Learning latent variable models using tensor decompositions

Daniel Hsu

Computer Science Department & Data Science Institute Columbia University

Machine Learning Summer School June 29-30, 2018

El tema (subject matter)

Learning algorithms

for latent variable models

based on decompositions of moment tensors.

El tema (subject matter)

Learning algorithms (parameter estimation) for latent variable models based on decompositions of moment tensors.

"Method-of-moments" (Pearson, 1894)

Example #1: summarizing a corpus of documents

Observation: documents express one or more thematic topics.

Politics Ensnare Mohamed Salah and Switzerland at the World Cup

By Rory Smith, James Montague and Tariq Panja

June 24, 2018

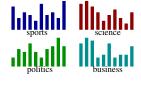
MOSCOW — The World Cup was thrust into the combustible mix of politics and soccer — dangerous ground that world soccer takes great pains to avoid — as a growing number of disciplinary proceedings and a star player's threatened retirement brought several sensitive international flash points to the tournament's doorstep this weekend.

Example #1: summarizing a corpus of documents

Observation: documents express one or more thematic topics.

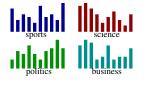
- ▶ What topics are expressed in a corpus of documents?
- ► How prevalent is each topic in the corpus?

Topic model (e.g., latent Dirichlet allocation)



K topics (distributions over vocab words). Document \equiv mixture of topics. Word tokens in doc. $\stackrel{\text{iid}}{\sim}$ mixture distribution.

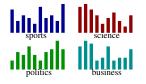
Topic model (e.g., latent Dirichlet allocation)



K topics (distributions over vocab words). Document \equiv mixture of topics. Word tokens in doc. $\stackrel{\text{iid}}{\sim}$ mixture distribution.

 $0.7 \times \boldsymbol{P}_{\text{sports}} + 0.3 \times \boldsymbol{P}_{\text{politics}}.$

Topic model (e.g., latent Dirichlet allocation)



K topics (distributions over vocab words). Document \equiv mixture of topics. Word tokens in doc. $\stackrel{\text{iid}}{\sim}$ mixture distribution.

$$\overset{\mathrm{iid}}{\sim} ~0.7 \times \boldsymbol{P}_{\mathrm{sports}} + 0.3 \times \boldsymbol{P}_{\mathrm{politics}}.$$

Given corpus of documents (and "hyper-parameters", e.g., K), produce estimates of **model parameters**, e.g.:

- ▶ Distribution P_t over vocab words, for each $t \in [K]$.
- ▶ Weight w_t of topic t in document corpus, for each $t \in [K]$.

Labels / annotations

Suppose each word token x in document is annotated with source topic $t_x \in \{1, 2, \dots, K\}$.

Politics	Ensnare	Mohamed_Salah	and	Switzerland	at
3	3	1	5	3	5

Labels / annotations

Suppose each word token x in document is annotated with source topic $t_x \in \{1, 2, \dots, K\}$.

Politics	Ensnare	Mohamed_Salah	and	Switzerland	at
3	3	1	5	3	5

Then estimating the $\{(P_t, w_t)\}_{t=1}^K$ can be done "directly".

Labels / annotations

Suppose each word token x in document is annotated with source topic $t_x \in \{1, 2, \dots, K\}$.

Politics	Ensnare	Mohamed_Salah	and	Switzerland	at
3	3	1	5	3	5

Then estimating the $\{(P_t, w_t)\}_{t=1}^K$ can be done "directly".

► Unfortunately, we often don't have such annotations (i.e., data are *unlabeled* / topics are *hidden*).

"Direct" approach to estimation unavailable.

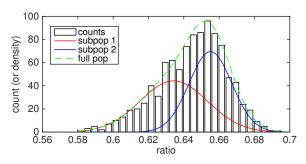
Example #2: subpopulations in data

 $\begin{tabular}{ll} \textbf{Data studied by Pearson (1894)}: \\ \textbf{ratio of forehead-width to body-length for 1000 crabs.} \\ \end{tabular}$

Example #2: subpopulations in data

Data studied by Pearson (1894): ratio of forehead-width to body-length for 1000 crabs.

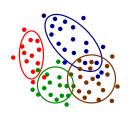
Sample may be comprised of different sub-species of crabs.



Gaussian mixture model

$$H \sim \operatorname{Categorical}(\pi_1, \pi_2, \dots, \pi_K);$$

 $\boldsymbol{X} \mid H = t \sim \operatorname{Normal}(\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t), \quad t \in [K].$



Gaussian mixture model

$$H \sim \operatorname{Categorical}(\pi_1, \pi_2, \dots, \pi_K);$$
 $X \mid H = t \sim \operatorname{Normal}(\mu_t, \Sigma_t), \quad t \in [K].$

Estimate **mean vector**, **covariance matrix**, and **mixing weight** of each subpopulation from *unlabeled data*.

▶ No "direct" estimators when some variables are hidden.

- ▶ No "direct" estimators when some variables are hidden.
- ► Maximum likelihood estimator (MLE):

```
\begin{array}{l} \pmb{\theta}_{\mathsf{MLE}} \; := \; \underset{\pmb{\theta} \in \Theta}{\arg\max} \; \log \Pr_{\pmb{\theta}} \left( \mathsf{data} \right) \, . \end{array}
```

- ▶ No "direct" estimators when some variables are hidden.
- Maximum likelihood estimator (MLE):

$$\theta_{\mathsf{MLE}} := \underset{\theta \in \Theta}{\operatorname{arg\,max}} \log \Pr_{\theta} (\mathsf{data}).$$

Note: log-likelihood is not necessarily concave function of θ .

- ▶ No "direct" estimators when some variables are hidden.
- ► Maximum likelihood estimator (MLE):

$$\theta_{\mathsf{MLE}} := \underset{\theta \in \Theta}{\operatorname{arg\,max}} \log \Pr_{\theta} \left(\mathsf{data} \right).$$

- **Note**: log-likelihood is not necessarily concave function of θ .
- For latent variable models, often use local optimization, most notably via Expectation-Maximization (EM) (Dempster, Laird, & Rubin, 1977).

MLE for Gaussian mixture models

Given data $\{x_i\}_{i=1}^n$, find $\{(\mu_t, \Sigma_t, \pi_t)\}_{t=1}^K$ to maximize

$$\sum_{i=1}^{n} \log \left(\sum_{t=1}^{K} \pi_t \cdot \frac{1}{\det(\boldsymbol{\Sigma}_t)^{1/2}} \exp\left\{ -\frac{1}{2} (\boldsymbol{x}_i - \boldsymbol{\mu}_t)^{\top} \boldsymbol{\Sigma}_t^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}_t) \right\} \right).$$

ç

MLE for Gaussian mixture models

Given data $\{m{x}_i\}_{i=1}^n$, find $\{(m{\mu}_t, m{\Sigma}_t, \pi_t)\}_{t=1}^K$ to maximize

$$\sum_{i=1}^{n} \log \left(\sum_{t=1}^{K} \pi_t \cdot \frac{1}{\det(\boldsymbol{\Sigma}_t)^{1/2}} \exp \left\{ -\frac{1}{2} (\boldsymbol{x}_i - \boldsymbol{\mu}_t)^{\top} \boldsymbol{\Sigma}_t^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}_t) \right\} \right).$$

▶ Sensible with restrictions on Σ_t (e.g., $\Sigma_t \succeq \sigma^2 I$).

MLE for Gaussian mixture models

Given data $\{m{x}_i\}_{i=1}^n$, find $\{(m{\mu}_t, m{\Sigma}_t, \pi_t)\}_{t=1}^K$ to maximize

$$\sum_{i=1}^{n} \log \left(\sum_{t=1}^{K} \pi_t \cdot \frac{1}{\det(\boldsymbol{\Sigma}_t)^{1/2}} \exp\left\{ -\frac{1}{2} (\boldsymbol{x}_i - \boldsymbol{\mu}_t)^{\top} \boldsymbol{\Sigma}_t^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}_t) \right\} \right) .$$

- ► Sensible with restrictions on Σ_t (e.g., $\Sigma_t \succeq \sigma^2 I$).
- But NP-hard to maximize (Tosh and Dasgupta, 2018):
 Can't expect efficient algorithms to work for all data sets.

Suppose iid sample of size n is generated by distribution from model with (unknown) parameters $\theta \in \Theta \subseteq \mathbb{R}^p$. (p = # params)

Suppose iid sample of size n is generated by distribution from model with (unknown) parameters $\theta \in \Theta \subseteq \mathbb{R}^p$. (p = # params)

Task: Produce estimate $\hat{\boldsymbol{\theta}}$ of $\boldsymbol{\theta}$ such that

$$\mathbb{E} \| \hat{m{ heta}} - m{ heta} \| \ o \ 0$$
 as $n o \infty$

(i.e., $\hat{\boldsymbol{\theta}}$ is consistent).

Suppose iid sample of size n is generated by distribution from model with (unknown) parameters $\theta \in \Theta \subseteq \mathbb{R}^p$. (p = # params)

Task: Produce estimate $\hat{\boldsymbol{\theta}}$ of $\boldsymbol{\theta}$ such that

$$\mathbb{E} \|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}\| \to 0 \text{ as } n \to \infty$$

(i.e., $\hat{\boldsymbol{\theta}}$ is consistent).

- ► E.g., for spherical Gaussian mixtures:
 - For K=2 (and $\pi_t=1/2$, $\Sigma_t=I$): EM is consistent (Xu, \underline{H} ., & Maleki, 2016).

Suppose iid sample of size n is generated by distribution from model with (unknown) parameters $\theta \in \Theta \subseteq \mathbb{R}^p$. (p = # params)

Task: Produce estimate $\hat{\theta}$ of θ such that

$$\mathbb{E} \| \hat{\boldsymbol{\theta}} - \boldsymbol{\theta} \| \to 0 \text{ as } n \to \infty$$

(i.e., $\hat{\boldsymbol{\theta}}$ is consistent).

- ► E.g., for spherical Gaussian mixtures:
 - For K=2 (and $\pi_t=1/2$, $\Sigma_t=I$): EM is consistent (Xu, \underline{H} ., & Maleki, 2016).
 - ► Larger K: easily trapped in local maxima, far from global max (Jin, Zhang, Balakrishnan, Wainwright, & Jordan, 2016).

Suppose iid sample of size n is generated by distribution from model with (unknown) parameters $\theta \in \Theta \subseteq \mathbb{R}^p$. (p = # params)

Task: Produce estimate $\hat{\boldsymbol{\theta}}$ of $\boldsymbol{\theta}$ such that

$$\mathbb{E} \|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}\| \to 0 \text{ as } n \to \infty$$

(i.e., $\hat{\boldsymbol{\theta}}$ is consistent).

- ► E.g., for spherical Gaussian mixtures:
 - For K=2 (and $\pi_t=1/2$, $\Sigma_t=I$): EM is consistent (Xu, \underline{H} ., & Maleki, 2016).
 - ► Larger *K*: easily trapped in local maxima, far from global max (Jin, Zhang, Balakrishnan, Wainwright, & Jordan, 2016).

Practitioners often use EM with many (random) restarts ... but may take a long time to get near the global max.

Suppose iid sample of size n is generated by distribution from model with (unknown) parameters $\theta \in \Theta \subseteq \mathbb{R}^p$. (p = # params)

Task: Produce estimate $\hat{\boldsymbol{\theta}}$ of $\boldsymbol{\theta}$ such that

$$\Pr\left(\|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}\| \le \epsilon\right) \ge 1 - \delta$$

with $poly(p, 1/\epsilon, 1/\delta, ...)$ sample size and running time.

- ► E.g., for spherical Gaussian mixtures:
 - For K=2 (and $\pi_t=1/2$, $\Sigma_t=I$): EM is consistent (Xu, \underline{H} ., & Maleki, 2016).
 - ► Larger *K*: easily trapped in local maxima, far from global max (Jin, Zhang, Balakrishnan, Wainwright, & Jordan, 2016).

Practitioners often use EM with many (random) restarts ... but may take a long time to get near the global max.

Barriers

Hard to learn model parameters, even when data is generated by a model distribution.

Barriers

Hard to learn model parameters, even when data is generated by a model distribution.

Cryptographic hardness (e.g., Mossel & Roch, 2006)

Information-theoretic hardness (e.g., Moitra & Valiant, 2010)

May require $2^{\Omega(K)}$ running time or $2^{\Omega(K)}$ sample size.

Separation conditions.

E.g., assume mixture component distributions are far apart.

(Dasgupta, 1999; Arora & Kannan, 2001; Vempala & Wang, 2002; . . .)

Separation conditions.

```
E.g., assume mixture component distributions are far apart. (Dasgupta, 1999; Arora & Kannan, 2001; Vempala & Wang, 2002; ...)
```

Structural assumptions.

```
E.g., sparsity, anchor words.
(Spielman, Wang, & Wright, 2012; Arora, Ge, & Moitra, 2012; ...)
```

Separation conditions.

```
E.g., assume mixture component distributions are far apart. (Dasgupta, 1999; Arora & Kannan, 2001; Vempala & Wang, 2002; ...)
```

Structural assumptions.

```
E.g., sparsity, anchor words.
(Spielman, Wang, & Wright, 2012; Arora, Ge, & Moitra, 2012; ...)
```

Non-degeneracy conditions.

```
E.g., assume \mu_1, \mu_2, \dots, \mu_K are in general position.
```

► Separation conditions.

```
E.g., assume mixture component distributions are far apart. (Dasgupta, 1999; Arora & Kannan, 2001; Vempala & Wang, 2002; ...)
```

Structural assumptions.

```
E.g., sparsity, anchor words. (Spielman, Wang, & Wright, 2012; Arora, Ge, & Moitra, 2012; ...)
```

Non-degeneracy conditions.

```
E.g., assume \mu_1, \mu_2, \dots, \mu_K are in general position.
```

This lecture: learning algorithms for non-degenerate instances via *method-of-moments*.

Method-of-moments at a glance

1. Determine function of model parameters θ estimatable from observable data:

$$\mathbb{E}_{\boldsymbol{\theta}}[f(\boldsymbol{X})]$$
 ("moments").

2. Form estimates of moments using data (e.g., iid sample):

$$\widehat{\mathbb{E}}[f(oldsymbol{X})]$$
 ("empirical moments").

3. Approximately solve equations for parameters θ :

$$\mathbb{E}_{\boldsymbol{\theta}}[f(\boldsymbol{X})] = \widehat{\mathbb{E}}[f(\boldsymbol{X})].$$

4. ("Fine-tune" estimated parameters with local optimization.)

Method-of-moments at a glance

1. Determine function of model parameters θ estimatable from observable data:

$$\mathbb{E}_{\boldsymbol{\theta}}[f(\boldsymbol{X})]$$
 ("moments").

Which moments?

2. Form estimates of moments using data (e.g., iid sample):

$$\widehat{\mathbb{E}}[f(oldsymbol{X})]$$
 ("empirical moments").

3. Approximately solve equations for parameters θ :

$$\mathbb{E}_{\boldsymbol{\theta}}[f(\boldsymbol{X})] = \widehat{\mathbb{E}}[f(\boldsymbol{X})].$$

How?

4. ("Fine-tune" estimated parameters with local optimization.)

Method-of-moments at a glance

1. Determine function of model parameters θ estimatable from observable data:

$$\mathbb{E}_{\boldsymbol{\theta}}[f(\boldsymbol{X})]$$
 ("moments").

Which moments? Often low-order moments suffice.

2. Form estimates of moments using data (e.g., iid sample):

$$\widehat{\mathbb{E}}[f(oldsymbol{X})]$$
 ("empirical moments").

