{\|m{x}\|=1} \widehat{T}(m{x}, m{x}, m{x})$$
 and  $\hat{\lambda} := \widehat{T}(\hat{v}, \hat{v}, \hat{v})$ .

Then

$$|\hat{\lambda} - \lambda_t| \leq \varepsilon, \qquad \|\hat{v} - v_t\| \leq O\left(\frac{\varepsilon}{\lambda_t} + \left(\frac{\varepsilon}{\lambda_t}\right)^2\right)$$

for some  $t \in [d]$  with  $\lambda_t \geq \max_{t'} \lambda_{t'} - 2\varepsilon$ .

Many efficient algorithms for solving this approximately, when  $\varepsilon$  is small enough, like 1/d or  $1/\sqrt{d}$  (e.g., Anandkumar, Ge, <u>H.</u>, Kakade, & Telgarsky, 2014; Ma, Shi, & Steurer, 2016).

## Recall: greedy decomposition

(Zhang & Golub, 2001)

#### Matching moments:

$$\{(\hat{oldsymbol{v}}_t,\hat{\lambda}_t)\}_{t=1}^d := \left. rg \min_{\{(oldsymbol{x}_t,\sigma_t)\}_{t=1}^d} \left\| T - \sum_{t=1}^d \sigma_t \cdot oldsymbol{x}_t \otimes oldsymbol{x}_t \otimes oldsymbol{x}_t \otimes oldsymbol{x}_t 
ight\|_F^2 \; .$$

## Recall: greedy decomposition

(Zhang & Golub, 2001)

#### Matching moments:

$$\{(\hat{oldsymbol{v}}_t,\hat{\lambda}_t)\}_{t=1}^d := \left. rg\min_{\{(oldsymbol{x}_t,\sigma_t)\}_{t=1}^d} \left\| T - \sum_{t=1}^d \sigma_t \cdot oldsymbol{x}_t \otimes oldsymbol{x}_t \otimes oldsymbol{x}_t \otimes oldsymbol{x}_t 
ight\|_F^2 \,.$$

- Greedy approach:
  - ► Find best rank-1 approximation:

$$(\hat{v}, \hat{\lambda}) := \underset{\|\boldsymbol{x}\|=1, \sigma \geq 0}{\arg \min} \|T - \sigma \cdot \boldsymbol{x} \otimes \boldsymbol{x} \otimes \boldsymbol{x}\|_F^2.$$

 $lackbox{ iny "Deflate" } T := T - \hat{\lambda} \cdot \hat{v} \otimes \hat{v} \otimes \hat{v} ext{ and repeat.}$ 

### Recall: greedy decomposition

(Zhang & Golub, 2001)

#### Matching moments:

$$\{(\hat{oldsymbol{v}}_t,\hat{\lambda}_t)\}_{t=1}^d := \left. rg\min_{\{(oldsymbol{x}_t,\sigma_t)\}_{t=1}^d} \left\| T - \sum_{t=1}^d \sigma_t \cdot oldsymbol{x}_t \otimes oldsymbol{x}_t \otimes oldsymbol{x}_t \otimes oldsymbol{x}_t 
ight\|_F^2 \,.$$

- Greedy approach:
  - Find best rank-1 approximation:

$$\hat{v} \ \coloneqq rg \max_{\|oldsymbol{x}\|=1} T(oldsymbol{x}, oldsymbol{x}, oldsymbol{x}) \,, \quad \hat{\lambda} \ \coloneqq \ T(\hat{v}, \hat{v}, \hat{v}) \,.$$

lackbox "Deflate"  $T := T - \hat{\lambda} \cdot \hat{v} \otimes \hat{v} \otimes \hat{v}$  and repeat.

#### Errors from deflation

(For simplicity, assume  $\lambda_t = 1$  for all t, so  $T = \sum_t v_t^{\otimes 3}$ .)

#### First greedy step:

Rank-1 approx.  $\hat{v}_1^{\otimes 3}$  to  $\hat{T}$  satisfies  $\|\hat{v}_1 - v_1\| \leq arepsilon$  (say).

