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Abstract

Suppose an n × d design matrix in a linear regression problem is given, but the
response for each point is hidden unless explicitly requested. The goal is to sample
only a small number k � n of the responses, and then produce a weight vector
whose sum of squares loss over all points is at most 1 + ε times the minimum.
When k is very small (e.g., k = d), jointly sampling diverse subsets of points
is crucial. One such method called volume sampling has a unique and desirable
property that the weight vector it produces is an unbiased estimate of the optimum.
It is therefore natural to ask if this method offers the optimal unbiased estimate in
terms of the number of responses k needed to achieve a 1 + ε loss approximation.
Surprisingly we show that volume sampling can have poor behavior when we
require a very accurate approximation – indeed worse than some i.i.d. sampling
techniques whose estimates are biased, such as leverage score sampling. We then
develop a new rescaled variant of volume sampling that produces an unbiased
estimate which avoids this bad behavior and has at least as good a tail bound as
leverage score sampling: sample size k = O(d log d+ d/ε) suffices to guarantee
total loss at most 1 + ε times the minimum with high probability. Thus we improve
on the best previously known sample size for an unbiased estimator, k = O(d2/ε).
Our rescaling procedure leads to a new efficient algorithm for volume sampling
which is based on a determinantal rejection sampling technique with potentially
broader applications to determinantal point processes. Other contributions include
introducing the combinatorics needed for rescaled volume sampling and developing
tail bounds for sums of dependent random matrices which arise in the process.

1 Introduction

Consider a linear regression problem where the input points in Rd are provided, but the associated
response for each point is withheld unless explicitly requested. The goal is to sample the responses
for just a small subset of inputs, and then produce a weight vector whose total square loss on all n
points is at most 1 + ε times that of the optimum.1 This scenario is relevant in many applications
where data points are cheap to obtain but responses are expensive. Surprisingly, with the aid of
having all input points available, such multiplicative loss bounds are achievable without any range
dependence on the points or responses common in on-line learning [see, e.g., 8].

A natural and intuitive approach to this problem is volume sampling, since it prefers “diverse” sets of
points that will likely result in a weight vector with low total loss, regardless of what the corresponding
responses turn out to be [11]. Volume sampling is closely related to optimal design criteria [18, 26],
which are appropriate under statistical models of the responses; here we study a worst-case setting
where the algorithm must use randomization to guard itself against worst-case responses.

1The total loss being 1 + ε times the optimum is the same as the regret being ε times the optimum.
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Volume sampling and related determinantal point processes are employed in many machine learning
and statistical contexts, including linear regression [11, 13, 26], clustering and matrix approxima-
tion [4, 14, 15], summarization and information retrieval [19, 23, 24], and fairness [6, 7]. The
availability of fast algorithms for volume sampling [11, 26] has made it an important technique in the
algorithmic toolbox alongside i.i.d. leverage score sampling [17] and spectral sparsification [5, 25].

It is therefore surprising that using volume sampling in the context of linear regression, as suggested
in previous works [11, 26], may lead to suboptimal performance. We construct an example in which,
even after sampling up to half of the responses, the loss of the weight vector from volume sampling
is a fixed factor >1 larger than the minimum loss. Indeed, this poor behavior arises because for
any sample size >d, the marginal probabilities from volume sampling are a mixture of uniform
probabilities and leverage score probabilities, and uniform sampling is well-known to be suboptimal
when the leverage scores are highly non-uniform.

Figure 1: Plots of the total loss for the sam-
pling methods (averaged over 100 runs) ver-
sus sample size (shading is standard error) for
the libsvm dataset cpusmall [9].

A possible recourse is to abandon volume sampling in
favor of leverage score sampling [17, 33]. However,
all i.i.d. sampling methods, including leverage score
sampling, suffer from a coupon collector problem that
prevents their effective use at small sample sizes [13].
Moreover, the resulting weight vectors are biased
(when regarded as estimators for the least squares
solution based on all responses). This is a nuisance
when averaging multiple solutions (e.g., as produced
in distributed settings). In contrast, volume sampling
offers multiplicative loss bounds even with sample
sizes as small as d and it is the only known non-trivial
method that gives unbiased weight vectors [11].