3. Approximately solve equations for parameters θ :

$$\mathbb{E}_{\boldsymbol{\theta}}[f(\boldsymbol{X})] = \widehat{\mathbb{E}}[f(\boldsymbol{X})].$$

How? Algorithms for tensor decomposition.

4. ("Fine-tune" estimated parameters with local optimization.)

Let $X \sim \text{Normal}(\mu, \sigma^2)$. How to estimate σ^2 from iid sample?

Let $X \sim \text{Normal}(\mu, \sigma^2)$. How to estimate σ^2 from iid sample?

▶ Consider first- and second-moments: $\mathbb{E}[X]$ and $\mathbb{E}[X^2]$.

Let $X \sim \text{Normal}(\mu, \sigma^2)$. How to estimate σ^2 from iid sample?

- ▶ Consider first- and second-moments: $\mathbb{E}[X]$ and $\mathbb{E}[X^2]$.
- ▶ Formula for σ^2 in terms of moments:

$$\mathbb{E}[X^2] - \mathbb{E}[X]^2 = (\sigma^2 + \mu^2) - \mu^2 = \sigma^2.$$

Let $X \sim \text{Normal}(\mu, \sigma^2)$. How to estimate σ^2 from iid sample?

- ▶ Consider first- and second-moments: $\mathbb{E}[X]$ and $\mathbb{E}[X^2]$.
- ▶ Formula for σ^2 in terms of moments:

$$\mathbb{E}[X^2] - \mathbb{E}[X]^2 \ = \ \left(\sigma^2 + \mu^2\right) - \mu^2 \ = \ \sigma^2 \,.$$

Form estimates of $\mathbb{E}[X]$ and $\mathbb{E}[X^2]$ from iid sample $\{x_i\}_{i=1}^n$: e.g.,

$$\widehat{\mathbb{E}}[X] := \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad \widehat{\mathbb{E}}[X^2] := \frac{1}{n} \sum_{i=1}^{n} x_i^2.$$

14

Let $X \sim \text{Normal}(\mu, \sigma^2)$. How to estimate σ^2 from iid sample?

- ▶ Consider first- and second-moments: $\mathbb{E}[X]$ and $\mathbb{E}[X^2]$.
- ▶ Formula for σ^2 in terms of moments:

$$\mathbb{E}[X^2] - \mathbb{E}[X]^2 \ = \ \left(\sigma^2 + \mu^2\right) - \mu^2 \ = \ \sigma^2 \, .$$

Form estimates of $\mathbb{E}[X]$ and $\mathbb{E}[X^2]$ from iid sample $\{x_i\}_{i=1}^n$: e.g.,

$$\widehat{\mathbb{E}}[X] := \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad \widehat{\mathbb{E}}[X^2] := \frac{1}{n} \sum_{i=1}^{n} x_i^2.$$

▶ Then estimate σ^2 with

$$\hat{\sigma}^2 := \widehat{\mathbb{E}}[X^2] - \widehat{\mathbb{E}}[X]^2$$
.

14

Let $X \sim \text{Normal}(\mu, \sigma^2)$. How to estimate σ^2 from iid sample?

- ▶ Consider first- and second-moments: $\mathbb{E}[X]$ and $\mathbb{E}[X^2]$.
- ▶ Formula for σ^2 in terms of moments:

$$\mathbb{E}[X^2] - \mathbb{E}[X]^2 \ = \ \left(\sigma^2 + \mu^2\right) - \mu^2 \ = \ \sigma^2 \, .$$

Form estimates of $\mathbb{E}[X]$ and $\mathbb{E}[X^2]$ from iid sample $\{x_i\}_{i=1}^n$: e.g.,

$$\widehat{\mathbb{E}}[X] := \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad \widehat{\mathbb{E}}[X^2] := \frac{1}{n} \sum_{i=1}^{n} x_i^2.$$

▶ Then estimate σ^2 with

$$\hat{\sigma}^2 := \widehat{\mathbb{E}}[X^2] - \widehat{\mathbb{E}}[X]^2$$
.

We'll follow this same basic recipe for much richer models!

Outline

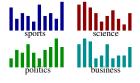
- 1. Topic model for single-topic documents.
 - ► Identifiability.
 - Parameter recovery via orthogonal tensor decomposition.
- 2. Moment decompositions for other models.
 - Mixtures of Gaussians and linear regressions.
 - Multi-view models (e.g., HMMs).
 - Other models (e.g., single-index models).
- 3. Error analysis.

Other models amenable to moment tensor decomposition

- ▶ Models for independent components analysis (Comon, 1994; Frieze, Jerrum, & Kannan, 1996; Arora, Ge, Moitra & Sachdeva, 2012; Anandkumar, Foster, H., Kakade, & Liu, 2012, 2015; Belkin, Rademacher, & Voss, 2013; etc.)
- Latent Dirichlet Allocation (Anandkumar, Foster, H., Kakade, & Liu, 2012, 2015; Anderson, Goyal, & Rademacher, 2013)
- Mixed-membership stochastic blockmodels (Anandkumar, Ge, H., & Kakade, 2013, 2014)
- ► Simple probabilistic grammars (<u>H.</u>, Kakade, & Liang, 2012)
- Noisy-or networks (Halpern & Sontag, 2013; Jernite, Halpern & Sontag, 2013; Arora, Ge, Ma, & Risteski, 2016)
- ► Indian buffet process (Tung & Smola, 2014)
- Mixed multinomial logit model (Oh & Shah, 2014)
- ▶ Dawid-Skene model (Zhang, Chen, Zhou, & Jordan, 2014)
- ► Multi-task bandits (Azar, Lazaric, & Brunskill, 2013)
- Partially obs. MDPs (Azizzadenesheli, Lazaric, & Anandkumar, 2016)
- **.**...

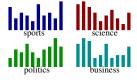
1. Topic model for single-topic documents

General topic model (e.g., Latent Dirichlet Allocation)



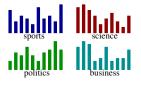
K topics (dists. over words) $\{P_t\}_{t=1}^K$. Document \equiv mixture of topics (hidden). Word tokens in doc. $\stackrel{\text{iid}}{\sim}$ mixture distribution.

Topic model for single-topic documents



K topics (dists. over words) $\{\boldsymbol{P}_t\}_{t=1}^K$. Pick topic t with prob. w_t (hidden). Word tokens in doc. $\stackrel{\text{iid}}{\sim} \boldsymbol{P}_t$.

Topic model for single-topic documents

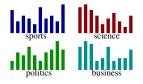


K topics (dists. over words) $\{\boldsymbol{P}_t\}_{t=1}^K$. Pick topic t with prob. w_t (hidden). Word tokens in doc. $\stackrel{\text{iid}}{\sim} \boldsymbol{P}_t$.

Given iid sample of documents of length L, produce estimates of **model parameters** $\{(P_t, w_t)\}_{t=1}^K$.

18

Topic model for single-topic documents

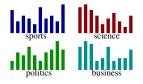


K topics (dists. over words) $\{\boldsymbol{P}_t\}_{t=1}^K$. Pick topic t with prob. w_t (hidden). Word tokens in doc. $\stackrel{\text{iid}}{\sim} \boldsymbol{P}_t$.

Given iid sample of documents of length L, produce estimates of **model parameters** $\{(P_t, w_t)\}_{t=1}^K$.

How long must the documents be?

Topic model for single-topic documents



K topics (dists. over words) $\{P_t\}_{t=1}^K$. Pick topic t with prob. w_t (hidden). Word tokens in doc. $\stackrel{\text{iid}}{\sim} P_t$.

Given iid sample of documents of length L, produce estimates of **model parameters** $\{(P_t, w_t)\}_{t=1}^K$.

How long must the documents be?

(Answering this question leads to efficient algorithms for estimating parameters!)

Generative process:

Pick $t \sim \text{Categorical}(w_1, w_2, \dots, w_K)$.

Given t, pick L words from P_t .

Generative process:

```
Pick t \sim \text{Categorical}(w_1, w_2, \dots, w_K).
Given t, pick L words from P_t.
```

▶ L = 1: random document (single word) $\sim \sum_{t=1}^{K} w_t P_t$.

Are parameters $\{(\boldsymbol{P}_t, w_t)\}_{t=1}^K$ identifiable from single-word documents?

Generative process:

```
Pick t \sim \operatorname{Categorical}(w_1, w_2, \dots, w_K).
Given t, pick L words from P_t.
```

▶ L=1: random document (single word) $\sim \sum_{t=1}^{K} w_t P_t$.

Are parameters $\{(P_t, w_t)\}_{t=1}^K$ identifiable from single-word documents?

No.

Generative process:

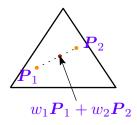
Pick $t \sim \text{Categorical}(w_1, w_2, \dots, w_K)$.

Given t, pick L words from P_t .

▶ L=1: random document (single word) $\sim \sum_{t=1}^{K} w_t P_t$.

Are parameters $\{(P_t, w_t)\}_{t=1}^K$ identifiable from single-word documents?

No.



Generative process:

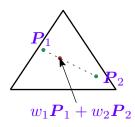
Pick $t \sim \text{Categorical}(w_1, w_2, \dots, w_K)$.

Given t, pick L words from P_t .

▶ L=1: random document (single word) $\sim \sum_{t=1}^{K} w_t P_t$.

Are parameters $\{(P_t, w_t)\}_{t=1}^K$ identifiable from single-word documents?

No.



Generative process:

Pick $t \sim \text{Categorical}(w_1, w_2, \dots, w_K)$. Given t, pick L words from P_t .

L = 2:

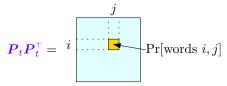
Generative process:

Pick $t \sim \text{Categorical}(w_1, w_2, \dots, w_K)$.

Given t, pick L words from P_t .

L = 2:

Regard P_t as probability vector (*i*th entry of P_t is $\Pr[\text{word } i]$). Joint distribution of word pairs (for topic t) is given by matrix:



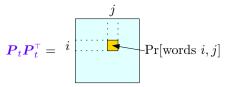
Random document $\sim \sum_{t=1}^K w_t \boldsymbol{P}_t \boldsymbol{P}_t^{\mathsf{T}}$.

Generative process:

Pick $t \sim \text{Categorical}(w_1, w_2, \dots, w_K)$. Given t, pick L words from P_t .

L = 2:

Regard P_t as probability vector (*i*th entry of P_t is $\Pr[\text{word } i]$). Joint distribution of word pairs (for topic t) is given by matrix:



Random document $\sim \sum_{t=1}^{K} w_t P_t P_t^{\top}$.

Are parameters $\{(\boldsymbol{P}_t, w_t)\}_{t=1}^K$ identifiable from word pairs?

Simple observation

Suppose distribution of word pairs (as a matrix) can be written as

$$M = AA^{\top}$$
.

Simple observation

Suppose distribution of word pairs (as a matrix) can be written as

$$M = AA^{\mathsf{T}}.$$

Then it can also be written as

$$M = (\mathbf{A}\mathbf{R})(\mathbf{A}\mathbf{R})^{\mathsf{T}}$$

for any orthogonal matrix R (because $R^{ op}R=I$).

Identifiability: L=2 counterexample

Parameters $\{(\boldsymbol{P}_1,w_1),(\boldsymbol{P}_2,w_2)\}$ and $\{(\widetilde{\boldsymbol{P}}_1,\tilde{w}_1),(\widetilde{\boldsymbol{P}}_2,\tilde{w}_2)\}$

$$(\mathbf{P}_{1}, w_{1}) = \left(\begin{bmatrix} 0.40 \\ 0.60 \end{bmatrix}, 0.5 \right), \quad (\mathbf{P}_{2}, w_{2}) = \left(\begin{bmatrix} 0.60 \\ 0.40 \end{bmatrix}, 0.5 \right);$$

$$(\tilde{\mathbf{P}}_{1}, \tilde{w}_{1}) = \left(\begin{bmatrix} 0.55 \\ 0.45 \end{bmatrix}, 0.8 \right), \quad (\tilde{\mathbf{P}}_{2}, \tilde{w}_{2}) = \left(\begin{bmatrix} 0.30 \\ 0.70 \end{bmatrix}, 0.2 \right)$$

Identifiability: L=2 counterexample

Parameters $\{(\boldsymbol{P}_1,w_1),(\boldsymbol{P}_2,w_2)\}$ and $\{(\widetilde{\boldsymbol{P}}_1,\tilde{w}_1),(\widetilde{\boldsymbol{P}}_2,\tilde{w}_2)\}$

$$(\mathbf{P}_{1}, w_{1}) = \left(\begin{bmatrix} 0.40 \\ 0.60 \end{bmatrix}, 0.5 \right), \quad (\mathbf{P}_{2}, w_{2}) = \left(\begin{bmatrix} 0.60 \\ 0.40 \end{bmatrix}, 0.5 \right);$$

$$(\tilde{\mathbf{P}}_{1}, \tilde{w}_{1}) = \left(\begin{bmatrix} 0.55 \\ 0.45 \end{bmatrix}, 0.8 \right), \quad (\tilde{\mathbf{P}}_{2}, \tilde{w}_{2}) = \left(\begin{bmatrix} 0.30 \\ 0.70 \end{bmatrix}, 0.2 \right)$$

satisfy

$$w_1 \mathbf{P}_1 \mathbf{P}_1^{\top} + w_2 \mathbf{P}_2 \mathbf{P}_2^{\top} = \tilde{w}_1 \tilde{\mathbf{P}}_1 \tilde{\mathbf{P}}_1^{\top} + \tilde{w}_2 \tilde{\mathbf{P}}_2 \tilde{\mathbf{P}}_2^{\top} = \begin{bmatrix} 0.26 & 0.24 \\ 0.24 & 0.26 \end{bmatrix}.$$

22

Identifiability: L=2 counterexample

Parameters $\{(\boldsymbol{P}_1,w_1),(\boldsymbol{P}_2,w_2)\}$ and $\{(\widetilde{\boldsymbol{P}}_1,\tilde{w}_1),(\widetilde{\boldsymbol{P}}_2,\tilde{w}_2)\}$

$$(\mathbf{P}_{1}, w_{1}) = \left(\begin{bmatrix} 0.40 \\ 0.60 \end{bmatrix}, 0.5 \right), \quad (\mathbf{P}_{2}, w_{2}) = \left(\begin{bmatrix} 0.60 \\ 0.40 \end{bmatrix}, 0.5 \right);$$

$$(\tilde{\mathbf{P}}_{1}, \tilde{w}_{1}) = \left(\begin{bmatrix} 0.55 \\ 0.45 \end{bmatrix}, 0.8 \right), \quad (\tilde{\mathbf{P}}_{2}, \tilde{w}_{2}) = \left(\begin{bmatrix} 0.30 \\ 0.70 \end{bmatrix}, 0.2 \right)$$

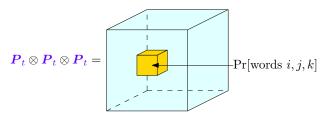
satisfy

$$w_1 \mathbf{P}_1 \mathbf{P}_1^{\top} + w_2 \mathbf{P}_2 \mathbf{P}_2^{\top} = \tilde{w}_1 \tilde{\mathbf{P}}_1 \tilde{\mathbf{P}}_1^{\top} + \tilde{w}_2 \tilde{\mathbf{P}}_2 \tilde{\mathbf{P}}_2^{\top} = \begin{bmatrix} 0.26 & 0.24 \\ 0.24 & 0.26 \end{bmatrix}.$$

Cannot identify parameters from length-two documents.