#### Errors from deflation

(For simplicity, assume  $\lambda_t=1$  for all t, so  $T=\sum_t v_t^{\otimes 3}$ .)

#### First greedy step:

Rank-1 approx.  $\hat{m{v}}_1^{\otimes 3}$  to  $\hat{m{T}}$  satisfies  $\|\hat{m{v}}_1 - m{v}_1\| \leq arepsilon$  (say).

**Deflation**: To find next  $v_t$ , use

$$\begin{split} \widehat{T} - \widehat{v}_1^{\otimes 3} &= T + \underline{E} - \widehat{v}_1^{\otimes 3} \\ &= \sum_{t=2}^d v_t^{\otimes 3} + \underline{E} + \left( v_1^{\otimes 3} - \widehat{v}_1^{\otimes 3} \right). \end{split}$$

#### Errors from deflation

(For simplicity, assume  $\lambda_t = 1$  for all t, so  $T = \sum_t v_t^{\otimes 3}$ .)

#### First greedy step:

Rank-1 approx.  $\hat{v}_1^{\otimes 3}$  to  $\widehat{T}$  satisfies  $\|\hat{v}_1 - v_1\| \leq \varepsilon$  (say).

**Deflation**: To find next  $v_t$ , use

$$egin{array}{ll} \widehat{m{T}} - \hat{m{v}}_1^{\otimes 3} &=& m{T} + m{E} - \hat{m{v}}_1^{\otimes 3} \ &=& \sum_{t=\mathbf{2}}^d m{v}_t^{\otimes 3} + m{E} + \left(m{v}_1^{\otimes 3} - \hat{m{v}}_1^{\otimes 3}
ight). \end{array}$$

Now error seems to have doubled (i.e., of size  $2\varepsilon$ ) . . .

For any unit vector x orthogonal to  $v_1$ :

$$\left\|\frac{1}{3}\nabla_{\boldsymbol{x}}\left\{\left(\boldsymbol{v}_{1}^{\otimes3}-\hat{\boldsymbol{v}}_{1}^{\otimes3}\right)(\boldsymbol{x},\boldsymbol{x},\boldsymbol{x})\right\}\right\| \;\; = \;\; \left\|\langle\boldsymbol{v}_{1},\boldsymbol{x}\rangle^{2}\boldsymbol{v}_{1}-\langle\hat{\boldsymbol{v}}_{1},\boldsymbol{x}\rangle^{2}\hat{\boldsymbol{v}}_{1}\right\|$$

For any unit vector x orthogonal to  $v_1$ :

$$\left\| \frac{1}{3} \nabla_{\boldsymbol{x}} \left\{ \left( \boldsymbol{v}_{1}^{\otimes 3} - \hat{\boldsymbol{v}}_{1}^{\otimes 3} \right) (\boldsymbol{x}, \boldsymbol{x}, \boldsymbol{x}) \right\} \right\| = \left\| \langle \boldsymbol{v}_{1}, \boldsymbol{x} \rangle^{2} \boldsymbol{v}_{1} - \langle \hat{\boldsymbol{v}}_{1}, \boldsymbol{x} \rangle^{2} \hat{\boldsymbol{v}}_{1} \right\|$$

$$= \langle \hat{\boldsymbol{v}}_{1}, \boldsymbol{x} \rangle^{2}$$

For any unit vector x orthogonal to  $v_1$ :

$$\left\| \frac{1}{3} \nabla_{\boldsymbol{x}} \left\{ \left( \boldsymbol{v}_{1}^{\otimes 3} - \hat{\boldsymbol{v}}_{1}^{\otimes 3} \right) (\boldsymbol{x}, \boldsymbol{x}, \boldsymbol{x}) \right\} \right\| = \left\| \langle \boldsymbol{v}_{1}, \boldsymbol{x} \rangle^{2} \boldsymbol{v}_{1} - \langle \hat{\boldsymbol{v}}_{1}, \boldsymbol{x} \rangle^{2} \hat{\boldsymbol{v}}_{1} \right\| \\
= \langle \hat{\boldsymbol{v}}_{1}, \boldsymbol{x} \rangle^{2} \\
\leq \left\| \boldsymbol{v}_{1} - \hat{\boldsymbol{v}}_{1} \right\|^{2} \leq \varepsilon^{2}.$$