We develop a new solution, called leveraged volume sampling, that retains the aforementioned benefits
of volume sampling while avoiding its flaws. Specifically, we propose a variant of volume sampling
based on rescaling the input points to “correct” the resulting marginals. On the algorithmic side, this
leads to a new determinantal rejection sampling procedure which offers significant computational
advantages over existing volume sampling algorithms, while at the same time being strikingly simple
to implement. We prove that this new sampling scheme retains the benefits of volume sampling (like
unbiasedness) but avoids the bad behavior demonstrated in our lower bound example. Along the
way, we prove a new generalization of the Cauchy-Binet formula, which is needed for the rejection
sampling denominator. Finally, we develop a new method for proving matrix tail bounds for leveraged
volume sampling. Our analysis shows that the unbiased least-squares estimator constructed this way
achieves a 1 + ε approximation factor from a sample of size O(d log d+ d/ε), addressing an open
question posed by [11].

Experiments. Figure 1 presents experimental evidence on a benchmark dataset (cpusmall from the
libsvm collection [9]) that the potential bad behavior of volume sampling proven in our lower bound
does occur in practice. Appendix E shows more datasets and a detailed discussion of the experiments.
In summary, leveraged volume sampling avoids the bad behavior of standard volume sampling, and
performs considerably better than leverage score sampling, especially for small sample sizes k.

Related work. Despite the ubiquity of volume sampling in many contexts already mentioned above,
it has only recently been analyzed for linear regression. Focusing on small sample sizes, [11] proved
multiplicative bounds for the expected loss of size k = d volume sampling. Because the estimators
produced by volume sampling are unbiased, averaging a number of such estimators produced an
estimator based on a sample of size k = O(d2/ε) with expected loss at most 1 + ε times the optimum.
It was shown in [13] that if the responses are assumed to be linear functions of the input points
plus white noise, then size k = O(d/ε) volume sampling suffices for obtaining the same expected
bounds. These noise assumptions on the response vector are also central to the task of A-optimal
design, where volume sampling is a key technique [2, 18, 28, 29]. All of these previous results were
concerned with bounds that hold in expectation; it is natural to ask if similar (or better) bounds can
also be shown to hold with high probability, without noise assumptions. Concentration bounds for
volume sampling and other strong Rayleigh measures were studied in [30], but these results are not
sufficient to obtain the tail bounds for volume sampling.
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Other techniques applicable to our linear regression problem include leverage score sampling [17]
and spectral sparsification [5, 25]. Leverage score sampling is an i.i.d. sampling procedure which
achieves tail bounds matching the ones we obtain here for leveraged volume sampling, however it
produces biased weight vectors and experimental results (see [13] and Appendix E) show that it
has weaker performance for small sample sizes. A different and more elaborate sampling technique
based on spectral sparsification [5, 25] was recently shown to be effective for linear regression [10],
however this method also does not produce unbiased estimates, which is a primary concern of this
paper and desirable in many settings. Unbiasedness seems to require delicate control of the sampling
probabilities, which we achieve using determinantal rejection sampling.

Outline and contributions. We set up our task of subsampling for linear regression in the next
section and present our lower bound for standard volume sampling. A new variant of rescaled volume
sampling is introduced in Section 3. We develop techniques for proving matrix expectation formulas
for this variant which show that for any rescaling the weight vector produced for the subproblem is
unbiased.