Documents of length L=3

Joint distribution of word triple (for topic t) is given by *tensor*.



Random document $\sim \sum_{t=1}^K w_t \mathbf{P}_t \otimes \mathbf{P}_t \otimes \mathbf{P}_t$.

23

Claim: If $\{P_t\}_{t=1}^K$ are linearly independent & all $w_t > 0$, then parameters $\{(P_t, w_t)\}_{t=1}^K$ are identifiable from word triples.

Claim: If $\{P_t\}_{t=1}^K$ are linearly independent & all $w_t > 0$, then parameters $\{(P_t, w_t)\}_{t=1}^K$ are identifiable from word triples.

Claim implied by uniqueness of certain tensor decompositions.

Claim: If $\{P_t\}_{t=1}^K$ are linearly independent & all $w_t > 0$, then parameters $\{(P_t, w_t)\}_{t=1}^K$ are identifiable from word triples.

- Claim implied by uniqueness of certain tensor decompositions.
- Proof is constructive: i.e., comes with an algorithm!

Claim: If $\{P_t\}_{t=1}^K$ are linearly independent & all $w_t > 0$, then parameters $\{(P_t, w_t)\}_{t=1}^K$ are identifiable from word triples.

- Claim implied by uniqueness of certain tensor decompositions.
- ▶ Proof is *constructive*: i.e., comes with an algorithm!

Next: Brief overview of tensors.

Tensors of order two

Matrices (tensors of order two): $M \in \mathbb{R}^{d \times d}$.

▶ Regard as *bi-linear function* $M: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$:

$$M(a\mathbf{x} + \mathbf{x}', \mathbf{y}) = aM(\mathbf{x}, \mathbf{y}) + M(\mathbf{x}', \mathbf{y});$$

 $M(\mathbf{x}, a\mathbf{y} + \mathbf{y}') = aM(\mathbf{x}, \mathbf{y}) + M(\mathbf{x}, \mathbf{y}').$

Tensors of order two

Matrices (tensors of order two): $M \in \mathbb{R}^{d \times d}$.

▶ Regard as *bi-linear function* M: $\mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$:

$$M(ax + x', y) = aM(x, y) + M(x', y);$$

 $M(x, ay + y') = aM(x, y) + M(x, y').$

► Can describe M by d^2 values $M(e_i, e_j) =: M_{i,j}$. (e_i is ith coordinate basis vector.)

Tensors of order two

Matrices (tensors of order two): $M \in \mathbb{R}^{d \times d}$.

▶ Regard as *bi-linear function* $M: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$:

$$M(ax + x', y) = aM(x, y) + M(x', y);$$

 $M(x, ay + y') = aM(x, y) + M(x, y').$

- ► Can describe M by d^2 values $M(e_i, e_j) =: M_{i,j}$. (e_i is ith coordinate basis vector.)
- Formula using matrix representation:

$$oldsymbol{M}(oldsymbol{x},oldsymbol{y}) \ = \ oldsymbol{x}^ op oldsymbol{M}oldsymbol{y} = \ oldsymbol{\Sigma}_{i,j} \, M_{i,j} \cdot x_i y_j \, .$$

Tensors of order two

Matrices (tensors of order two): $M \in \mathbb{R}^{d \times d}$.

▶ Regard as *bi-linear function* $M: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$:

$$M(ax + x', y) = aM(x, y) + M(x', y);$$

 $M(x, ay + y') = aM(x, y) + M(x, y').$

- ► Can describe M by d^2 values $M(e_i, e_j) =: M_{i,j}$. (e_i is ith coordinate basis vector.)
- Formula using matrix representation:

$$oldsymbol{M}(oldsymbol{x},oldsymbol{y}) \ = \ oldsymbol{x}^ op oldsymbol{M}oldsymbol{y} = \ oldsymbol{\Sigma}_{i,j} \, M_{i,j} \cdot x_i y_j \, .$$

Tensors are *multi-linear* generalization.

p-linear functions: $T : \mathbb{R}^d \times \mathbb{R}^d \times \cdots \times \mathbb{R}^d \to \mathbb{R}$.

p-linear functions: $T: \mathbb{R}^d \times \mathbb{R}^d \times \cdots \times \mathbb{R}^d \to \mathbb{R}$.

 $lackbox{\ }$ Can describe T by d^p values $T(m{e}_{i_1},m{e}_{i_2},\ldots,m{e}_{i_p})=:T_{i_1,i_2,\ldots,i_p}.$

p-linear functions: $T \colon \mathbb{R}^d \times \mathbb{R}^d \times \cdots \times \mathbb{R}^d \to \mathbb{R}$.

- $lackbox{\ }$ Can describe $m{T}$ by d^p values $m{T}(m{e}_{i_1},m{e}_{i_2},\ldots,m{e}_{i_p})=:T_{i_1,i_2,\ldots,i_p}.$
- ldentify T with multi-index array $T \in \mathbb{R}^{d \times d \times \cdots \times d}$.

p-linear functions: $T \colon \mathbb{R}^d \times \mathbb{R}^d \times \cdots \times \mathbb{R}^d \to \mathbb{R}$.

- lacksquare Can describe $m{T}$ by d^p values $m{T}(m{e}_{i_1},m{e}_{i_2},\ldots,m{e}_{i_p})=:T_{i_1,i_2,\ldots,i_p}.$
- ldentify T with multi-index array $T \in \mathbb{R}^{d \times d \times \cdots \times d}$. Formula for function value:

$$T(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \dots, \boldsymbol{x}^{(p)}) = \sum_{i_1, i_2, \dots, i_p} T_{i_1, i_2, \dots, i_p} \cdot x_{i_1}^{(1)} x_{i_2}^{(2)} \cdots x_{i_p}^{(p)}.$$

p-linear functions: $T \colon \mathbb{R}^d \times \mathbb{R}^d \times \cdots \times \mathbb{R}^d \to \mathbb{R}$.

- lacksquare Can describe T by d^p values $T(m{e}_{i_1},m{e}_{i_2},\ldots,m{e}_{i_p})=:T_{i_1,i_2,\ldots,i_p}.$
- ▶ Identify T with multi-index array $T \in \mathbb{R}^{d \times d \times \cdots \times d}$. Formula for function value:

$$T(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \dots, \boldsymbol{x}^{(p)}) = \sum_{i_1, i_2, \dots, i_p} T_{i_1, i_2, \dots, i_p} \cdot x_{i_1}^{(1)} x_{i_2}^{(2)} \cdots x_{i_p}^{(p)}.$$

lacksquare Rank-1 tensor: $m{T}=m{v}^{(1)}\otimesm{v}^{(2)}\otimes\cdots\otimesm{v}^{(p)}$,

$$T(\pmb{x}^{(1)}, \pmb{x}^{(2)}, \dots, \pmb{x}^{(p)}) = \langle \pmb{v}^{(1)}, \pmb{x}^{(1)} \rangle \langle \pmb{v}^{(2)}, \pmb{x}^{(2)} \rangle \cdots \langle \pmb{v}^{(p)}, \pmb{x}^{(p)} \rangle.$$

p-linear functions: $T : \mathbb{R}^d \times \mathbb{R}^d \times \cdots \times \mathbb{R}^d \to \mathbb{R}$.

- $lackbox{\ }$ Can describe T by d^p values $T(oldsymbol{e}_{i_1},oldsymbol{e}_{i_2},\ldots,oldsymbol{e}_{i_p})=:T_{i_1,i_2,\ldots,i_p}.$
- ▶ Identify T with multi-index array $T \in \mathbb{R}^{d \times d \times \cdots \times d}$. Formula for function value:

$$T(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \dots, \boldsymbol{x}^{(p)}) = \sum_{i_1, i_2, \dots, i_p} T_{i_1, i_2, \dots, i_p} \cdot x_{i_1}^{(1)} x_{i_2}^{(2)} \cdots x_{i_p}^{(p)}.$$

lacksquare Rank-1 tensor: $T=oldsymbol{v}^{(1)}\otimesoldsymbol{v}^{(2)}\otimes\cdots\otimesoldsymbol{v}^{(p)}$,

$$T(m{x}^{(1)},m{x}^{(2)},\dots,m{x}^{(p)}) \,=\, \langle m{v}^{(1)},m{x}^{(1)}
angle \langle m{v}^{(2)},m{x}^{(2)}
angle \cdots \langle m{v}^{(p)},m{x}^{(p)}
angle \,.$$

Symmetric rank-1 tensor: $T=v^{\otimes p}=v\otimes v\otimes\cdots\otimes v$,

$$T(oldsymbol{x}^{(1)},oldsymbol{x}^{(2)},\ldots,oldsymbol{x}^{(p)}) \;=\; \langle v,oldsymbol{x}^{(1)}
angle\langle v,oldsymbol{x}^{(2)}
angle\cdots\langle v,oldsymbol{x}^{(p)}
angle\,.$$

Usual caveat

(Hillar & Lim, 2013)

Most Tensor Problems Are NP-Hard

CHRISTOPHER J. HILLAR, Mathematical Sciences Research Institute LEK-HENG LIM, University of Chicago

We prove that multilinear (tensor) analogues of many efficiently computable problems in numerical linear algebra are NP-hard. Our list includes: determining the feasibility of a system of bilinear equations, deciding whether a 3-tensor possesses a given eigenvalue, singular value, or spectral norm; approximating an eigenvalue, eigenvector, singular vector, or the spectral norm; and determining the rank or best rank-1 approximation of a 3-tensor. Furthermore, we show that restricting these problems to symmetric tensors does not alleviate their NP-hardness. We also explain how deciding nonnegative definiteness of a symmetric 4-tensor is NP-hard and how computing the combinatorial hyperdeterminant is NP-, #P-, and VNP-hard.

ightharpoonup Rank of T: smallest r s.t. T is sum of r rank-1 tensors.

 $\blacktriangleright \ \, {\sf Rank of} \,\, T\hbox{: smallest} \,\, r \,\, {\sf s.t.} \,\, T \,\, {\sf is sum of} \,\, r \,\, {\sf rank-1 tensors}.$

(Computing this is NP-hard.)

- Rank of T: smallest r s.t. T is sum of r rank-1 tensors. (Computing this is NP-hard.)
- ▶ "Border rank" of T: smallest r s.t. there exists sequence $(T_k)_{k\in\mathbb{N}}$ of rank-r tensors with $\lim_{k\to\infty}T_k=T$.

- ▶ Rank of T: smallest r s.t. T is sum of r rank-1 tensors. (Computing this is NP-hard.)
- ▶ "Border rank" of T: smallest r s.t. there exists sequence $(T_k)_{k\in\mathbb{N}}$ of rank-r tensors with $\lim_{k\to\infty}T_k=T$.
- ► Rank is not same as border rank!

Define

$$T := x \otimes x \otimes y + x \otimes y \otimes x + y \otimes x \otimes x,$$

which has rank 3.

- Rank of T: smallest r s.t. T is sum of r rank-1 tensors. (Computing this is NP-hard.)
- ▶ "Border rank" of T: smallest r s.t. there exists sequence $(T_k)_{k\in\mathbb{N}}$ of rank-r tensors with $\lim_{k\to\infty}T_k=T$.
- ► Rank is not same as border rank!

Define

$$T := x \otimes x \otimes y + x \otimes y \otimes x + y \otimes x \otimes x$$
,

which has rank 3.

Define

$$m{T}_{1/\epsilon} \; := \; rac{1}{\epsilon}(m{x} + \epsilon m{y}) \otimes (m{x} + \epsilon m{y}) \otimes (m{x} + \epsilon m{y}) - rac{1}{\epsilon} m{x} \otimes m{x} \otimes m{x} \, ,$$

which have rank 2.

- Rank of T: smallest r s.t. T is sum of r rank-1 tensors. (Computing this is NP-hard.)
- ▶ "Border rank" of T: smallest r s.t. there exists sequence $(T_k)_{k\in\mathbb{N}}$ of rank-r tensors with $\lim_{k\to\infty}T_k=T$.
- Rank is not same as border rank!

Define

$$T := x \otimes x \otimes y + x \otimes y \otimes x + y \otimes x \otimes x,$$

which has rank 3.

Define

$$egin{aligned} m{T}_{1/\epsilon} \; := \; rac{1}{\epsilon}(m{x} + \epsilon m{y}) \otimes (m{x} + \epsilon m{y}) \otimes (m{x} + \epsilon m{y}) - rac{1}{\epsilon} m{x} \otimes m{x} \otimes m{x} \,, \end{aligned}$$

which have rank 2.

For
$$\epsilon = 1/k$$
, have $\lim_{k \to \infty} T_k = T$.

Aside: eigenvalue decomposition

Recall: every symmetric matrix $M \in \mathbb{R}^{d \times d}$ of rank K has an eigen-decomposition (which can be efficiently computed):

$$M = \sum_{t=1}^K \lambda_t v_t v_t^{\top},$$

Aside: eigenvalue decomposition

Recall: every symmetric matrix $M \in \mathbb{R}^{d \times d}$ of rank K has an eigen-decomposition (which can be efficiently computed):

$$m{M} \ = \ \sum_{t=1}^K \lambda_t m{v}_t m{v}_t^{ op} \,,$$

- ▶ $\{\lambda_t\}_{t=1}^K$ are eigenvalues,
- $\{v_t\}_{t=1}^K$ are the corresponding *eigenvectors*, which are orthonormal (i.e., orthogonal & unit length).
- ▶ Decomposition is unique iff $\{\lambda_t\}_{t=1}^K$ are distinct. (Up to sign of v_t s.)

Aside: eigenvalue decomposition

Recall: every symmetric matrix $M \in \mathbb{R}^{d \times d}$ of rank K has an eigen-decomposition (which can be efficiently computed):

$$m{M} \ = \ \sum_{t=1}^K \lambda_t m{v}_t m{v}_t^{ op} \,,$$

- $\blacktriangleright \{\lambda_t\}_{t=1}^K$ are eigenvalues,
- $\{v_t\}_{t=1}^K$ are the corresponding *eigenvectors*, which are orthonormal (i.e., orthogonal & unit length).
- ▶ Decomposition is unique iff $\{\lambda_t\}_{t=1}^K$ are distinct. (Up to sign of v_t s.)

For (symmetric) tensors of order $p \geq 3$: an analogous decomposition is **not** guaranteed to exist.

Suppose we have (estimates of) moments of the form

$$M \ = \ \sum_{t=1}^K v_t \otimes v_t \,,$$
 (e.g., word pairs) and $T \ = \ \sum_{t=1}^K \lambda_t \cdot v_t \otimes v_t \otimes v_t \,.$ (e.g., word triples)

Here, we assume $\{v_t\}_{t=1}^K$ are linearly independent, and $\{\lambda_t\}_{t=1}^K$ are positive.

Suppose we have (estimates of) moments of the form

$$M \ = \ \sum_{t=1}^K v_t \otimes v_t \,,$$
 (e.g., word pairs) and $T \ = \ \sum_{t=1}^K \lambda_t \cdot v_t \otimes v_t \otimes v_t \,.$ (e.g., word triples)

Here, we assume $\{v_t\}_{t=1}^K$ are linearly independent, and $\{\lambda_t\}_{t=1}^K$ are positive.

M is positive semidefinite of rank K.

Suppose we have (estimates of) moments of the form

$$M \ = \ \sum_{t=1}^K v_t \otimes v_t \,,$$
 (e.g., word pairs) and $T \ = \ \sum_{t=1}^K \lambda_t \cdot v_t \otimes v_t \otimes v_t \,.$ (e.g., word triples)

Here, we assume $\{v_t\}_{t=1}^K$ are linearly independent, and $\{\lambda_t\}_{t=1}^K$ are positive.

