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Data model for noisy binary classification

• 𝑋, 𝑌 ∼ 𝑃!:  covariate vector 𝑋 ∼ N 0, 𝐼" ; binary response 𝑌

Pr! 𝑌 = 𝑦 ∣ 𝑋 = 𝑥 =
1

1 + 𝑒#$ %,! , ∀𝑥 ∈ ℝ" , 𝑦 ∈ −1,1

• Parameter 𝑤 ∈ ℝ"

• Estimation goal: Given i.i.d. sample from 𝑃!⋆  (𝑤⋆ unknown), 
construct estimate 7𝑤 such that

7𝑤 − 𝑤⋆ ≤ 𝜖
How large should the sample size be?
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Clues from classical asymptotic theory?

• Maximum likelihood estimator given data 𝑥( , 𝑦( ()*
+

7𝑤mle = arg	min
!

B
()*

+

ln 1 + 𝑒#$"⟨%",!⟩

• Asymptotically (as 𝑛 → ∞),

𝑛 7𝑤mle − 𝑤
⋆ dist.

N 0, ℐ 𝑤⋆ #*

• Very roughly:
𝔼 7𝑤mle − 𝑤

⋆ → 𝑑/𝑛
• "Conclusion": sample complexity is 𝑑/𝜖.   ???
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Learning half-spaces

• As 𝑤⋆ → ∞, response 𝑌 is determined by 𝑋:
𝑌 = sign 𝑋, 𝜃⋆

where 𝜃⋆ = 𝑤⋆/ 𝑤⋆

• PAC learning homogeneous half-spaces under 𝑋 ∼ Uniform 𝑆"#*

• Long (1995, 2003): sample complexity is 𝑑/𝜖 (cf. 𝑑/𝜖.)
• … to guarantee classification error rate ≤ 𝜖
• … which is proportional to parameter error ‖ $𝜃 − 𝜃⋆‖

• AKA "1-bit compressed sensing"
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Question

• What is the role of ‖𝑤⋆‖?
• Fix 𝑤⋆ = 𝛽, and only consider estimating 𝜃⋆ = 𝑤⋆/‖𝑤⋆‖ ∈ 𝑆"#$
• 𝛽 is akin to signal-to-noise ratio, also called inverse temperature

Pr%&⋆ 𝑌 = 1 ∣ 𝑋 = 𝑥 =
1

1 + exp −𝛽 𝑥, 𝜃⋆
• No signal (𝛽 = 0): hopeless
• No noise (𝛽 = ∞): PAC learning half-spaces

• Revised goal: Given i.i.d. sample from 𝑃/0⋆  for some unknown 𝜃⋆, 
construct estimate T𝜃 such that

‖ T𝜃 − 𝜃⋆‖ ≤ 𝜖
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Main result

• Sample complexity* to ensure ‖ T𝜃 − 𝜃⋆‖ ≤ 𝜖 (in expectation or w.h.p.):

*up to logarithmic factors in 𝑑 and 1/𝜖

𝑛∗ 𝑑, 𝜖, 𝛽 ≍

𝑑
𝛽.𝜖.
𝑑
𝛽𝜖.
𝑑
𝜖

if	𝛽 ≲ 1

if	1 ≲ 𝛽 ≲ 1/𝜖

if	1/𝜖 ≲ 𝛽

"high temperature"

"moderate temperature"

"low temperature"
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Logistic loss

• Logistic loss (i.e., negative log-likelihood of Ber(𝛽 𝑥, 𝜃 ) on 𝑥, 𝑦 ):
ℓ 𝜃; 𝑥, 𝑦 = ln 1 + 𝑒#/$ %,0

• Excess risk with logistic loss:
𝔼 ℓ 𝜃; 𝑋, 𝑌 − ℓ 𝜃⋆; 𝑋, 𝑌 = 𝔼 KL Ber 𝛽 𝑋, 𝜃⋆ ‖Ber 𝛽 𝑋, 𝜃

• Normal design ⟶ very good estimates of expected KL divergence
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Sample complexity lower bound

• To use Fano's inequality, suffices to prove good upper bound on
𝔼 KL Ber 𝛽 𝑋, 𝜃⋆ ‖Ber 𝛽 𝑋, 𝜃

• High temp (𝛽 ≲ 1): textbook exercise

𝑛∗ 𝑑, 𝜖, 𝛽 ≳
𝑑

𝛽(𝜖(

• Moderate temp (1 ≲ 𝛽 ≲ 1/𝜖): not well-known?