Next, we show that when rescaling with leverage scores, then a new algorithm based on rejection
sampling is surprisingly efficient (Section 4): Other than the preprocessing step of computing leverage
scores, the runtime does not depend on n (a major improvement over existing volume sampling
algorithms). Then, in Section 4.1 we prove multiplicative loss bounds for leveraged volume sampling
by establishing two important properties which are hard to prove for joint sampling procedures. We
conclude in Section 5 with an open problem and with a discussion of how rescaling with approximate
leverage scores gives further time improvements for constructing an unbiased estimator.

2 Volume sampling for linear regression

In this section, we describe our linear regression setting, and review the guarantees that standard
volume sampling offers in this context. Then, we present a surprising lower bound which shows that
under worst-case data, this method can exhibit undesirable behavior.

2.1 Setting

Suppose the learner is given n input vectors x1, . . . ,xn ∈ Rd, which are arranged as the rows of an
n × d input matrix X. Each input vector xi has an associated response variable yi ∈ R from the
response vector y ∈ Rn. The goal of the learner is to find a weight vector w ∈ Rd that minimizes
the square loss:

w∗
def
= argmin

w∈Rd
L(w), where L(w)

def
=

n∑
i=1

(x>i w − yi)2 = ‖Xw − y‖2.

Given both matrix X and vector y, the least squares solution can be directly computed as w∗ = X+y,
where X+ is the pseudo-inverse. Throughout the paper we assume w.l.o.g. that X has (full) rank d.2

In our setting, the learner is initially given the entire input matrix X, while response vector y remains
hidden. The learner is then allowed to select a subset S of row indices in [n] = {1, . . . , n} for
which the corresponding responses yi are revealed. The learner next constructs an estimate ŵ of w∗
using matrix X and the partial vector of observed responses. Finally, the learner is evaluated by the
loss over all rows of X (including the ones with unobserved responses), and the goal is to obtain a
multiplicative loss bound, i.e., that for some ε > 0,

L(ŵ) ≤ (1 + ε)L(w∗).

2.2 Standard volume sampling

Given X ∈ Rn×d and a size k ≥ d, standard volume sampling jointly chooses a set S of k indices in
[n] with probability

Pr(S) =
det(X>SXS)(

n−d
k−d
)

det(X>X)
,

2Otherwise just reduce X to a subset of independent columns. Also assume X has no rows of all zeros (every
weight vector has the same loss on such rows, so they can be removed).
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where XS is the submatrix of the rows from X indexed by the set S. The learner then obtains
the responses yi, for i ∈ S, and uses the optimum solution w∗S = (XS)+yS for the subproblem
(XS ,yS) as its weight vector. The sampling procedure can be performed using reverse iterative
sampling (shown on the right), which, if carefully implemented, takes O(nd2) time (see [11, 13]).

Reverse iterative sampling
VolumeSample(X, k) :
S ← [n]

while |S| > k

∀i∈S : qi←
det(X>S\iXS\i)

det(X>
S
XS)

Sample i ∝ qi out of S
S ← S\{i}

end
return S

The key property (unique to volume sampling) is that the subsam-
pled estimator w∗S is unbiased, i.e.

E[w∗S ] = w∗, where w∗ = argmin
w

L(w).

As discussed in [11], this property has important practical implica-
tions in distributed settings: Mixtures of unbiased estimators remain
unbiased (and can conveniently be used to reduce variance). Also
if the rows of X are in general position, then for volume sampling

E
[
(X>SXS)−1

]
=
n− d+ 1

k − d+ 1
(X>X)−1. (1)

This is important because in A-optimal design bounding tr((X>SXS)−1) is the main concern. Given
these direct connections of volume sampling to linear regression, it is natural to ask whether this
distribution achieves a loss bound of (1 + ε) times the optimum for small sample sizes k.

2.3 Lower bound for standard volume sampling

We show that standard volume sampling cannot guarantee 1 + ε multiplicative loss bounds on some
instances, unless over half of the rows are chosen to be in the subsample.

Theorem 1 Let (X,y) be an n× d least squares problem, such that

X =


Id×d
γ Id×d

...
γ Id×d

 , y =


1d
0d
...
0d

 , where γ > 0.