- ightharpoonup M is positive semidefinite of rank K.
- ▶ M determines inner product system on $\mathrm{span}\,\{v_t\}_{t=1}^K$ s.t. $\{v_t\}_{t=1}^K$ are **orthonormal**:

$$\langle oldsymbol{x}, oldsymbol{y}
angle_M \; \coloneqq \; oldsymbol{x}^ op M^\dagger oldsymbol{y} \, .$$

Suppose we have (estimates of) moments of the form

$$M \ = \ \sum_{t=1}^K v_t \otimes v_t \,,$$
 (e.g., word pairs) and $T \ = \ \sum_{t=1}^K \lambda_t \cdot v_t \otimes v_t \otimes v_t \,.$ (e.g., word triples)

Here, we assume $\{v_t\}_{t=1}^K$ are linearly independent, and $\{\lambda_t\}_{t=1}^K$ are positive.

- M is positive semidefinite of rank K.
- ▶ M determines inner product system on $\mathrm{span}\,\{v_t\}_{t=1}^K$ s.t. $\{v_t\}_{t=1}^K$ are **orthonormal**:

$$\langle oldsymbol{x}, oldsymbol{y}
angle_M \; \coloneqq \; oldsymbol{x}^ op M^\dagger oldsymbol{y} \, .$$

ightharpoonup .: Can assume d=K and $\{v_t\}_{t=1}^d$ are orthonormal. (Similar to PCA; called "whitening" in signal processing context.)

Orthogonally decomposable tensors (d = K)

Goal: Given tensor $T = \sum_{t=1}^d \lambda_t \cdot v_t \otimes v_t \otimes v_t \in \mathbb{R}^{d \times d \times d}$ where:

- $\triangleright \{v_t\}_{t=1}^d$ are orthonormal;
- ightharpoonup all $\lambda_t > 0$;

approximately recover $\{(\boldsymbol{v}_t, \lambda_t)\}_{t=1}^d$.

Exact orthogonally decomposable tensor

(Zhang & Golub, 2001)

Matching moments:

$$\{(\hat{oldsymbol{v}}_t,\hat{\lambda}_t)\}_{t=1}^d := \left. rg\min_{\{(oldsymbol{x}_t,\sigma_t)\}_{t=1}^d} \left\| T - \sum_{t=1}^d \sigma_t \cdot oldsymbol{x}_t \otimes oldsymbol{x}_t \otimes oldsymbol{x}_t \otimes oldsymbol{x}_t
ight\|_F^2 \; .$$

(Here, $\|\cdot\|_F$ is "Frobenius norm", just like for matrices.)

Exact orthogonally decomposable tensor

(Zhang & Golub, 2001)

Matching moments:

$$\{(\hat{oldsymbol{v}}_t,\hat{\lambda}_t)\}_{t=1}^d := \left. rg\min_{\{(oldsymbol{x}_t,\sigma_t)\}_{t=1}^d} \left\| T - \sum_{t=1}^d \sigma_t \cdot oldsymbol{x}_t \otimes oldsymbol{x}_t \otimes oldsymbol{x}_t \otimes oldsymbol{x}_t
ight\|_F^2 \; .$$

(Here, $\|\cdot\|_F$ is "Frobenius norm", just like for matrices.)

- Greedy approach:
 - Find best rank-1 approximation:

$$(\hat{v}, \hat{\lambda}) := \underset{\|\boldsymbol{x}\|=1, \sigma \geq 0}{\arg \min} \|T - \sigma \cdot \boldsymbol{x} \otimes \boldsymbol{x} \otimes \boldsymbol{x}\|_F^2.$$

lackbox "Deflate" $T := T - \hat{\lambda} \cdot \hat{v} \otimes \hat{v} \otimes \hat{v}$ and repeat.

Exact orthogonally decomposable tensor

(Zhang & Golub, 2001)

Matching moments:

$$\{(\hat{m{v}}_t,\hat{\lambda}_t)\}_{t=1}^d := \left. rg\min_{\{(m{x}_t,\sigma_t)\}_{t=1}^d} \left\| T - \sum_{t=1}^d \sigma_t \cdot m{x}_t \otimes m{x}_t \otimes m{x}_t \otimes m{x}_t
ight.
ight.$$

(Here, $\|\cdot\|_F$ is "Frobenius norm", just like for matrices.)

- Greedy approach:
 - Find best rank-1 approximation:

$$\hat{v} := rg \max_{\|oldsymbol{x}\|=1} T(oldsymbol{x}, oldsymbol{x}, oldsymbol{x}) \, , \quad \hat{\lambda} := T(\hat{v}, \hat{v}, \hat{v}) \, .$$

lackbox "Deflate" $T := T - \hat{\lambda} \cdot \hat{v} \otimes \hat{v} \otimes \hat{v}$ and repeat.

Rank-1 approximation problem

Claim: Local maximizers of the function

$$m{x} \mapsto T(m{x}, m{x}, m{x}) = \sum_{i,j,k} T_{i,j,k} \cdot x_i x_j x_k$$

(over the unit ball) are $\{v_t\}_{t=1}^d$, and

$$T(v_t, v_t, v_t) = \lambda_t, \quad t \in [d].$$

Rank-1 approximation problem

Claim: Local maximizers of the function

$$\boldsymbol{x} \mapsto \boldsymbol{T}(\boldsymbol{x}, \boldsymbol{x}, \boldsymbol{x}) = \sum_{i,j,k} T_{i,j,k} \cdot x_i x_j x_k = \sum_{t=1}^{a} \lambda_t \cdot \langle v_t, \boldsymbol{x} \rangle^3$$

(over the unit ball) are $\{oldsymbol{v}_t\}_{t=1}^d$, and

$$T(v_t, v_t, v_t) = \lambda_t, \quad t \in [d].$$

Rank-1 approximation problem

Claim: Local maximizers of the function

$$m{x} \mapsto m{T}(m{x}, m{x}, m{x}) = \sum_{i,j,k} T_{i,j,k} \cdot x_i x_j x_k = \sum_{t=1}^d \lambda_t \cdot \langle v_t, m{x} \rangle^3$$

(over the unit ball) are $\{oldsymbol{v}_t\}_{t=1}^d$, and

$$T(v_t, v_t, v_t) = \lambda_t, \quad t \in [d].$$

Corollary: decomposition of T as $\sum_{t=1}^{K} \lambda_t \cdot v_t^{\otimes 3}$ is unique!

By linearity and orthogonality:

$$T(oldsymbol{v}_t,oldsymbol{v}_t,oldsymbol{v}_t) \,=\, \sum_{s=1}^d (\lambda_s{\cdot}oldsymbol{v}_s^{\otimes 3})(oldsymbol{v}_t,oldsymbol{v}_t,oldsymbol{v}_t)$$

By linearity and orthogonality:

$$T(v_t,v_t,v_t) = \sum_{s=1}^d (\lambda_s \cdot v_s^{\otimes 3})(v_t,v_t,v_t) = \sum_{s=1}^d egin{cases} \lambda_s & ext{if } s=t \ 0 & ext{if } s
eq t \end{cases}$$

By linearity and orthogonality:

$$T(v_t,v_t,v_t) \,=\, \sum_{s=1}^d (\lambda_s \cdot v_s^{\otimes 3})(v_t,v_t,v_t) \,=\, \sum_{s=1}^d egin{cases} \lambda_s & ext{if } s=t \ 0 & ext{if } s
eq t \end{cases} = \, \lambda_t \,.$$

By linearity and orthogonality:

$$T(v_t,v_t,v_t) \,=\, \sum_{s=1}^d (\lambda_s \cdot v_s^{\otimes 3})(v_t,v_t,v_t) \,=\, \sum_{s=1}^d egin{cases} \lambda_s & ext{if } s=t \ 0 & ext{if } s
eq t \end{cases} = \, \lambda_t \,.$$

WLOG assume $v_t = e_t$, so optimization problem is

$$\max_{x \in \mathbb{R}^d} \sum_{t=1}^d \lambda_t x_t^3 \quad \text{s.t.} \quad \sum_{t=1}^d x_t^2 \leq 1 \,.$$

By linearity and orthogonality:

$$T(v_t,v_t,v_t) \,=\, \sum_{s=1}^d (\lambda_s \cdot v_s^{\otimes 3})(v_t,v_t,v_t) \,=\, \sum_{s=1}^d egin{cases} \lambda_s & ext{if } s=t \ 0 & ext{if } s
eq t \end{cases} = \, \lambda_t \,.$$

WLOG assume $v_t=e_t$, so optimization problem is

$$\max_{\boldsymbol{x} \in \mathbb{R}^d} \sum_{t=1}^d \lambda_t x_t^3 \quad \text{s.t.} \quad \sum_{t=1}^d x_t^2 \leq 1 \,.$$

If both x_1 and x_2 are non-zero, then

$$\lambda_1 x_1^3 + \lambda_2 x_2^3 < \lambda_1 x_1^2 + \lambda_2 x_2^2$$

By linearity and orthogonality:

$$T(v_t,v_t,v_t) \,=\, \sum_{s=1}^d (\lambda_s \cdot v_s^{\otimes 3})(v_t,v_t,v_t) \,=\, \sum_{s=1}^d egin{cases} \lambda_s & ext{if } s=t \ 0 & ext{if } s
eq t \end{cases} = \, \lambda_t \,.$$

WLOG assume $v_t = e_t$, so optimization problem is

$$\max_{\boldsymbol{x} \in \mathbb{R}^d} \sum_{t=1}^d \lambda_t x_t^3 \quad \text{s.t.} \quad \sum_{t=1}^d x_t^2 \leq 1 \,.$$

If both x_1 and x_2 are non-zero, then

$$\lambda_1 x_1^3 + \lambda_2 x_2^3 < \lambda_1 x_1^2 + \lambda_2 x_2^2 \le \max\{\lambda_1, \lambda_2\}.$$

By linearity and orthogonality:

$$T(v_t,v_t,v_t) \,=\, \sum_{s=1}^d (\lambda_s \cdot v_s^{\otimes 3})(v_t,v_t,v_t) \,=\, \sum_{s=1}^d egin{cases} \lambda_s & ext{if } s=t \ 0 & ext{if } s
eq t \end{cases} = \, \lambda_t \,.$$

WLOG assume $v_t = e_t$, so optimization problem is

$$\max_{\boldsymbol{x} \in \mathbb{R}^d} \sum_{t=1}^d \lambda_t x_t^3 \quad \text{s.t.} \quad \sum_{t=1}^d x_t^2 \leq 1 \,.$$

If both x_1 and x_2 are non-zero, then

$$\lambda_1 x_1^3 + \lambda_2 x_2^3 < \lambda_1 x_1^2 + \lambda_2 x_2^2 \le \max\{\lambda_1, \lambda_2\}.$$

So better to put all energy on a single coordinate.

 \therefore Local maximizers are e_1, e_2, \dots, e_d .

By linearity and orthogonality:

$$T(v_t,v_t,v_t) \,=\, \sum_{s=1}^d (\lambda_s \cdot v_s^{\otimes 3})(v_t,v_t,v_t) \,=\, \sum_{s=1}^d egin{cases} \lambda_s & ext{if } s=t \ 0 & ext{if } s
eq t \end{cases} = \, \lambda_t \,.$$

WLOG assume $v_t = e_t$, so optimization problem is

$$\max_{x \in \mathbb{R}^d} \sum_{t=1}^d \lambda_t x_t^3 \quad \text{s.t.} \quad \sum_{t=1}^d x_t^2 \le 1 \,.$$

If both x_1 and x_2 are non-zero, then

$$\lambda_1 x_1^3 + \lambda_2 x_2^3 < \lambda_1 x_1^2 + \lambda_2 x_2^2 \le \max\{\lambda_1, \lambda_2\}.$$

So better to put all energy on a single coordinate.

 \therefore Local maximizers are v_1, v_2, \dots, v_d .

Uniqueness of orthogonal decompositions

What we have seen so far:

- 1. When components $\{v_t\}_{t=1}^d$ are linearly independent:
 - Reduce decomposition problem to orthogonal tensor decomposition, where components are orthonormal.

Uniqueness of orthogonal decompositions

What we have seen so far:

- 1. When components $\{v_t\}_{t=1}^d$ are linearly independent:
 - Reduce decomposition problem to orthogonal tensor decomposition, where components are orthonormal.
- 2. For orthogonally decomposable tensors T, local maximizers of the function

$$x \mapsto T(x, x, x)$$

(over the unit ball) are $\{oldsymbol{v}_t\}_{t=1}^d.$

Uniqueness of orthogonal decompositions

What we have seen so far:

- 1. When components $\{v_t\}_{t=1}^d$ are linearly independent:
 - Reduce decomposition problem to orthogonal tensor decomposition, where components are orthonormal.
- 2. For orthogonally decomposable tensors T, local maximizers of the function

$$x \mapsto T(x, x, x)$$

(over the unit ball) are $\{oldsymbol{v}_t\}_{t=1}^d$.

Algorithm: use gradient ascent to find all of the local maximizers, which are exactly \boldsymbol{v}_t .

(Can use "deflation" to remove components from T that you've already found.)

Probabilities of word triples as third-order tensor:

$$T = \sum_{t=1}^{K} w_t \mathbf{P}_t \otimes \mathbf{P}_t \otimes \mathbf{P}_t = \sum_{t=1}^{K} \mathbf{v}_t \otimes \mathbf{v}_t \otimes \mathbf{v}_t$$

for
$$v_t = w_t^{1/3} \boldsymbol{P}_t$$
.

Probabilities of word triples as third-order tensor:

$$T = \sum_{t=1}^{K} w_t \mathbf{P}_t \otimes \mathbf{P}_t \otimes \mathbf{P}_t = \sum_{t=1}^{K} v_t \otimes v_t \otimes v_t$$

for $\boldsymbol{v}_t = w_t^{1/3} \boldsymbol{P}_t$.

lacksquare About linear independence condition on $\{oldsymbol{v}_t\}_{t=1}^K$:

 $\{oldsymbol{v}_t\}_{t=1}^K$ are linearly independent

 $\Leftrightarrow \{P_t\}_{t=1}^K$ are linearly independent and all $w_t > 0$.

Probabilities of word triples as third-order tensor:

$$T = \sum_{t=1}^{K} w_t \mathbf{P}_t \otimes \mathbf{P}_t \otimes \mathbf{P}_t = \sum_{t=1}^{K} v_t \otimes v_t \otimes v_t$$

for $v_t = w_t^{1/3} \boldsymbol{P}_t$.

 \blacktriangleright About linear independence condition on $\{\boldsymbol{v}_t\}_{t=1}^K$:

$$\{v_t\}_{t=1}^K$$
 are linearly independent $\Leftrightarrow \{P_t\}_{t=1}^K$ are linearly independent and all $w_t>0$.

► Can recover $\{P_t\}_{t=1}^K$ from $\{c_t v_t\}_{t=1}^K$ for any $c_t \neq 0$.

Probabilities of word triples as third-order tensor:

$$T = \sum_{t=1}^{K} w_t \mathbf{P}_t \otimes \mathbf{P}_t \otimes \mathbf{P}_t = \sum_{t=1}^{K} v_t \otimes v_t \otimes v_t$$

for $v_t = w_t^{1/3} \boldsymbol{P}_t$.

lacksquare About linear independence condition on $\{oldsymbol{v}_t\}_{t=1}^K$:

$$\{v_t\}_{t=1}^K$$
 are linearly independent $\Leftrightarrow \{P_t\}_{t=1}^K$ are linearly independent and all $w_t>0$.

