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Problem

» Irreducible, aperiodic, time-homogeneous Markov chain
X1—>X2—>X3—>~~
» There is a unique stationary distribution 7 with
lim L(X¢ | X1 =x) = 7w, forallxe X.
t—00
» The mixing time tmiy is the earliest time t with
sup [I£(Xe | X1 = x) — 7l < 1/4.
xeX
Problem:
Given 0 € (0,1) and Xj.¢, determine non-trivial /; C [0, oo] with

P(tmix € 1) > 1—96.
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Observable deviation bounds from mixing time bounds?

Suppose an estimator fmix = fmix(X1:t) of tmix satisfies:
P(tmix < fmix +5t) > 1-94.
Then with probability at least 1 — 26,

1o = [ [ (Emix + 1) log(1/9)
EZf(x,-)—wa < o<\/ . )

i=1

But fmix is computed from Xi.;, so ¢; may also depend on tmiy.

Deviation bounds for point estimators are insufficient.
Need (observable) confidence intervals for tpix.
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1. Shift focus to relaxation time t,ax to enable spectral methods.

2. Lower/upper bounds on sample path length for point
estimation of tejax.

3. New algorithm for constructing confidence intervals for t,ejay.
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Relaxation time

» Let P be the transition operator of the Markov chain,
and let \, be its second-largest eigenvalue modulus

(i.e., largest eigenvalue modulus other than 1).

» Spectral gap: v =1 — A,
Relaxation time: trejax = 1/7x-

(trelax - ]-) In2 < tmix < trelax In —

*
for m, 1= mingex 7(x).

Assumptions on P ensure 7,, m, € (0,1).

Spectral approach: construct Cl's for 7, and 7.
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2. Upper bound:
Simple algorithm estimates 7, and 7, within a constant
multiplicative factor (w.h.p.) with sample path of length

5<'°g‘j> (For 1), 5('°gd> (for 7).

T Y% Tx Y

But point estimator 7 confidence interval.
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Our results (confidence intervals)

3. New algorithm: Given ¢ € (0,1) and Xj.+ as input,
constructs intervals I/ and I/ such that

IF’(W*GI;’*) > 1—¢§ and IP’(W*EIZF*) > 1-9.

Widths of intervals converge a.s. to zero at 4/ bg;'%“ rate.

4. Hybrid approach: Use new algorithm to turn error bounds for
point estimators into observable Cl's.

(This improves asymptotic rate for m, interval.)
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Plug-in estimator
» Reversibility grants the symmetry of

M = diag(m)P = {Px;ur(X1=x, X2 =)}

x,x'eX
(doublet state probabilities in stationary chain).

» Moreover, eigenvalues of
L = diag(m)"Y?M diag(m) /2
are real, and satisfy
1 =X > X > > X > -1,

Yx = 1-— max{)\g, |)\d|} .

» Plug-in estimator: estimate 7 and M from Xi.; (using
empirical frequencies), then plug-in to formula for ~,.
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Chicken-and-egg problem

(Matrix) Chernoff bound (for Markov chains) gives error bounds for
estimates of m and M (and ultimately of L and ~,): e.g., w.h.p.,

log(d) log(t/m.)
VTxt

Be =7l < IL=L| < O \/

This has inverse dependence on 7.

Can't “solve the bound” for ~,

(unlike “empirical Bernstein” inequalities).
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Direct estimation of P
Alternative: directly estimate P from Xi.;.

» Key advantage: observable confidence intervals for P via
“empirical Bernstein” inequality for martingales.

Two problems:

1. Without appealing to symmetry structure, can argue
IP=Pl < e = R—nl < 00,
but this implies exponential slow-down in rate.

2. Direct appeal to symmetry structure of
L = diag(m)Y/?P diag(mw) /2
gives bounds that depend on 7, which is unknown.

Our approach:
Directly estimate P, and indirectly estimate 7 via P.
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Indirect estimation of 7

1. We ensure that P is transition operator for an ergodic chain
(easy via Laplace smoothing).

2. Key step: estimate 7 via P via group inverse A# of | — P.

» A% contains “virtually everything that one would want to know
about the chain” [with transition operator P] (Meyer, 1975).

» Reveals unique stationary distribution # w.r.t. P
This is our indirect estimate of .

» Tells us how to bound ||# — 7| in terms of ||P — P||.
Hence, from this, we construct a confidence interval for .
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Overall algorithm (outline)

1. Form empirical estimate and confidence intervals for P
(exploit Markov property & “empirical Bernstein"-type bounds).

2. Form estimate and confidence intervals for 7

-~

(via group inverse of | — P).

3. Form estimate and confidence interval for 7,
(via confidence intervals for m and P, & eigenvalue perturbation theory).
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Recap and future work

» We resolve “chicken-and-egg” problem of observable
confidence intervals for mixing time from a single sample path.

» Strongly exploit Markov property and ergodicity in confidence
intervals for P and .

» Problem #1: close gap between lower and upper bounds on
sample path length (for point estimation).

» Problem #2: overcome computational bottlenecks from
matrix operations.

» Problem #3: handle large/continuous state spaces under
suitable assumptions.

Thanks!
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