Let w∗S = (XS)+yS be obtained from size k volume sampling for (X,y). Then,

lim
γ→0

E[L(w∗S)]

L(w∗)
≥ 1 +

n− k
n− d

, (2)

and there is a γ > 0 such that for any k ≤ n
2 ,

Pr

(
L(w∗S) ≥

(
1 +

1

2

)
L(w∗)

)
>

1

4
. (3)

Proof In Appendix A we show (2), and that for the chosen (X,y) we have L(w∗)=
∑d
i=1(1− li)

(see (8)), where li = x>i (X>X)−1xi is the i-th leverage score of X. Here, we show (3). The
marginal probability of the i-th row under volume sampling (as given by [12]) is

Pr(i ∈ S) = θ li + (1− θ) 1 = 1− θ (1− li), where θ =
n− k
n− d

. (4)

Next, we bound the probability that all of the first d input vectors were selected by volume sampling:

Pr
(
[d] ⊆ S

) (∗)
≤

d∏
i=1

Pr(i ∈ S) =

d∏
i=1

(
1− n− k

n− d
(1− li)

)
≤ exp

(
− n− k
n− d

∑d
i=1(1−li)︷ ︸︸ ︷
L(w∗)

)
,

where (∗) follows from negative associativity of volume sampling (see [26]). If for some i ∈ [d] we
have i 6∈ S, then L(w∗S) ≥ 1. So for γ such that L(w∗) = 2

3 and any k ≤ n
2 :

Pr

(
L(w∗S) ≥

(
1 +

1

2

) 2/3︷ ︸︸ ︷
L(w∗)

)
≥ 1− exp

(
− n− k
n− d

· 2

3

)
≥ 1− exp

(
− 1

2
· 2

3

)
>

1

4
.

Note that this lower bound only makes use of the negative associativity of volume sampling and the
form of the marginals. However the tail bounds we prove in Section 4.1 rely on more subtle properties
of volume sampling. We begin by creating a variant of volume sampling with rescaled marginals.
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3 Rescaled volume sampling

Given any size k ≥ d, our goal is to jointly sample k row indices π1, . . . , πk with replacement
(instead of a subset S of [n] of size k, we get a sequence π ∈ [n]k). The second difference to standard
volume sampling is that we rescale the i-th row (and response) by 1√

qi
, where q = (q1, ..., qn) is any

discrete distribution over the set of row indices [n], such that
∑n
i=1 qi = 1 and qi > 0 for all i ∈ [n].

We now define q-rescaled size k volume sampling as a joint sampling distribution over π ∈ [n]k, s.t.

q-rescaled size k volume sampling: Pr(π) ∼ det
( k∑
i=1

1

qπi
xπix

>
πi

) k∏
i=1

qπi . (5)

Using the following rescaling matrix Qπ
def
=
∑|π|
i=1

1
qπi

eπie
>
πi ∈ Rn×n, we rewrite the determinant

as det(X>QπX). As in standard volume sampling, the normalization factor in rescaled volume
sampling can be given in a closed form through a novel extension of the Cauchy-Binet formula (proof
in Appendix B.1).

Proposition 2 For any X ∈ Rn×d, k ≥ d and q1, . . . , qn > 0, such that
∑n
i=1 qi = 1, we have∑

π∈[n]k

det(X>QπX)

k∏
i=1

qπi = k(k−1) · · · (k−d+1) det(X>X).

Given a matrix X ∈ Rn×d, vector y ∈ Rn and a sequence π ∈ [n]k, we are interested in a least-
squares problem (Q

1/2
π X,Q

1/2
π y), which selects instances indexed by π, and rescales each of them

by the corresponding 1/
√
qi. This leads to a natural subsampled least squares estimator

w∗π = argmin
w

k∑
i=1

1

qπi

(
x>πiw − yπi

)2
= (Q

1/2
π X)+Q

1/2
π y.