- ► Can recover $\{P_t\}_{t=1}^K$ from $\{c_t v_t\}_{t=1}^K$ for any $c_t \neq 0$.
- ► Can recover $\{(P_t, w_t)\}_{t=1}^K$ from $\{P_t\}_{t=1}^K$ and T.

36

Recap

Parameters of topic model for single-topic documents (satisfying linear independence condition) can be efficiently recovered from distribution of three-word documents.

Recap

- Parameters of topic model for single-topic documents (satisfying linear independence condition) can be efficiently recovered from distribution of three-word documents.
- ► Two-word documents not sufficient (without further assumptions).

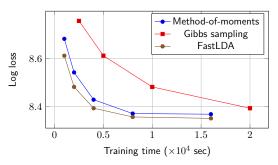
Recap

- Parameters of topic model for single-topic documents (satisfying linear independence condition) can be efficiently recovered from distribution of three-word documents.
- ► Two-word documents not sufficient (without further assumptions).
- Variational characterization of orthogonally decomposable tensors leads to simple and efficient algorithms!

- ► Corpus: 300,000 New York Times articles.
- ▶ Vocabulary size: 102,660 words.
- ▶ Set number of topics K := 50.

Model predictive performance:

 $\approx 4\text{--}8\times$ speed-up over Gibbs sampling for LDA; comparable to "FastLDA" (Porteous, Newman, Ihler, Asuncion, Smyth, & Welling, 2008).



Sample topics: (showing top 10 words for each topic)

Econ.	Baseball	Edu.	Health care	Golf
sales	run	school	drug	player
economic	inning	student	patient	tiger_wood
consumer	hit	teacher	million	won
major	game	program	company	shot
home	season	official	doctor	play
indicator	home	public	companies	round
weekly	right	children	percent	win
order	games	high	cost	tournament
claim	dodger	education	program	tour
scheduled	left	district	health	right

Sample topics: (showing top 10 words for each topic)

Invest.	Election	auto race	Child's Lit.	Afghan War
percent	al_gore	car	book	taliban
stock	campaign	race	children	attack
market	president	driver	ages	afghanistan
fund	george_bush	team	author	official
investor	bush	won	read	military
companies	clinton	win	newspaper	u_s
analyst	vice	racing	web	united_states
money	presidential	track	writer	terrorist
investment	million	season	written	war
economy	democratic	lap	sales	bin

Sample topics: (showing top 10 words for each topic)

Web	Antitrust	TV	Movies	Music
com	court	show	film	music
www	case	network	movie	song
site	law	season	director	group
web	lawyer	nbc	play	part
sites	federal	cb	character	new_york
information	government	program	actor	company
online	decision	television	show	million
mail	trial	series	movies	band
internet	microsoft	night	million	show
telegram	right	new_york	part	album

etc.

Caveat: forming and computing with a third-order tensor T generally requires cubic space.

Caveat: forming and computing with a third-order tensor T generally requires cubic space.

Fortunately, the tensor we often work with is an empirical estimate of a T: e.g.,

$$\widehat{T} = \frac{1}{n} \sum_{i=1}^{n} \operatorname{data}_{i},$$

where $data_i$ is a tensor involving only the i-th data point.

Caveat: forming and computing with a third-order tensor T generally requires cubic space.

Fortunately, the tensor we often work with is an empirical estimate of a T: e.g.,

$$\widehat{T} = \frac{1}{n} \sum_{i=1}^{n} \operatorname{data}_{i},$$

where $data_i$ is a tensor involving only the *i*-th data point.

 $lackbox{ Our algorithms will only involve } \widehat{T} \mbox{ through } evaluations \mbox{ of } \widehat{T}$ at (several) given arguments, say, x,y,z.

Caveat: forming and computing with a third-order tensor T generally requires cubic space.

Fortunately, the tensor we often work with is an empirical estimate of a T: e.g.,

$$\widehat{T} = \frac{1}{n} \sum_{i=1}^{n} \operatorname{data}_{i},$$

where $data_i$ is a tensor involving only the *i*-th data point.

 $lackbox{ Our algorithms will only involve } \widehat{T}$ through evaluations of \widehat{T} at (several) given arguments, say, x,y,z.

By linearity:

$$\widehat{T}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = \frac{1}{n} \sum_{i=1}^{n} \operatorname{data}_{i}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}).$$

Caveat: forming and computing with a third-order tensor T generally requires cubic space.

► Fortunately, the tensor we often work with is an *empirical* estimate of a *T*: e.g.,

$$\widehat{T} = \frac{1}{n} \sum_{i=1}^{n} \operatorname{data}_{i},$$

where $data_i$ is a tensor involving only the *i*-th data point.

 $lackbox{ Our algorithms will only involve } \widehat{T}$ through evaluations of \widehat{T} at (several) given arguments, say, x,y,z.

By linearity:

$$\widehat{T}(oldsymbol{x},oldsymbol{y},oldsymbol{z}) \ = \ rac{1}{n}\sum_{i=1}^n \mathrm{data}_i(oldsymbol{x},oldsymbol{y},oldsymbol{z}) \,.$$

▶ Often: $data_i(x, y, z)$ is easy to compute, even without forming any tensors!

Caveat: forming and computing with a third-order tensor T generally requires cubic space.

Fortunately, the tensor we often work with is an empirical estimate of a T: e.g.,

$$\widehat{T} = \frac{1}{n} \sum_{i=1}^{n} \operatorname{data}_{i},$$

where $data_i$ is a tensor involving only the *i*-th data point.

 $lackbox{ Our algorithms will only involve } \widehat{T}$ through evaluations of \widehat{T} at (several) given arguments, say, x,y,z.

By linearity:

$$\widehat{T}(oldsymbol{x},oldsymbol{y},oldsymbol{z}) \; = \; rac{1}{n} \sum_{i=1}^n \mathrm{data}_i(oldsymbol{x},oldsymbol{y},oldsymbol{z}) \, .$$

▶ Often: $data_i(x, y, z)$ is easy to compute, even without forming any tensors! \longrightarrow Linear time/space algorithms.

- Estimation via method-of-moments:
 - 1. Estimate distribution of three-word documents $\to \widehat{T}$ (empirical moment tensor).
 - 2. Approximately decompose $\widehat{T} \rightarrow \text{estimates } \{(\widehat{P}_t, \hat{w}_t)\}_{t=1}^K$.

- Estimation via method-of-moments:
 - 1. Estimate distribution of three-word documents $\to \widehat{T}$ (empirical moment tensor).
 - 2. Approximately decompose $\widehat{T} \to \text{estimates } \{(\widehat{P}_t, \hat{w}_t)\}_{t=1}^K.$
- Issues:
 - 1. Accuracy of moment estimates?

2. Robustness of (approximate) tensor decomposition?

3. Generality beyond simple topic models?

- Estimation via method-of-moments:
 - 1. Estimate distribution of three-word documents $\to \widehat{T}$ (empirical moment tensor).
 - 2. Approximately decompose $\widehat{T} \rightarrow \text{estimates } \{(\widehat{P}_t, \hat{w}_t)\}_{t=1}^K$.

Issues:

- Accuracy of moment estimates?
 Can more reliably estimate lower-order moments; distribution-specific sample complexity bounds.
- Robustness of (approximate) tensor decomposition?
 In some sense, more stable than matrix eigen-decomposition (Mu, <u>H.</u>, & Goldfarb, 2015)!
- 3. Generality beyond simple topic models?

- Estimation via method-of-moments:
 - 1. Estimate distribution of three-word documents $\to \widehat{T}$ (empirical moment tensor).
 - 2. Approximately decompose $\widehat{T} \rightarrow \text{estimates } \{(\widehat{P}_t, \hat{w}_t)\}_{t=1}^K$.

Issues:

- Accuracy of moment estimates?
 Can more reliably estimate lower-order moments; distribution-specific sample complexity bounds.
- Robustness of (approximate) tensor decomposition?
 In some sense, more stable than matrix eigen-decomposition (Mu, H., & Goldfarb, 2015)!
- 3. *Generality* beyond simple topic models?

Next: Moment decompositions for other models.

2. Moment decompositions for other models

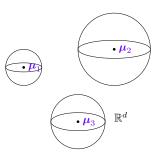
Moment decompositions

Some examples of usable moment decompositions.

- 1. Two classical mixture models.
- 2. Models with multi-view structure.
- 3. Single-index models.

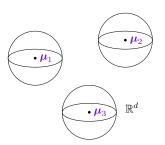
Mixture model #1: Mixtures of spherical Gaussians

$$H \sim \operatorname{Categorical}(\pi_1, \pi_2, \dots, \pi_K)$$
 (hidden);
 $\boldsymbol{X} \mid H = t \sim \operatorname{Normal}(\boldsymbol{\mu}_t, \sigma_t^2 \boldsymbol{I}_d), \quad t \in [K].$



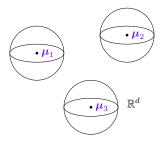
Mixture model #1: Mixtures of spherical Gaussians

$$H \sim \operatorname{Categorical}(\pi_1, \pi_2, \dots, \pi_K)$$
 (hidden); $\boldsymbol{X} \mid H = t \sim \operatorname{Normal}(\boldsymbol{\mu}_t, \sigma^2 \boldsymbol{I}_d), \quad t \in [K].$ (For simplicity, restrict $\sigma_1 = \sigma_2 = \dots = \sigma_K = \sigma$.)



Mixture model #1: Mixtures of spherical Gaussians

$$H \sim \operatorname{Categorical}(\pi_1, \pi_2, \dots, \pi_K)$$
 (hidden); $\boldsymbol{X} \mid H = t \sim \operatorname{Normal}(\boldsymbol{\mu}_t, \sigma^2 \boldsymbol{I}_d), \quad t \in [K].$ (For simplicity, restrict $\sigma_1 = \sigma_2 = \dots = \sigma_K = \sigma$.)



Generative process:

$$X = Y + \sigma Z$$

 $\begin{aligned} &\text{where } \Pr(\boldsymbol{Y} = \boldsymbol{\mu}_t) = \pi_t, \text{ and} \\ &\boldsymbol{Z} \sim \operatorname{Normal}(\boldsymbol{0}, \boldsymbol{I}_d) \quad \text{(indep. of } \boldsymbol{Y}). \end{aligned}$

Using moments for spherical Gaussian mixtures

We'll see two ways to use low-order moments.

Using moments for spherical Gaussian mixtures

We'll see two ways to use low-order moments.

First- and second-order moments:

$$\mathbb{E}(m{X}) \in \mathbb{R}^d$$
 and $\mathbb{E}(m{X} \otimes m{X}) \in \mathbb{R}^{d imes d}$.

Using moments for spherical Gaussian mixtures

We'll see two ways to use low-order moments.

First- and second-order moments:

$$\mathbb{E}(oldsymbol{X}) \in \mathbb{R}^d$$
 and $\mathbb{E}(oldsymbol{X} \otimes oldsymbol{X}) \in \mathbb{R}^{d imes d}$.

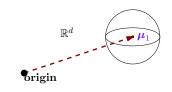
Key fact: k-dimensional PCA subspace (based on $\mathbb{E}(X \otimes X)$) captures as much of overall variance as any other k-dim. subspace.

Key fact: k-dimensional PCA subspace (based on $\mathbb{E}(X \otimes X)$) captures as much of overall variance as any other k-dim. subspace.

K = 1 (just a single Gaussian): What is the 1-dimensional PCA subspace?

Key fact: k-dimensional PCA subspace (based on $\mathbb{E}(X \otimes X)$) captures as much of overall variance as any other k-dim. subspace.

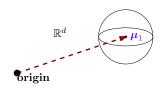
K = 1 (just a single Gaussian): What is the 1-dimensional PCA subspace?



$$\mathbb{E}(\boldsymbol{X}\otimes\boldsymbol{X}) = \boldsymbol{\mu}_1\otimes\boldsymbol{\mu}_1 + \sigma^2\boldsymbol{I}_d.$$

Key fact: k-dimensional PCA subspace (based on $\mathbb{E}(X \otimes X)$) captures as much of overall variance as any other k-dim. subspace.

K = 1 (just a single Gaussian): What is the 1-dimensional PCA subspace?



$$\mathbb{E}(\boldsymbol{X} \otimes \boldsymbol{X}) = \boldsymbol{\mu}_1 \otimes \boldsymbol{\mu}_1 + \sigma^2 \boldsymbol{I}_d.$$

Variance in direction v (with ||v|| = 1):

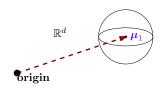
$$oldsymbol{v}^{ op}\, \mathbb{E}(oldsymbol{X} \otimes oldsymbol{X}) oldsymbol{v}$$

48

Proof

Key fact: k-dimensional PCA subspace (based on $\mathbb{E}(X \otimes X)$) captures as much of overall variance as any other k-dim. subspace.

K = 1 (just a single Gaussian): What is the 1-dimensional PCA subspace?



$$\mathbb{E}(\boldsymbol{X} \otimes \boldsymbol{X}) = \boldsymbol{\mu}_1 \otimes \boldsymbol{\mu}_1 + \sigma^2 \boldsymbol{I}_d.$$

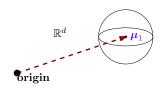
Variance in direction v (with ||v|| = 1):

$$\boldsymbol{v}^{\top} \mathbb{E}(\boldsymbol{X} \otimes \boldsymbol{X}) \boldsymbol{v} = \boldsymbol{v}^{\top} (\boldsymbol{\mu}_{1} \otimes \boldsymbol{\mu}_{1} + \sigma^{2} \boldsymbol{I}_{d}) \boldsymbol{v}$$

Proof

Key fact: k-dimensional PCA subspace (based on $\mathbb{E}(X \otimes X)$) captures as much of overall variance as any other k-dim. subspace.

K = 1 (just a single Gaussian): What is the 1-dimensional PCA subspace?



$$\mathbb{E}(\boldsymbol{X} \otimes \boldsymbol{X}) = \boldsymbol{\mu}_1 \otimes \boldsymbol{\mu}_1 + \sigma^2 \boldsymbol{I}_d.$$

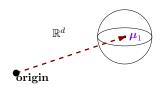
Variance in direction v (with ||v|| = 1):

$$\boldsymbol{v}^{\top} \mathbb{E}(\boldsymbol{X} \otimes \boldsymbol{X}) \boldsymbol{v} = \boldsymbol{v}^{\top} (\boldsymbol{\mu}_{1} \otimes \boldsymbol{\mu}_{1} + \sigma^{2} \boldsymbol{I}_{d}) \boldsymbol{v} = (\boldsymbol{v}^{\top} \boldsymbol{\mu}_{1})^{2} + \sigma^{2}.$$

Proof

Key fact: k-dimensional PCA subspace (based on $\mathbb{E}(X \otimes X)$) captures as much of overall variance as any other k-dim. subspace.

K = 1 (just a single Gaussian): What is the 1-dimensional PCA subspace?



$$\mathbb{E}(\boldsymbol{X}\otimes\boldsymbol{X}) = \boldsymbol{\mu}_1\otimes\boldsymbol{\mu}_1 + \sigma^2\boldsymbol{I}_d.$$

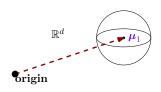
Variance in direction v (with ||v|| = 1):

$$\boldsymbol{v}^{\top} \mathbb{E}(\boldsymbol{X} \otimes \boldsymbol{X}) \boldsymbol{v} = \boldsymbol{v}^{\top} (\boldsymbol{\mu}_{1} \otimes \boldsymbol{\mu}_{1} + \sigma^{2} \boldsymbol{I}_{d}) \boldsymbol{v} = (\boldsymbol{v}^{\top} \boldsymbol{\mu}_{1})^{2} + \sigma^{2}.$$

Best direction (1-dim. PCA subspace): $v = \pm \mu_1/\|\mu_1\|$.

