On the sample complexity of
parameter estimation in logistic
regression with normal design




Data model for noisy binary classification

* (X,Y) ~ P,: covariate vector X ~ ; binary response Y
1
_ ) — d _
PrW(Y—yIX—x)—l_I_e_y(x’W), vx € R4 ye{—1,1}
"logistic regression” L
//
y /
* Parameter w € R /

* Estimation goal: Given i.i.d. sample from P, (w* unknown),
construct estimate 1w such that
w—-wr|| <e

How large should the sample size be?



Clues from classical asymptotic theory?

* Maximum likelihood estimator gi\1/1en data (x;, v;)i=

= arg minz ln(l + e‘yi(xi'w>)
w

i=1| MLE may not exist!

e Asymptotically (as n = o),

dist.
V(i = w*) =S N(0,7(w*) 1)
* Very roughly: »
IEH — W*H — \/d/n Dependence on |[|[w*||? l

e "Conclusion": sample complexity is d/e? ???



Learning half-spaces Vi

* As ||[w*|| = oo, response Y is determined by X:
Y = sign({X, 67))
where 8* = w*/||lw*||

* PAC learning homogeneous half-spaces under X ~ Uniform(Sd_l)

* Long (1995, 2003): sample complexity is d/ (cf. d/c?)
* ... to guarantee classification error rate <
* ... which is proportional to parameter error || — 67|

* AKA "1-bit compressed sensing"



Question

* What is the role of [|[w™][?
e Fix ||[w*|| = 2, and only consider estimating 6* = w*/||w*|| € S¢~1
* [7is akin to signal-to-noise ratio, also called inverse temperature

1
P (Y =11 X = =
o+ ( | x) 1+ exp(—f(x,0*))

e No signal (f = 0): hopeless
* No noise ([ = ): PAC learning half-spaces
* Revised goal: Given i.i.d. sample from P; 4+ for some unknown 6~

construct estimate ¢ such that
10 =07 < ¢



Main result

« Sample complexity* to ensure || — 8" || < € (in expectation or w.h.p.):

[ d
- iff<s1 "high temperature"
. d .
n*(d, e, ) = < — if 1 < < 1/¢ "moderate temperature”
d - 1 1"
_ ifl/e < low temperature
\

*up to logarithmic factors ind and 1/



Logistic loss

* Logistic loss (i.e., negative log-likelihood of Ber(/(x, ¢)) on (x,y)):
(0;x,y) = ln(l 4+ e FYix, >)

* Excess risk with logistic loss:
E[£(0;X,Y) — £(6%; X,Y)] = E[KL(Ber(5(X, 6*))||Ber(5(X, 0)))]

. — very good estimates of expected KL divergence



Sample complexity lower bound

* To use Fano's inequality, suffices to prove good upper bound on

E[KL(Ber(5(X, 0*))[|Ber(5(X, /)))]

* High temp (/ < 1): textbook exercise

d
n*(d, e, ) = 2

* Moderate temp (1 < / < 1/¢): not well-known?

d
Tl*(d, 6,,8) = F

* Low temp (1/¢ < [/): unclear how to get tight bound with Fano

l Instead, extend Long's 1995 lower bound for p=cotoall = 1/El




Sample complexity upper bound

* Three different estimators, depending on temperature

e High temp (/ < 1): minimize average linear loss (Servedio, 1999: "Average" algorithm)

n
Also: Plan & Vershynin (2012)J = arg minz: —yi{x;, 0)
| gesd-1

i=1
* Moderate or low temp (1 < [/): minimize average RelLU loss

n
Inspired by Kuchelmeister . minzmax{o e O)) >
& van de Geer (2023) B egsd—l - » —Yi\Xi)
L=

* Lowtemp (1/¢ < [): minimize average 0-1 loss

gesd-1

n
= arg minz 1{y;{x;,0) < 0}
i=1



What we couldn't get to work

* Minimize average logistic loss (i.e., MLE)
* Taylor-expand the estimation error (Portnoy, 1988; He & Shao, 2000; ...)
» Use self-concordance of logistic loss (Bach, 2010; Ostrovskii & Bach, 2021)

* Our attempts gave suboptimal depegdence on
vy



Recap and open problems

* Two "change points" in sample complexity for logistic regression

n*(d,c,f)

[ d
> iff<s1 "high temperature"
d .
— if1 S [ < 1/¢ "moderate temperature"

d .
_ ifl/e < "low temperature”

\
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Learning noisy half-spaces Vi

e (Distribution-free) agnostic PAC learning half-spaces

* VC theory: To ensure < ¢ excess classification error rate
err( ) —err(67) <
sample complexity is at most d(1/¢ + err(6*)/e?) (up to logs)

* But we want guarantee about parameter error |0 — 67|

* Canrelatein low temp (1/¢ < [7) regime, but unclear otherwise
 Useful fact: err(6*) =1/ whenf = 1



Bregman divergence

1 [ ]
1+e~N’

* Bernoulli distribution Ber(n) has "mean parameter" g’'(n) =

* g(n) =In(1 + eM) is log partition function; g’ is its derivative

* KL between Bernoulli distributions as Bergman divergence:
KL(Ber(n*)||Ber(m) = g(m) —gm™) — g’ M) —n*)
* Whenn™ = f(X,0%)andn = f(X,0)and X ~
E[KL(Ber(5(X,0*))||Ber(5(X,0)))]
= [ Elg' (B(X,0"))(X,0 — 67)]



RelLU loss

* Nice observation of Kuchelmeister and van de Geer (2023):
In(1 + e/7%0)) = ReLU(=fy(x,6)) + In(1 + e~/ 1t=0))

* (Scaled) excess risk with ReLU loss = excess risk with logistic loss
* Uses spherical symmetry of N(0,/,;)
e Caveat: optimization over the sphere

2 2




Adaptivity

* If 7 is unknown: suffices to coarsely distinguish "high temp" (/ < 1)
and "medium or low temp" (1 < /) regimes
* Estimate classification error rate of 6~
* Can use training error rate of ERM (with zero-one loss) on dataset of size d/
* Based on outcome, decide whether to use linear loss or ReLU loss on full data
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