The key property of standard volume sampling is that the subsampled least-squares estimator is
unbiased. Surprisingly this property is retained for any q-rescaled volume sampling (proof in Section
3.1). As we shall see, this will give us great leeway for choosing q to optimize our algorithms.

Theorem 3 Given a full rank X ∈ Rn×d and a response vector y ∈ Rn, for any q as above, if π is
sampled according to (5), then

E[w∗π] = w∗, where w∗ = argmin
w

‖Xw − y‖2.

The matrix expectation equation (1) for standard volume sampling (discussed in Section 2) has a
natural extension to any rescaled volume sampling, but now the equality turns into an inequality
(proof in Appendix B.2):

Theorem 4 Given a full rank X ∈ Rn×d and any q as above, if π is sampled according to (5), then

E
[
(X>QπX)−1

]
� 1

k−d+1
(X>X)−1.

3.1 Proof of Theorem 3

We show that the least-squares estimator w∗π = (Q
1/2
π X)+Q

1/2
π y produced from any q-rescaled vol-

ume sampling is unbiased, illustrating a proof technique which is also useful for showing Theorem 4,
as well as Propositions 2 and 5. The key idea is to apply the pseudo-inverse expectation formula for
standard volume sampling (see e.g., [11]) first on the subsampled estimator w∗π, and then again on
the full estimator w∗. In the first step, this formula states:

w∗π︷ ︸︸ ︷
(Q

1/2
π X)+Q

1/2
π y =

∑
S∈([k]d)

det(X>QπSX)

det(X>QπX)

w∗πS︷ ︸︸ ︷
(Q

1/2
πSX)+Q

1/2
πSy,
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where
(

[k]
d

) def
= {S ⊆ {1, . . . , k} : |S| = d} and πS denotes a subsequence of π indexed by the

elements of set S. Note that since S is of size d, we can decompose the determinant:

det(X>QπSX) = det(XπS )2
∏
i∈S

1

qπi
.

Whenever this determinant is non-zero, w∗πS is the exact solution of a system of d linear equations:
1
√
qπi

x>πiw =
1
√
qπi

yπi , for i ∈ S.

Thus, the rescaling of each equation by 1√
qπi

cancels out, and we can simply write w∗πS =

(XπS )+yπS . (Note that this is not the case for sets larger than d whenever the optimum solu-
tion incurs positive loss.) We now proceed with summing over all π ∈ [n]k. Following Proposition 2,
we define the normalization constant as Z = d!

(
k
d

)
det(X>X), and obtain:

Z E[w∗π] =
∑
π∈[n]k

( k∏
i=1

qπi

)
det(X>QπX)w∗π =

∑
π∈[n]k

∑
S∈([k]d)

( ∏
i∈[k]\S

qπi

)
det(XπS )2(XπS )+yπS

(1)
=

(
k

d

) ∑
π̄∈[n]d

det(Xπ̄)2(Xπ̄)+yπ̄
∑

π̃∈[n]k−d

k−d∏
i=1

qπ̃i

(2)
=

(
k

d

)
d!
∑
S∈([n]d)

det(XS)2(XS)+yS

( n∑
i=1

qi

)k−d
(3)
=

Z︷ ︸︸ ︷(
k

d

)
d! det(X>X) w∗.

Note that in (1) we separate π into two parts, π̄ and π̃ (respectively, for subsets S and [k]\S), and
sum over them separately. The binomial coefficient

(
k
d

)
counts the number of ways that S can be

“placed into” the sequence π. In (2) we observe that whenever π̄ has repetitions, determinant det(Xπ̄)
is zero, so we can switch to summing over sets. Finally, (3) again uses the standard size d volume
sampling unbiasedness formula, now for the least-squares task (X,y), and the fact that qi’s sum to 1.