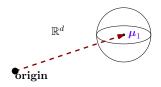
Key fact: k-dimensional PCA subspace (based on $\mathbb{E}(X \otimes X)$) captures as much of overall variance as any other k-dim. subspace.

► K = 1 (just a single Gaussian): What is the k-dimensional PCA subspace?



Key fact: k-dimensional PCA subspace (based on $\mathbb{E}(X \otimes X)$) captures as much of overall variance as any other k-dim. subspace.

► K = 1 (just a single Gaussian): What is the k-dimensional PCA subspace?



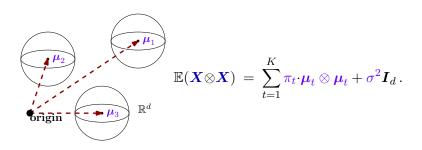
Answer: any k-dim. subspace containing μ_1 .

Key fact: k-dimensional PCA subspace (based on $\mathbb{E}(X \otimes X)$) captures as much of overall variance as any other k-dim. subspace.

▶ General K (mixture of K Gaussians): What is the K-dimensional PCA subspace?

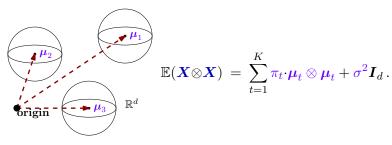
Key fact: k-dimensional PCA subspace (based on $\mathbb{E}(X \otimes X)$) captures as much of overall variance as any other k-dim. subspace.

▶ General K (mixture of K Gaussians): What is the K-dimensional PCA subspace?



Key fact: k-dimensional PCA subspace (based on $\mathbb{E}(X \otimes X)$) captures as much of overall variance as any other k-dim. subspace.

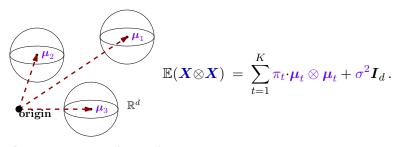
General K (mixture of K Gaussians): What is the K-dimensional PCA subspace?



Answer: any K-dim. subspace containing μ_1, \ldots, μ_K .

Key fact: k-dimensional PCA subspace (based on $\mathbb{E}(X \otimes X)$) captures as much of overall variance as any other k-dim. subspace.

General K (mixture of K Gaussians): What is the K-dimensional PCA subspace?



Answer: any K-dim. subspace containing μ_1, \ldots, μ_K . \square How does this help with learning mixtures of Gaussians?

Separation (Dasgupta, 1999):

standard deviations between component means

$$\mathsf{sep} \; := \; \min_{i \neq j} \frac{\|\boldsymbol{\mu}_i - \boldsymbol{\mu}_j\|}{\sigma} \, .$$

Separation (Dasgupta, 1999):

standard deviations between component means

$$\mathsf{sep} \; := \; \min_{i \neq j} \frac{\|\boldsymbol{\mu}_i - \boldsymbol{\mu}_j\|}{\sigma} \, .$$

Distance-based clustering (e.g., EM) works when ${\sf sep} \gtrsim d^{1/4}$.

Separation (Dasgupta, 1999):

standard deviations between component means

$$\mathsf{sep} \; := \; \min_{i \neq j} \frac{\|\boldsymbol{\mu}_i - \boldsymbol{\mu}_j\|}{\sigma} \, .$$

- ▶ (Dasgupta & Schulman, 2000): Distance-based clustering (e.g., EM) works when $\sup \gtrsim d^{1/4}$.
- Vempala & Wang, 2002): Problem becomes K-dimensional via PCA (assume $K \leq d$). Required separation reduced to $\operatorname{sep} \gtrsim K^{1/4}$.

Separation (Dasgupta, 1999):

standard deviations between component means

$$\mathsf{sep} \; \vcentcolon= \; \min_{i \neq j} \frac{\|\boldsymbol{\mu}_i - \boldsymbol{\mu}_j\|}{\sigma} \, .$$

- ▶ (Dasgupta & Schulman, 2000): Distance-based clustering (e.g., EM) works when $sep \gtrsim d^{1/4}$.
- Vempala & Wang, 2002): Problem becomes K-dimensional via PCA (assume $K \le d$). Required separation reduced to sep $\gtrsim K^{1/4}$.

Third-order moments identify the mixture distribution when $\{\mu_t\}_{t=1}^K$ are lin. indpt.; sep may be arbitrarily close to zero.

Separation (Dasgupta, 1999):

standard deviations between component means

$$\mathsf{sep} \; := \; \min_{i \neq j} \frac{\|\boldsymbol{\mu}_i - \boldsymbol{\mu}_j\|}{\sigma} \, .$$

- ▶ (Dasgupta & Schulman, 2000): Distance-based clustering (e.g., EM) works when $sep \gtrsim d^{1/4}$.
- Vempala & Wang, 2002): Problem becomes K-dimensional via PCA (assume $K \le d$). Required separation reduced to sep $\gtrsim K^{1/4}$.

Third-order moments identify the mixture distribution when $\{\mu_t\}_{t=1}^K$ are lin. indpt.; sep may be arbitrarily close to zero.

(Belkin & Sinha, 2010; Moitra & Valiant, 2010):

General Gaussians & no minimum sep, but Kth-order moments.

Generative process:

$$X = Y + \sigma Z$$

where $\Pr(\boldsymbol{Y} = \boldsymbol{\mu}_t) = \pi_t$, and $\boldsymbol{Z} \sim \operatorname{Normal}(\boldsymbol{0}, \boldsymbol{I}_d)$, $\boldsymbol{Y} \perp \!\!\! \perp \boldsymbol{Z}$.

Third-order moment tensor:

$$\mathbb{E}\left(\boldsymbol{X}^{\otimes 3}\right) = \mathbb{E}\left(\left\{\boldsymbol{Y} + \sigma \boldsymbol{Z}\right\}^{\otimes 3}\right)$$

Generative process:

$$X = Y + \sigma Z$$

where $\Pr(Y = \mu_t) = \pi_t$, and $Z \sim \text{Normal}(\mathbf{0}, I_d)$, $Y \perp \!\!\! \perp Z$.

Third-order moment tensor:

$$\mathbb{E}\left(\boldsymbol{X}^{\otimes 3}\right) = \mathbb{E}\left(\left\{\boldsymbol{Y} + \sigma \boldsymbol{Z}\right\}^{\otimes 3}\right)$$
$$= \mathbb{E}\left(\boldsymbol{Y}^{\otimes 3}\right) + \sigma^{2} \mathbb{E}\left(\boldsymbol{Y} \otimes \boldsymbol{Z} \otimes \boldsymbol{Z} + \boldsymbol{Z} \otimes \boldsymbol{Y} \otimes \boldsymbol{Z} + \boldsymbol{Z} \otimes \boldsymbol{Z} \otimes \boldsymbol{Y}\right)$$

Generative process:

$$X = Y + \sigma Z$$

where $\Pr(Y = \mu_t) = \pi_t$, and $Z \sim \text{Normal}(0, I_d)$, $Y \perp Z$.

Third-order moment tensor:

$$\mathbb{E}\left(\boldsymbol{X}^{\otimes 3}\right) = \mathbb{E}\left(\left\{\boldsymbol{Y} + \sigma \boldsymbol{Z}\right\}^{\otimes 3}\right)$$

$$= \mathbb{E}\left(\boldsymbol{Y}^{\otimes 3}\right) + \sigma^{2} \mathbb{E}\left(\boldsymbol{Y} \otimes \boldsymbol{Z} \otimes \boldsymbol{Z} + \boldsymbol{Z} \otimes \boldsymbol{Y} \otimes \boldsymbol{Z} + \boldsymbol{Z} \otimes \boldsymbol{Z} \otimes \boldsymbol{Y}\right)$$

$$= \sum_{t=1}^{K} \pi_{t} \cdot \boldsymbol{\mu}_{t}^{\otimes 3} + \sigma^{2} \tau(\boldsymbol{\mu}).$$

(Above, $\mu = \mathbb{E}(X)$ and $\tau(\mu)$ is a third-order tensor involving only μ .)

Generative process:

$$X = Y + \sigma Z$$

where $\Pr(Y = \mu_t) = \pi_t$, and $Z \sim \text{Normal}(\mathbf{0}, I_d)$, $Y \perp \!\!\! \perp Z$.

Third-order moment tensor:

$$\mathbb{E}\left(\boldsymbol{X}^{\otimes 3}\right) = \mathbb{E}\left(\left\{\boldsymbol{Y} + \sigma \boldsymbol{Z}\right\}^{\otimes 3}\right)$$

$$= \mathbb{E}\left(\boldsymbol{Y}^{\otimes 3}\right) + \sigma^{2} \mathbb{E}\left(\boldsymbol{Y} \otimes \boldsymbol{Z} \otimes \boldsymbol{Z} + \boldsymbol{Z} \otimes \boldsymbol{Y} \otimes \boldsymbol{Z} + \boldsymbol{Z} \otimes \boldsymbol{Z} \otimes \boldsymbol{Y}\right)$$

$$= \sum_{t=1}^{K} \pi_{t} \cdot \boldsymbol{\mu}_{t}^{\otimes 3} + \sigma^{2} \tau(\boldsymbol{\mu}).$$

(Above, $\mu = \mathbb{E}(X)$ and $\tau(\mu)$ is a third-order tensor involving only μ .)

Exercise: find explicit formula for $\tau(\mu)$.

$$\mathbb{E}\left(\boldsymbol{X}^{\otimes 3}\right) = \sum_{t=1}^{K} \pi_t \cdot \boldsymbol{\mu}_t^{\otimes 3} + \sigma^2 \tau(\boldsymbol{\mu}).$$

$$\mathbb{E}\left(\boldsymbol{X}^{\otimes 3}\right) = \sum_{t=1}^{K} \pi_t \cdot \boldsymbol{\mu}_t^{\otimes 3} + \sigma^2 \tau(\boldsymbol{\mu}).$$

Claim: μ & σ^2 are simple functions of $\mathbb{E}(X)$ & $\mathbb{E}(X \otimes X)$.

$$\mathbb{E}\left(\boldsymbol{X}^{\otimes 3}\right) = \sum_{t=1}^{K} \pi_t \cdot \boldsymbol{\mu}_t^{\otimes 3} + \sigma^2 \tau(\boldsymbol{\mu}).$$

Claim: μ & σ^2 are simple functions of $\mathbb{E}(X)$ & $\mathbb{E}(X \otimes X)$.

Claim: If $\{\mu_t\}_{t=1}^K$ are linearly independent and all $\pi_t>0$, then $\{(\mu_t,\pi_t)\}_{t=1}^K$ are identifiable from

$$T := \mathbb{E}(\boldsymbol{X}^{\otimes 3}) - \sigma^2 \tau(\boldsymbol{\mu}) = \sum_{t=1}^K \pi_t \cdot \boldsymbol{\mu}_t^{\otimes 3}.$$

$$\mathbb{E}\left(\boldsymbol{X}^{\otimes 3}\right) = \sum_{t=1}^{K} \pi_t \cdot \boldsymbol{\mu}_t^{\otimes 3} + \sigma^2 \tau(\boldsymbol{\mu}).$$

Claim: μ & σ^2 are simple functions of $\mathbb{E}(X)$ & $\mathbb{E}(X \otimes X)$.

Claim: If $\{\mu_t\}_{t=1}^K$ are linearly independent and all $\pi_t > 0$, then $\{(\mu_t, \pi_t)\}_{t=1}^K$ are identifiable from

$$T := \mathbb{E}(\mathbf{X}^{\otimes 3}) - \sigma^2 \tau(\boldsymbol{\mu}) = \sum_{t=1}^K \pi_t \cdot \boldsymbol{\mu}_t^{\otimes 3}.$$

Can use tensor decomposition to recover $\{(\mu_t, \pi_t)\}_{t=1}^K$ from T.

Even more Gaussian mixtures

Note: Linear independence condition on $\{\mu_t\}_{t=1}^K$ requires $K \leq d$.

Even more Gaussian mixtures

Note: Linear independence condition on $\{\mu_t\}_{t=1}^K$ requires $K \leq d$.

(Anderson, Belkin, Goyal, Rademacher, & Voss, 2014),
 (Bhaskara, Charikar, Moitra, & Vijayaraghavan, 2014)
 Mixtures of d^{O(1)} Gaussians (w/ simple or known covariance)
 via smoothed analysis and O(1)-order moments.

Even more Gaussian mixtures

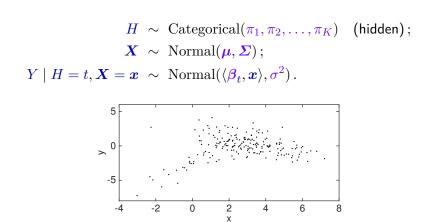
Note: Linear independence condition on $\{\mu_t\}_{t=1}^K$ requires $K \leq d$.

- (Anderson, Belkin, Goyal, Rademacher, & Voss, 2014),
 (Bhaskara, Charikar, Moitra, & Vijayaraghavan, 2014)
 Mixtures of d^{O(1)} Gaussians (w/ simple or known covariance)
 via smoothed analysis and O(1)-order moments.
- ► (Ge, Huang, & Kakade, 2015)
 Also with unknown covariances of arbitrary shape.

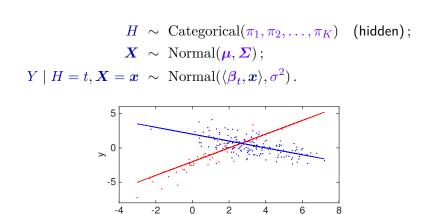
Mixture model #2: Mixtures of linear regressions

$$\begin{split} H \; \sim \; & \mathrm{Categorical}(\pi_1, \pi_2, \dots, \pi_K) \quad \text{(hidden)} \, ; \\ & \boldsymbol{X} \; \sim \; & \mathrm{Normal}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \, ; \\ & Y \mid H = t, \boldsymbol{X} = \boldsymbol{x} \; \sim \; & \mathrm{Normal}(\langle \boldsymbol{\beta}_t, \boldsymbol{x} \rangle, \sigma^2) \, . \end{split}$$

Mixture model #2: Mixtures of linear regressions



Mixture model #2: Mixtures of linear regressions



Second-order moments (assume $X \sim \text{Normal}(0, I_d)$):

$$\mathbb{E}(Y^2 \boldsymbol{X} \boldsymbol{X}^{\top}) = 2 \sum_{t=1}^{K} \pi_t \cdot \boldsymbol{\beta}_t \boldsymbol{\beta}_t^{\top} + \left(\sigma^2 + \sum_{t=1}^{K} \pi_t \cdot \|\boldsymbol{\beta}_t\|^2 \right) \boldsymbol{I}_d.$$

Second-order moments (assume $X \sim \text{Normal}(0, I_d)$):

$$\mathbb{E}(Y^2 \boldsymbol{X} \boldsymbol{X}^{\top}) = 2 \sum_{t=1}^{K} \pi_t \cdot \boldsymbol{\beta}_t \boldsymbol{\beta}_t^{\top} + \left(\sigma^2 + \sum_{t=1}^{K} \pi_t \cdot \|\boldsymbol{\beta}_t\|^2 \right) \boldsymbol{I}_d.$$

▶ Span of top K eigenvectors of $\mathbb{E}(Y^2 X X^\top)$ contains $\{\beta_t\}_{t=1}^K$.