𝑛∗ 𝑑, 𝜖, 𝛽 ≳
𝑑
𝛽𝜖(

• Low temp (1/𝜖 ≲ 𝛽): unclear how to get tight bound with Fano
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Sample complexity upper bound

• Three different estimators, depending on temperature
• High temp (𝛽 ≲ 1): minimize average linear loss (Servedio, 1999: "Average" algorithm)

5𝜃 = arg	min
!∈#!"#

?
$%&

'

−𝑦$ 𝑥$, 𝜃

• Moderate or low temp (1 ≲ 𝛽): minimize average ReLU loss

5𝜃 = arg	min
!∈#!"#

?
$%&

'

max 0,−𝑦$ 𝑥$, 𝜃

• Low temp (1/𝜖 ≲ 𝛽): minimize average 0-1 loss

5𝜃 = arg	min
!∈#!"#

?
$%&

'

1 𝑦$ 𝑥$, 𝜃 ≤ 0
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What we couldn't get to work

• Minimize average logistic loss (i.e., MLE)
• Taylor-expand the estimation error (Portnoy, 1988; He & Shao, 2000; …)
• Use self-concordance of logistic loss (Bach, 2010; Ostrovskii & Bach, 2021)
• Our attempts gave suboptimal dependence on 𝛽 

😓
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Recap and open problems

• Two "change points" in sample complexity for logistic regression

• Q: Efficient algorithms? MLE? Estimation of ‖𝑤⋆‖?

𝑛∗ 𝑑, 𝜖, 𝛽 ≍

𝑑
𝛽.𝜖.
𝑑
𝛽𝜖.
𝑑
𝜖

if	𝛽 ≲ 1

if	1 ≲ 𝛽 ≲ 1/𝜖

if	1/𝜖 ≲ 𝛽

"high temperature"

"moderate temperature"

"low temperature"
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Learning noisy half-spaces

• (Distribution-free) agnostic PAC learning half-spaces
• VC theory: To ensure ≤ 𝜖 excess classification error rate

err T𝜃 − err 𝜃⋆ ≤ 𝜖
sample complexity is at most 𝑑 1/𝜖 + err 𝜃⋆ /𝜖.  (up to logs)
• But we want guarantee about parameter error ‖ T𝜃 − 𝜃⋆‖
• Can relate in low temp (1/𝜖 ≲ 𝛽) regime, but unclear otherwise
• Useful fact: err 𝜃⋆ ≍ 1/𝛽 when 𝛽 ≳ 1
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Bregman divergence

• Bernoulli distribution Ber(𝜂) has "mean parameter" 𝑔H 𝜂 = *
*IJ#$

;
• 𝑔 𝜂 = ln 1 + 𝑒)  is log partition function; 𝑔* is its derivative

• KL between Bernoulli distributions as Bergman divergence:
KL Ber 𝜂⋆ ‖Ber 𝜂 = 𝑔 𝜂 − 𝑔 𝜂⋆ − 𝑔H 𝜂⋆ 𝜂 − 𝜂⋆

• When 𝜂⋆ = 𝛽 𝑋, 𝜃⋆  and 𝜂 = 𝛽 𝑋, 𝜃  and 𝑋 ∼ N 0, 𝐼" :
𝔼 KL Ber 𝛽 𝑋, 𝜃⋆ ‖Ber 𝛽 𝑋, 𝜃
= 𝛽	𝔼 𝑔H 𝛽 𝑋, 𝜃⋆ ⟨𝑋, 𝜃 − 𝜃⋆⟩
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ReLU loss

• Nice observation of Kuchelmeister and van de Geer (2023):
ln 1 + 𝑒#/$ %,0 = ReLU −𝛽𝑦 𝑥, 𝜃 + ln 1 + 𝑒#/ %,0

• (Scaled) excess risk with ReLU loss = excess risk with logistic loss
• Uses spherical symmetry of N 0, 𝐼"
• Caveat: optimization over the sphere
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Adaptivity

• If 𝜷 is unknown: suffices to coarsely distinguish "high temp" (𝛽 ≲ 1) 
and "medium or low temp" (1 ≲ 𝛽) regimes
• Estimate classification error rate of 𝜃⋆
• Can use training error rate of ERM (with zero-one loss) on dataset of size 𝑑/𝜖
• Based on outcome, decide whether to use linear loss or ReLU loss on full data
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