4 Leveraged volume sampling: a natural rescaling

Determinantal rejection sampling
1: Input: X∈Rn×d, q = ( l1

d
, . . . , ln

d
), k ≥ d

2: s← max{k, 4d2}
3: repeat
4: Sample π1, . . . , πs i.i.d. ∼ (q1, . . . , qn)

5: Sample Accept ∼ Bernoulli
(

det( 1
s
X>QπX)

det(X>X)

)
6: until Accept = true
7: S ← VolumeSample

(
(Q

1/2
[1..n]

X)π , k
)

8: return πS

Rescaled volume sampling can be viewed as select-
ing a sequence π of k rank-1 matrices from the co-
variance matrix X>X =

∑n
i=1 xix

>
i . If π1, . . . , πk

are sampled i.i.d. from q, i.e., Pr(π) =
∏k
i=1 qπi ,

then matrix 1
kX

>QπX is an unbiased estimator
of the covariance matrix because E[q−1

πi xπix
>
πi ] =

X>X. In rescaled volume sampling (5), Pr(π) ∼(∏k
i=1 qπi

)det(X>QπX)
det(X>X)

, and the latter volume ratio
introduces a bias to that estimator. However, we show
that this bias vanishes when q is exactly proportional to the leverage scores (proof in Appendix B.3).

Proposition 5 For any q and X as before, if π ∈ [n]k is sampled according to (5), then

E[Qπ] = (k−d) I + diag
( l1
q1
, . . . ,

ln
qn

)
, where li

def
= x>i (X>X)−1xi.

In particular, E[ 1
kX

>QπX] = X>E[ 1
kQπ]X = X>X if and only if qi = li

d > 0 for all i ∈ [n].

This special rescaling, which we call leveraged volume sampling, has other remarkable properties.
Most importantly, it leads to a simple and efficient algorithm we call determinantal rejection sampling:
Repeatedly sample O(d2) indices π1, . . . , πs i.i.d. from q = ( l1d , . . . ,

ln
d ), and accept the sample

with probability proportional to its volume ratio. Having obtained a sample, we can further reduce its
size via reverse iterative sampling. We show next that this procedure not only returns a q-rescaled
volume sample, but also exploiting the fact that q is proportional to the leverage scores, it requires
(surprisingly) only a constant number of iterations of rejection sampling with high probability.
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Theorem 6 Given the leverage score distribution q = ( l1d , . . . ,
ln
d ) and the determinant det(X>X)

for matrix X ∈ Rn×d, determinantal rejection sampling returns sequence πS distributed according
to leveraged volume sampling, and w.p. at least 1−δ finishes in time O((d2+ k)d2 ln( 1

δ )).

Proof We use a composition property of rescaled volume sampling (proof in Appendix B.4):

Lemma 7 Consider the following sampling procedure, for s > k:

π
s∼ X (q-rescaled size s volume sampling),

S
k∼


1√
qπ1

x>π1

. . .
1√
qπs

x>πs

 =
(
Q

1/2
[1..n]X

)
π

(standard size k volume sampling).

Then πS is distributed according to q-rescaled size k volume sampling from X.

First, we show that the rejection sampling probability in line 5 of the algorithm is bounded by 1:

det( 1
sX

>QπX)

det(X>X)
= det

(1

s
X>QπX(X>X)−1

) (∗)
≤
(

1

d
tr
(1

s
X>QπX(X>X)−1

))d
=
( 1

ds
tr
(
QπX(X>X)−1X>

))d
=
( 1

ds

s∑
i=1

d

li
x>i (X>X)−1xi

)d
= 1,

where (∗) follows from the geometric-arithmetic mean inequality for the eigenvalues of the underlying
matrix. This shows that sequence π is drawn according to q-rescaled volume sampling of size s. Now,
Lemma 7 implies correctness of the algorithm. Next, we use Proposition 2 to compute the expected
value of acceptance probability from line 5 under the i.i.d. sampling of line 4:∑