Second-order moments (assume $X \sim \text{Normal}(0, I_d)$):

$$\mathbb{E}(Y^2 \boldsymbol{X} \boldsymbol{X}^{\top}) = 2 \sum_{t=1}^{K} \pi_t \cdot \boldsymbol{\beta}_t \boldsymbol{\beta}_t^{\top} + \left(\sigma^2 + \sum_{t=1}^{K} \pi_t \cdot \|\boldsymbol{\beta}_t\|^2 \right) \boldsymbol{I}_d.$$

- ▶ Span of top K eigenvectors of $\mathbb{E}(Y^2 X X^\top)$ contains $\{\beta_t\}_{t=1}^K$.
- ► Using Stein's identity (1973), similar approach works for GLMs (Sun, Ioannidis, & Montanari, 2013).

Second-order moments (assume $X \sim \text{Normal}(0, I_d)$):

$$\mathbb{E}(Y^2 \boldsymbol{X} \boldsymbol{X}^{\top}) = 2 \sum_{t=1}^{K} \pi_t \cdot \boldsymbol{\beta}_t \boldsymbol{\beta}_t^{\top} + \left(\sigma^2 + \sum_{t=1}^{K} \pi_t \cdot \|\boldsymbol{\beta}_t\|^2 \right) \boldsymbol{I}_d.$$

- ▶ Span of top K eigenvectors of $\mathbb{E}(Y^2 X X^\top)$ contains $\{\beta_t\}_{t=1}^K$.
- ► Using Stein's identity (1973), similar approach works for GLMs (Sun, Ioannidis, & Montanari, 2013).

Tensor decomposition approach:

Can recover parameters $\{(\boldsymbol{\beta}_t, \pi_t)\}_{t=1}^K$ with higher-order moments (Chaganty & Liang, 2013; Yi, Caramanis, & Sanghavi, 2014, 2016).

Second-order moments (assume $X \sim \text{Normal}(0, I_d)$):

$$\mathbb{E}(Y^2\boldsymbol{X}\boldsymbol{X}^\top) \ = \ 2\sum_{t=1}^K \boldsymbol{\pi}_t \cdot \boldsymbol{\beta}_t \boldsymbol{\beta}_t^\top + \left(\boldsymbol{\sigma}^2 + \sum_{t=1}^K \boldsymbol{\pi}_t \cdot \|\boldsymbol{\beta}_t\|^2\right) \boldsymbol{I}_d \,.$$

- ▶ Span of top K eigenvectors of $\mathbb{E}(Y^2 X X^\top)$ contains $\{\beta_t\}_{t=1}^K$.
- ► Using Stein's identity (1973), similar approach works for GLMs (Sun, Ioannidis, & Montanari, 2013).

Tensor decomposition approach:

Can recover parameters $\{(\boldsymbol{\beta}_t, \pi_t)\}_{t=1}^K$ with higher-order moments (Chaganty & Liang, 2013; Yi, Caramanis, & Sanghavi, 2014, 2016).

Also for GLMs, via Stein's identity (Sedghi & Anandkumar, 2014).

Recap: mixtures of Gaussians and linear regressions

Parameters of Gaussian mixture models and related models (satisfying linear independence condition) can be efficiently recovered from O(1)-order moments.

Recap: mixtures of Gaussians and linear regressions

- Parameters of Gaussian mixture models and related models (satisfying linear independence condition) can be efficiently recovered from O(1)-order moments.
- Exploit distributional properties to determine usable moments.

Recap: mixtures of Gaussians and linear regressions

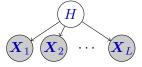
- Parameters of Gaussian mixture models and related models (satisfying linear independence condition) can be efficiently recovered from O(1)-order moments.
- Exploit distributional properties to determine usable moments.
- Smoothed analysis: avoid linear independence condition for "most" mixture distributions.

Recap: mixtures of Gaussians and linear regressions

- Parameters of Gaussian mixture models and related models (satisfying linear independence condition) can be efficiently recovered from O(1)-order moments.
- Exploit distributional properties to determine usable moments.
- Smoothed analysis: avoid linear independence condition for "most" mixture distributions.

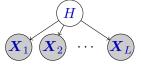
Next: Multi-view approach to finding usable moments.

Recall: Topic model for single-topic documents



K topics (dists. over words) $\{P_t\}_{t=1}^K$. Pick topic H=t with prob. w_t (hidden). Word tokens $X_1, X_2, \ldots, X_L \overset{\text{ind}}{\sim} P_H$.

Recall: Topic model for single-topic documents

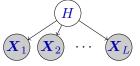


K topics (dists. over words) $\{P_t\}_{t=1}^K$. Pick topic H=t with prob. w_t (hidden). Word tokens $X_1, X_2, \ldots, X_L \overset{\text{id}}{\sim} P_H$.

Key property:

 X_1, X_2, \ldots, X_L conditionally independent given H.

Recall: Topic model for single-topic documents



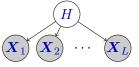
K topics (dists. over words) $\{P_t\}_{t=1}^K$. Pick topic H=t with prob. w_t (hidden). Word tokens $X_1, X_2, \ldots, X_L \overset{\text{ind}}{\sim} P_H$.

Key property:

 X_1, X_2, \dots, X_L conditionally independent given H.

Each word token X_i provides new "view" of hidden variable H.

Recall: Topic model for single-topic documents



K topics (dists. over words) $\{P_t\}_{t=1}^K$. Pick topic H=t with prob. w_t (hidden). Word tokens $X_1, X_2, \ldots, X_L \overset{\text{ind}}{\sim} P_H$.

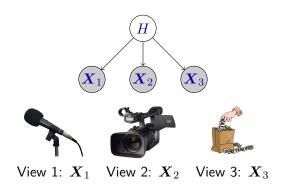
Key property:

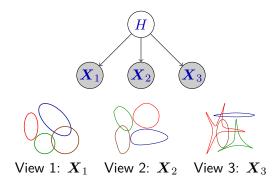
 X_1, X_2, \dots, X_L conditionally independent given H.

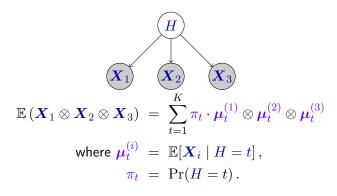
Each word token X_i provides new "view" of hidden variable H.

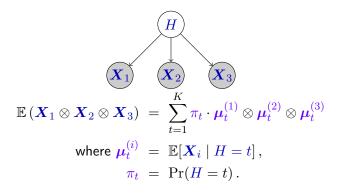
Some previous analyses:

- (Blum & Mitchell, 1998)Co-training in semi-supervised learning.
- (Chaudhuri, Kakade, Livescu, & Sridharan, 2009) Multi-view Gaussian mixture models.









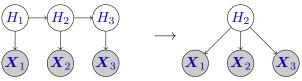
Tensor decomposition approach works in this asymmetric case as long as $\{\mu_t^{(j)}\}_{t=1}^K$ are lin. indpt. for each j, and all $\pi_t > 0$.

(Mossel & Roch, 2006; Anandkumar, <u>H.</u>, & Kakade, 2012)

Mixtures of high-dimensional product distributions.
 (E.g., mixtures of axis-aligned Gaussians, other topic models.)

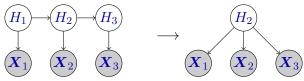
(Mossel & Roch, 2006; Anandkumar, H., & Kakade, 2012)

- Mixtures of high-dimensional product distributions.
 (E.g., mixtures of axis-aligned Gaussians, other topic models.)
- 2. Hidden Markov models.



(Mossel & Roch, 2006; Anandkumar, H., & Kakade, 2012)

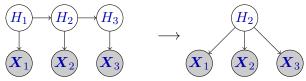
- Mixtures of high-dimensional product distributions.
 (E.g., mixtures of axis-aligned Gaussians, other topic models.)
- 2. Hidden Markov models.



- 3. Phylogenetic trees.
 - \triangleright X_1, X_2, X_3 : genes of three extant species.
 - ▶ *H*: LCA of most closely related pair of species.

(Mossel & Roch, 2006; Anandkumar, H., & Kakade, 2012)

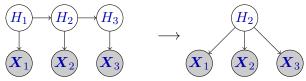
- Mixtures of high-dimensional product distributions.
 (E.g., mixtures of axis-aligned Gaussians, other topic models.)
- 2. Hidden Markov models.



- Phylogenetic trees.
 - \triangleright X_1, X_2, X_3 : genes of three extant species.
 - ▶ *H*: LCA of most closely related pair of species.
- 4. . . .

(Mossel & Roch, 2006; Anandkumar, H., & Kakade, 2012)

- Mixtures of high-dimensional product distributions.
 (E.g., mixtures of axis-aligned Gaussians, other topic models.)
- 2. Hidden Markov models.



- Phylogenetic trees.
 - \triangleright X_1, X_2, X_3 : genes of three extant species.
 - ► *H*: LCA of most closely related pair of species.
- 4. . . .

Next: Single index models.

$$m{X} \sim \operatorname{Normal}(\mathbf{0}, m{I});$$

 $Y \mid m{X} = m{x} \sim \operatorname{Normal}(g(\langle m{\beta}, m{x} \rangle), \sigma^2).$

Here, $g \colon \mathbb{R} \to \mathbb{R}$ is the *link function*.

$$m{X} \sim \operatorname{Normal}(\mathbf{0}, m{I});$$

 $Y \mid m{X} = m{x} \sim \operatorname{Normal}(g(\langle m{\beta}, m{x} \rangle), \sigma^2).$

Here, $g: \mathbb{R} \to \mathbb{R}$ is the *link function*.

- **Phase retrieval** (real signals): assume $g(z) = z^2$.
- ▶ **1-bit compressed sensing**: assume g(z) = sign(z).
- ▶ **Isotonic regression**: assume g is monotone (e.g., $g' \ge 0$).
- **Convex regression**: assume g is convex (e.g., $g'' \ge 0$).
- **•** ...

$$m{X} \sim \operatorname{Normal}(\mathbf{0}, m{I});$$

 $Y \mid m{X} = m{x} \sim \operatorname{Normal}(g(\langle m{eta}, m{x} \rangle), \sigma^2).$

Here, $g: \mathbb{R} \to \mathbb{R}$ is the *link function*.

- **Phase retrieval** (real signals): assume $g(z) = z^2$.
- ▶ **1-bit compressed sensing**: assume g(z) = sign(z).
- ▶ **Isotonic regression**: assume g is monotone (e.g., $g' \ge 0$).
- **Convex regression**: assume g is convex (e.g., $g'' \ge 0$).

When g is unknown, model is generally called **single-index model**.

$$m{X} \sim \operatorname{Normal}(\mathbf{0}, m{I});$$

 $Y \mid m{X} = m{x} \sim \operatorname{Normal}(g(\langle m{\beta}, m{x} \rangle), \sigma^2).$

Here, $g: \mathbb{R} \to \mathbb{R}$ is the *link function*.

- **Phase retrieval** (real signals): assume $g(z) = z^2$.
- ▶ **1-bit compressed sensing**: assume g(z) = sign(z).
- ▶ **Isotonic regression**: assume g is monotone (e.g., $g' \ge 0$).
- **Convex regression**: assume g is convex (e.g., $g'' \ge 0$).

When g is unknown, model is generally called **single-index model**.

Semi-parametric estimation: regard g as nuisance parameter; focus on estimating β .

Aside: symmetric tensors and homogeneous polynomials

Recall formula for tensor function value:

$$T(\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(p)}) = \sum_{i_1,\ldots,i_p} T_{i_1,\ldots,i_p} \cdot x_{i_1}^{(1)} \cdots x_{i_p}^{(p)}.$$

Aside: symmetric tensors and homogeneous polynomials

Recall formula for tensor function value:

$$T(\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(p)}) = \sum_{i_1,\ldots,i_p} T_{i_1,\ldots,i_p} \cdot x_{i_1}^{(1)} \cdots x_{i_p}^{(p)}.$$

If T is symmetric (i.e., $T_{i_1,\dots,i_p}=T_{\pi(i_1),\dots,\pi(i_p)}$ for any permutation π), then evaluating at $\boldsymbol{x}^{(1)}=\dots=\boldsymbol{x}^{(p)}=\boldsymbol{x}$ gives

$$T(\boldsymbol{x},\ldots,\boldsymbol{x}) = c_p \sum_{i_1 \leq \cdots \leq i_p} T_{i_1,\ldots,i_p} \cdot x_{i_1} \cdots x_{i_p},$$

which is just the formula for a degree- $\!p\!$ homogeneous polynomial.

Aside: symmetric tensors and homogeneous polynomials

Recall formula for tensor function value:

$$T(\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(p)}) = \sum_{i_1,\ldots,i_p} T_{i_1,\ldots,i_p} \cdot x_{i_1}^{(1)} \cdots x_{i_p}^{(p)}.$$

If T is symmetric (i.e., $T_{i_1,\dots,i_p}=T_{\pi(i_1),\dots,\pi(i_p)}$ for any permutation π), then evaluating at $\boldsymbol{x}^{(1)}=\dots=\boldsymbol{x}^{(p)}=\boldsymbol{x}$ gives

$$T(\boldsymbol{x},\ldots,\boldsymbol{x}) = c_p \sum_{i_1 \leq \cdots \leq i_p} T_{i_1,\ldots,i_p} \cdot x_{i_1} \cdots x_{i_p},$$

which is just the formula for a degree-p homogeneous polynomial.

p-th order symmetric tensors \simeq degree-p homogeneous polynomials.

Using orthogonal polynomials

(Dudeja & <u>H.</u>, 2018)

Let $H_p \colon \mathbb{R} \to \mathbb{R}$ denote the degree-p Hermite polynomial.

Assume (for $Z \sim \text{Normal}(0, 1)$):

- $ightharpoonup \mathbb{E}[g(Z)^2] = 1$ (normalization—this is WLOG);
- ▶ $\mathbb{E}[g'(Z)^2] \ge \epsilon$ (necessary for identifiability);
- g is smooth and $\mathbb{E}[g''(Z)^2] = O(1)$.

Using orthogonal polynomials (Dudeja & H., 2018)

Let $H_p \colon \mathbb{R} \to \mathbb{R}$ denote the degree-p Hermite polynomial.

Assume (for $Z \sim \text{Normal}(0, 1)$):

- $ightharpoonup \mathbb{E}[g(Z)^2] = 1$ (normalization—this is WLOG);
- ▶ $\mathbb{E}[g'(Z)^2] \ge \epsilon$ (necessary for identifiability);
- g is smooth and $\mathbb{E}[g''(Z)^2] = O(1)$.

There exists $p = O(1/\epsilon)$ such that

$$\mathbb{E}[YH_p(\langle \boldsymbol{v}, \boldsymbol{X} \rangle)] = (\lambda \boldsymbol{\beta}^{\otimes p})(\boldsymbol{v}), \quad \boldsymbol{v} \in \mathbb{R}^d$$

for some $\lambda \neq 0$ with $|\lambda| = \Omega(\epsilon/\sqrt{p})$.

Using orthogonal polynomials (Dudeja & H., 2018)

Let $H_p \colon \mathbb{R} \to \mathbb{R}$ denote the degree-p Hermite polynomial.