For any unit vector x orthogonal to  $v_1$ :

$$\left\| \frac{1}{3} \nabla_{\boldsymbol{x}} \left\{ \left( \boldsymbol{v}_{1}^{\otimes 3} - \hat{\boldsymbol{v}}_{1}^{\otimes 3} \right) (\boldsymbol{x}, \boldsymbol{x}, \boldsymbol{x}) \right\} \right\| = \left\| \langle \boldsymbol{v}_{1}, \boldsymbol{x} \rangle^{2} \boldsymbol{v}_{1} - \langle \hat{\boldsymbol{v}}_{1}, \boldsymbol{x} \rangle^{2} \hat{\boldsymbol{v}}_{1} \right\| \\
= \langle \hat{\boldsymbol{v}}_{1}, \boldsymbol{x} \rangle^{2} \\
\leq \left\| \boldsymbol{v}_{1} - \hat{\boldsymbol{v}}_{1} \right\|^{2} \leq \varepsilon^{2}.$$

So effect of errors (original and from deflation)  $\boldsymbol{E} + \left(v_1^{\otimes 3} - \hat{v}_1^{\otimes 3}\right)$  in directions orthogonal to  $v_1$  is  $(1+o(1))\varepsilon$  rather than  $2\varepsilon$ .

For any unit vector x orthogonal to  $v_1$ :

$$\left\| \frac{1}{3} \nabla_{\boldsymbol{x}} \left\{ \left( \boldsymbol{v}_{1}^{\otimes 3} - \hat{\boldsymbol{v}}_{1}^{\otimes 3} \right) (\boldsymbol{x}, \boldsymbol{x}, \boldsymbol{x}) \right\} \right\| = \left\| \langle \boldsymbol{v}_{1}, \boldsymbol{x} \rangle^{2} \boldsymbol{v}_{1} - \langle \hat{\boldsymbol{v}}_{1}, \boldsymbol{x} \rangle^{2} \hat{\boldsymbol{v}}_{1} \right\| \\
= \langle \hat{\boldsymbol{v}}_{1}, \boldsymbol{x} \rangle^{2} \\
\leq \left\| \boldsymbol{v}_{1} - \hat{\boldsymbol{v}}_{1} \right\|^{2} \leq \varepsilon^{2}.$$

So effect of errors (original and from deflation)  $E + (v_1^{\otimes 3} - \hat{v}_1^{\otimes 3})$  in directions orthogonal to  $v_1$  is  $(1 + o(1))\varepsilon$  rather than  $2\varepsilon$ .

lacktriangle Deflation errors have lower-order effect on finding other  $v_t$ . (Analogous statement for deflation with matrices does not hold.)

## Summary

- Using method-of-moments with low-order moments, can efficiently estimate parameters for many models.
  - Exploit distributional properties, multi-view structure, and other structure to determine usable moments tensors.
  - Some efficient algorithms for carrying out the tensor decomposition to obtain parameter estimates.

## Summary

- Using method-of-moments with low-order moments, can efficiently estimate parameters for many models.
  - Exploit distributional properties, multi-view structure, and other structure to determine usable moments tensors.
  - Some efficient algorithms for carrying out the tensor decomposition to obtain parameter estimates.
- Many issues to resolve!
  - Handle model misspecification, increase robustness.
  - General methodology.
  - Incorporate general prior knowledge and interactive feedback.

## Acknowledgements

Collaborators: Anima Anandkumar (Caltech), Rishabh Dudeja (Columbia), Dean Foster (Amazon), Rong Ge (Duke), Don Goldfarb (Columbia), Sham Kakade (UW), Percy Liang (Stanford), Yi-Kai Liu (NIST), Cun Mu (Jet), Matus Telgarsky (UIUC), Tong Zhang (Tencent)

#### Further reading:

Anandkumar, Ge, H., Kakade, & Telgarsky. Tensor decompositions for learning latent variable models. Journal of Machine Learning Research, 15(Aug):2773–2831, 2014. https://goo.gl/F8HudN