π∈[n]s

( s∏
i=1

qπi

)
det( 1

sX
>QπX)

det(X>X)
=
s(s−1) . . . (s−d+1)

sd
≥
(

1− d

s

)d
≥ 1− d2

s
≥ 3

4
,

where we also used Bernoulli’s inequality and the fact that s ≥ 4d2 (see line 2). Since the expected
value of the acceptance probability is at least 3

4 , an easy application of Markov’s inequality shows
that at each trial there is at least a 50% chance of it being above 1

2 . So, the probability of at least r
trials occurring is less than (1− 1

4 )r. Note that the computational cost of one trial is no more than the
cost of SVD decomposition of matrix X>QπX (for computing the determinant), which is O(sd2).
The cost of reverse iterative sampling (line 7) is also O(sd2) with high probability (as shown by
[13]). Thus, the overall runtime is O((d2 + k)d2r), where r ≤ ln( 1

δ )/ ln( 4
3 ) w.p. at least 1− δ.

4.1 Tail bounds for leveraged volume sampling

An analysis of leverage score sampling, essentially following [33, Section 2] which in turn draws
from [31], highlights two basic sufficient conditions on the (random) subsampling matrix Qπ that
lead to multiplicative tail bounds for L(w∗π).

It is convenient to shift to an orthogonalization of the linear regression task (X,y) by replacing
matrix X with a matrix U = X(X>X)−

1/2 ∈ Rn×d. It is easy to check that the columns of U have
unit length and are orthogonal, i.e., U>U = I. Now, v∗ = U>y is the least-squares solution for
the orthogonal problem (U,y) and prediction vector Uv∗ = UU>y for (U,y) is the same as the
prediction vector Xw∗ = X(X>X)−1X>y for the original problem (X,y). The same property
holds for the subsampled estimators, i.e., Uv∗π = Xw∗π, where v∗π = (Q

1/2
π U)+Q

1/2
π y. Volume

sampling probabilities are also preserved under this transformation, so w.l.o.g. we can work with the
orthogonal problem. Now L(v∗π) can be rewritten as

L(v∗π) = ‖Uv∗π − y‖2 (1)
= ‖Uv∗ − y‖2 + ‖U(v∗π − v∗)‖2 (2)

= L(v∗) + ‖v∗π − v∗‖2, (6)
where (1) follows via Pythagorean theorem from the fact that U(v∗π − v∗) lies in the column span
of U and the residual vector r = Uv∗ − y is orthogonal to all columns of U, and (2) follows from
U>U = I. By the definition of v∗π , we can write ‖v∗π − v∗‖ as follows:

‖v∗π − v∗‖ = ‖(U>QπU)−1 U>Qπ(y −Uv∗)‖ ≤ ‖(U>QπU)−1

d×d
‖ ‖U>Qπ r

d×1

‖, (7)
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where ‖A‖ denotes the matrix 2-norm (i.e., the largest singular value) of A; when A is a vector, then
‖A‖ is its Euclidean norm. This breaks our task down to showing two key properties:

1. Matrix multiplication: Upper bounding the Euclidean norm ‖U>Qπ r‖,
2. Subspace embedding: Upper bounding the matrix 2-norm ‖(U>QπU)−1‖.

We start with a theorem that implies strong guarantees for approximate matrix multiplication with
leveraged volume sampling. Unlike with i.i.d. sampling, this result requires controlling the pairwise
dependence between indices selected under rescaled volume sampling. Its proof is an interesting
application of a classical Hadamard matrix product inequality from [3] (Proof in Appendix C).

Theorem 8 Let U ∈ Rn×d be a matrix s.t. U>U = I. If sequence π ∈ [n]k is selected using
leveraged volume sampling of size k ≥ 2d

ε , then for any r ∈ Rn,

E
[∥∥∥1

k
U>Qπr−U>r

∥∥∥2
]
≤ ε ‖r‖2.