Assume (for $Z \sim \text{Normal}(0, 1)$):

- ▶ $\mathbb{E}[g(Z)^2] = 1$ (normalization—this is WLOG);
- ▶ $\mathbb{E}[g'(Z)^2] \ge \epsilon$ (necessary for identifiability);
- g is smooth and $\mathbb{E}[g''(Z)^2] = O(1)$.

There exists $p = O(1/\epsilon)$ such that

$$\mathbb{E}[YH_p(\langle \boldsymbol{v}, \boldsymbol{X} \rangle)] = (\lambda \boldsymbol{\beta}^{\otimes p})(\boldsymbol{v}), \quad \boldsymbol{v} \in \mathbb{R}^d$$

for some $\lambda \neq 0$ with $|\lambda| = \Omega(\epsilon/\sqrt{p})$.

 \Rightarrow Get efficient algorithms for semi-parametric estimation of single-index model parameters, for very general link functions.

Recap

Parameters of many latent variable models (satisfying non-degeneracy conditions) can be efficiently recovered from O(1)-order moments.

Recap

- Parameters of many latent variable models (satisfying non-degeneracy conditions) can be efficiently recovered from O(1)-order moments.
- ► Exploit distributional properties, multi-view structure, and other structure to determine usable moments.

Recap

- Parameters of many latent variable models (satisfying non-degeneracy conditions) can be efficiently recovered from O(1)-order moments.
- Exploit distributional properties, multi-view structure, and other structure to determine usable moments.
- Estimation via method-of-moments:
 - 1. Estimate moments \rightarrow empirical moment tensor \widehat{T} .
 - 2. Approximately decompose $\widehat{T} \rightarrow \text{parameter estimate } \widehat{\pmb{\theta}}.$

3. Error analysis

Moment estimates

Estimation of $\mathbb{E}[\boldsymbol{X}^{\otimes 3}]$ (say) from iid sample $\{\boldsymbol{x}_i\}_{i=1}^n$:

$$\widehat{\mathbb{E}}[\boldsymbol{X}^{\otimes 3}] := \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}^{\otimes 3}.$$

Moment estimates

Estimation of $\mathbb{E}[\boldsymbol{X}^{\otimes 3}]$ (say) from iid sample $\{\boldsymbol{x}_i\}_{i=1}^n$:

$$\widehat{\mathbb{E}}[\boldsymbol{X}^{\otimes 3}] := \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}^{\otimes 3}.$$

Inevitably expect error of order $n^{-1/2}$ in some norm, e.g.,

$$\begin{split} \|T\| \;&:=\; \sup_{\|x\|=\|y\|=\|z\|=1} T(x,y,z) \quad \text{(injective/"spectral" norm)}\,, \\ \|T\|_F \;&:=\; \left(\sum_{i,j,k} T_{i,j,k}^2\right)^{1/2} \quad \text{(Frobenius norm)}\,. \end{split}$$

Nearly orthogonally decomposable tensor

(Mu, H., & Goldfarb, 2015)

Let
$$\varepsilon = \| \boldsymbol{E} \|$$
 for $\boldsymbol{E} := \widehat{\boldsymbol{T}} - \boldsymbol{T}$.

Claim: Let
$$\hat{v} := rg \max_{\|x\|=1} \widehat{T}(x,x,x)$$
 and $\hat{\lambda} := \widehat{T}(\hat{v},\hat{v},\hat{v})$.

Then

$$|\hat{\lambda} - \lambda_t| \leq \varepsilon, \qquad \|\hat{v} - v_t\| \leq O\left(\frac{\varepsilon}{\lambda_t} + \left(\frac{\varepsilon}{\lambda_t}\right)^2\right)$$

for some $t \in [d]$ with $\lambda_t \geq \max_{t'} \lambda_{t'} - 2\varepsilon$.

Nearly orthogonally decomposable tensor

(Mu, H., & Goldfarb, 2015)

Let
$$\varepsilon = || \mathbf{\underline{E}} ||$$
 for $\mathbf{\underline{E}} := \widehat{T} - T$.

Claim: Let
$$\hat{v} := rg \max_{\|m{x}\|=1} \widehat{T}(m{x}, m{x}, m{x})$$
 and $\hat{\lambda} := \widehat{T}(\hat{v}, \hat{v}, \hat{v})$.

Then

$$|\hat{\lambda} - \lambda_t| \leq \varepsilon, \qquad \|\hat{v} - v_t\| \leq O\left(\frac{\varepsilon}{\lambda_t} + \left(\frac{\varepsilon}{\lambda_t}\right)^2\right)$$

for some $t \in [d]$ with $\lambda_t \geq \max_{t'} \lambda_{t'} - 2\varepsilon$.

Many efficient algorithms for solving this approximately, when ε is small enough, like 1/d or $1/\sqrt{d}$ (e.g., Anandkumar, Ge, <u>H.</u>, Kakade, & Telgarsky, 2014; Ma, Shi, & Steurer, 2016).

Recall: greedy decomposition

(Zhang & Golub, 2001)

Matching moments:

$$\{(\hat{oldsymbol{v}}_t,\hat{\lambda}_t)\}_{t=1}^d := \left. rg \min_{\{(oldsymbol{x}_t,\sigma_t)\}_{t=1}^d} \left\| T - \sum_{t=1}^d \sigma_t \cdot oldsymbol{x}_t \otimes oldsymbol{x}_t \otimes oldsymbol{x}_t \otimes oldsymbol{x}_t
ight\|_F^2 \; .$$

Recall: greedy decomposition

(Zhang & Golub, 2001)

Matching moments:

$$\{(\hat{oldsymbol{v}}_t,\hat{\lambda}_t)\}_{t=1}^d := \left. rg\min_{\{(oldsymbol{x}_t,\sigma_t)\}_{t=1}^d} \left\| T - \sum_{t=1}^d \sigma_t \cdot oldsymbol{x}_t \otimes oldsymbol{x}_t \otimes oldsymbol{x}_t \otimes oldsymbol{x}_t
ight\|_F^2 \,.$$

- Greedy approach:
 - ► Find best rank-1 approximation:

$$(\hat{v}, \hat{\lambda}) := \underset{\|\boldsymbol{x}\|=1, \sigma \geq 0}{\arg \min} \|T - \sigma \cdot \boldsymbol{x} \otimes \boldsymbol{x} \otimes \boldsymbol{x}\|_F^2.$$

 $lackbox{ iny "Deflate" } T := T - \hat{\lambda} \cdot \hat{v} \otimes \hat{v} \otimes \hat{v} ext{ and repeat.}$

Recall: greedy decomposition

(Zhang & Golub, 2001)

Matching moments:

$$\{(\hat{oldsymbol{v}}_t,\hat{\lambda}_t)\}_{t=1}^d := \left. rg\min_{\{(oldsymbol{x}_t,\sigma_t)\}_{t=1}^d} \left\| T - \sum_{t=1}^d \sigma_t \cdot oldsymbol{x}_t \otimes oldsymbol{x}_t \otimes oldsymbol{x}_t \otimes oldsymbol{x}_t
ight\|_F^2 \,.$$

- Greedy approach:
 - Find best rank-1 approximation:

$$\hat{v} \ \coloneqq rg \max_{\|oldsymbol{x}\|=1} T(oldsymbol{x}, oldsymbol{x}, oldsymbol{x}) \,, \quad \hat{\lambda} \ \coloneqq \ T(\hat{v}, \hat{v}, \hat{v}) \,.$$

lackbox "Deflate" $T := T - \hat{\lambda} \cdot \hat{v} \otimes \hat{v} \otimes \hat{v}$ and repeat.

Errors from deflation

(For simplicity, assume $\lambda_t = 1$ for all t, so $T = \sum_t v_t^{\otimes 3}$.)

First greedy step:

Rank-1 approx. $\hat{v}_1^{\otimes 3}$ to \hat{T} satisfies $\|\hat{v}_1 - v_1\| \leq arepsilon$ (say).

Errors from deflation

(For simplicity, assume $\lambda_t=1$ for all t, so $T=\sum_t v_t^{\otimes 3}$.)

First greedy step:

Rank-1 approx. $\hat{m{v}}_1^{\otimes 3}$ to $\hat{m{T}}$ satisfies $\|\hat{m{v}}_1 - m{v}_1\| \leq arepsilon$ (say).

Deflation: To find next v_t , use

$$\begin{split} \widehat{T} - \widehat{v}_1^{\otimes 3} &= T + \underline{E} - \widehat{v}_1^{\otimes 3} \\ &= \sum_{t=2}^d v_t^{\otimes 3} + \underline{E} + \left(v_1^{\otimes 3} - \widehat{v}_1^{\otimes 3} \right). \end{split}$$

Errors from deflation

(For simplicity, assume $\lambda_t = 1$ for all t, so $T = \sum_t v_t^{\otimes 3}$.)

First greedy step:

Rank-1 approx. $\hat{v}_1^{\otimes 3}$ to \widehat{T} satisfies $\|\hat{v}_1 - v_1\| \leq \varepsilon$ (say).

Deflation: To find next v_t , use

$$egin{array}{ll} \widehat{m{T}} - \hat{m{v}}_1^{\otimes 3} &=& m{T} + m{E} - \hat{m{v}}_1^{\otimes 3} \ &=& \sum_{t=\mathbf{2}}^d m{v}_t^{\otimes 3} + m{E} + \left(m{v}_1^{\otimes 3} - \hat{m{v}}_1^{\otimes 3}
ight). \end{array}$$

Now error seems to have doubled (i.e., of size 2ε) . . .

For any unit vector x orthogonal to v_1 :

$$\left\|\frac{1}{3}\nabla_{\boldsymbol{x}}\left\{\left(\boldsymbol{v}_{1}^{\otimes3}-\hat{\boldsymbol{v}}_{1}^{\otimes3}\right)(\boldsymbol{x},\boldsymbol{x},\boldsymbol{x})\right\}\right\| \;\; = \;\; \left\|\langle\boldsymbol{v}_{1},\boldsymbol{x}\rangle^{2}\boldsymbol{v}_{1}-\langle\hat{\boldsymbol{v}}_{1},\boldsymbol{x}\rangle^{2}\hat{\boldsymbol{v}}_{1}\right\|$$

For any unit vector x orthogonal to v_1 :

$$\left\| \frac{1}{3} \nabla_{\boldsymbol{x}} \left\{ \left(\boldsymbol{v}_{1}^{\otimes 3} - \hat{\boldsymbol{v}}_{1}^{\otimes 3} \right) (\boldsymbol{x}, \boldsymbol{x}, \boldsymbol{x}) \right\} \right\| = \left\| \langle \boldsymbol{v}_{1}, \boldsymbol{x} \rangle^{2} \boldsymbol{v}_{1} - \langle \hat{\boldsymbol{v}}_{1}, \boldsymbol{x} \rangle^{2} \hat{\boldsymbol{v}}_{1} \right\|$$

$$= \langle \hat{\boldsymbol{v}}_{1}, \boldsymbol{x} \rangle^{2}$$

For any unit vector x orthogonal to v_1 :

$$\left\| \frac{1}{3} \nabla_{\boldsymbol{x}} \left\{ \left(\boldsymbol{v}_{1}^{\otimes 3} - \hat{\boldsymbol{v}}_{1}^{\otimes 3} \right) (\boldsymbol{x}, \boldsymbol{x}, \boldsymbol{x}) \right\} \right\| = \left\| \langle \boldsymbol{v}_{1}, \boldsymbol{x} \rangle^{2} \boldsymbol{v}_{1} - \langle \hat{\boldsymbol{v}}_{1}, \boldsymbol{x} \rangle^{2} \hat{\boldsymbol{v}}_{1} \right\| \\
= \langle \hat{\boldsymbol{v}}_{1}, \boldsymbol{x} \rangle^{2} \\
\leq \left\| \boldsymbol{v}_{1} - \hat{\boldsymbol{v}}_{1} \right\|^{2} \leq \varepsilon^{2}.$$

For any unit vector x orthogonal to v_1 :

$$\left\| \frac{1}{3} \nabla_{\boldsymbol{x}} \left\{ \left(\boldsymbol{v}_{1}^{\otimes 3} - \hat{\boldsymbol{v}}_{1}^{\otimes 3} \right) (\boldsymbol{x}, \boldsymbol{x}, \boldsymbol{x}) \right\} \right\| = \left\| \langle \boldsymbol{v}_{1}, \boldsymbol{x} \rangle^{2} \boldsymbol{v}_{1} - \langle \hat{\boldsymbol{v}}_{1}, \boldsymbol{x} \rangle^{2} \hat{\boldsymbol{v}}_{1} \right\| \\
= \langle \hat{\boldsymbol{v}}_{1}, \boldsymbol{x} \rangle^{2} \\
\leq \left\| \boldsymbol{v}_{1} - \hat{\boldsymbol{v}}_{1} \right\|^{2} \leq \varepsilon^{2}.$$

So effect of errors (original and from deflation) $\boldsymbol{E} + \left(v_1^{\otimes 3} - \hat{v}_1^{\otimes 3}\right)$ in directions orthogonal to v_1 is $(1+o(1))\varepsilon$ rather than 2ε .

For any unit vector x orthogonal to v_1 :

$$\left\| \frac{1}{3} \nabla_{\boldsymbol{x}} \left\{ \left(\boldsymbol{v}_{1}^{\otimes 3} - \hat{\boldsymbol{v}}_{1}^{\otimes 3} \right) (\boldsymbol{x}, \boldsymbol{x}, \boldsymbol{x}) \right\} \right\| = \left\| \langle \boldsymbol{v}_{1}, \boldsymbol{x} \rangle^{2} \boldsymbol{v}_{1} - \langle \hat{\boldsymbol{v}}_{1}, \boldsymbol{x} \rangle^{2} \hat{\boldsymbol{v}}_{1} \right\| \\
= \langle \hat{\boldsymbol{v}}_{1}, \boldsymbol{x} \rangle^{2} \\
\leq \left\| \boldsymbol{v}_{1} - \hat{\boldsymbol{v}}_{1} \right\|^{2} \leq \varepsilon^{2}.$$

So effect of errors (original and from deflation) $E + (v_1^{\otimes 3} - \hat{v}_1^{\otimes 3})$ in directions orthogonal to v_1 is $(1 + o(1))\varepsilon$ rather than 2ε .

lacktriangle Deflation errors have lower-order effect on finding other v_t . (Analogous statement for deflation with matrices does not hold.)

Summary

- Using method-of-moments with low-order moments, can efficiently estimate parameters for many models.
 - Exploit distributional properties, multi-view structure, and other structure to determine usable moments tensors.
 - Some efficient algorithms for carrying out the tensor decomposition to obtain parameter estimates.

Summary

- Using method-of-moments with low-order moments, can efficiently estimate parameters for many models.
 - Exploit distributional properties, multi-view structure, and other structure to determine usable moments tensors.
 - Some efficient algorithms for carrying out the tensor decomposition to obtain parameter estimates.
- Many issues to resolve!
 - Handle model misspecification, increase robustness.
 - General methodology.
 - Incorporate general prior knowledge and interactive feedback.

Acknowledgements

Collaborators: Anima Anandkumar (Caltech), Rishabh Dudeja (Columbia), Dean Foster (Amazon), Rong Ge (Duke), Don Goldfarb (Columbia), Sham Kakade (UW), Percy Liang (Stanford), Yi-Kai Liu (NIST), Cun Mu (Jet), Matus Telgarsky (UIUC), Tong Zhang (Tencent)

Further reading:

Anandkumar, Ge, H., Kakade, & Telgarsky. Tensor decompositions for learning latent variable models. Journal of Machine Learning Research, 15(Aug):2773–2831, 2014. https://goo.gl/F8HudN