Next, we turn to the subspace embedding property. The following result is remarkable because
standard matrix tail bounds used to prove this property for leverage score sampling are not applicable
to volume sampling. In fact, obtaining matrix Chernoff bounds for negatively associated joint
distributions like volume sampling is an active area of research, as discussed in [21]. We address
this challenge by defining a coupling procedure for volume sampling and uniform sampling without
replacement, which leads to a curious reduction argument described in Appendix D.

Theorem 9 Let U ∈ Rn×d be a matrix s.t. U>U = I. There is an absolute constant C, s.t. if
sequence π ∈ [n]k is selected using leveraged volume sampling of size k ≥ C d ln(dδ ), then

Pr

(
λmin

(1

k
U>QπU

)
≤ 1

8

)
≤ δ.

Theorems 8 and 9 imply that the unbiased estimator w∗π produced from leveraged volume sampling
achieves multiplicative tail bounds with sample size k = O(d log d+ d/ε).

Corollary 10 Let X ∈ Rn×d be a full rank matrix. There is an absolute constant C, s.t. if sequence
π ∈ [n]k is selected using leveraged volume sampling of size k ≥ C

(
d ln(dδ )+ d

εδ

)
, then for estimator

w∗π = argmin
w

‖Q1/2
π (Xw − y)‖2,

we have L(w∗π) ≤ (1 + ε)L(w∗) with probability at least 1− δ.

Proof Let U = X(X>X)−
1/2. Combining Theorem 8 with Markov’s inequality, we have that for

large enough C, ‖U>Qπ r‖2 ≤ ε k
2

82 ‖r‖2 w.h.p., where r = y −Uv∗. Finally following (6) and (7)
above, we have that w.h.p.

L(w∗π) ≤ L(w∗) + ‖(U>QπU)−1‖2 ‖U>Qπ r‖2 ≤ L(w∗) +
82

k2
ε
k2

82
‖r‖2 = (1 + ε)L(w∗).

5 Conclusion

We developed a new variant of volume sampling which produces the first known unbiased subsampled
least-squares estimator with strong multiplicative loss bounds. In the process, we proved a novel
extension of the Cauchy-Binet formula, as well as other fundamental combinatorial equalities.
Moreover, we proposed an efficient algorithm called determinantal rejection sampling, which is to our
knowledge the first joint determinantal sampling procedure that (after an initialO(nd2) preprocessing
step for computing leverage scores) produces its k samples in time Õ(d2+k)d2), independent of the
data size n. When n is very large, the preprocessing time can be reduced to Õ(nd+ d5) by rescaling
with sufficiently accurate approximations of the leverage scores. Surprisingly the estimator stays
unbiased and the loss bound still holds with only slightly revised constants. For the sake of clarity we
presented the algorithm based on rescaling with exact leverage scores in the main body of the paper.
However we outline the changes needed when using approximate leverage scores in Appendix F.

In this paper we focused on tail bounds. However we conjecture that there are also volume sampling
based unbiased estimators achieving expected loss bounds E[L(w∗π)] ≤ (1+ε)L(w∗) with size O(dε ).

8
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A Proof of (2) from Theorem 1

First, let us calculate L(w∗). Observe that

(X>X)−1 =

c︷ ︸︸ ︷(
1 +

n− d
d

γ2
)−1

I,

and w∗ = cX>y = c1d.

The loss L(w) of any w ∈ Rd can be decomposed as L(w) =
∑d
i=1 Li(w), where Li(w) is the

total loss incurred on all input vectors ei or γei. For w∗, the i-th component is

Li(w
∗) = (1− c)2 +

1
c−1︷ ︸︸ ︷

n− d
d

γ2 c2 = 1− c.

Note that i-th leverage score of X is equal li = x>i (X>X)−1xi = c, so we obtain that

L(w∗) = d (1− c) =

d∑
i=1

(1− li). (8)

Next, we compute L(w∗S). Suppose that S ⊆ {1..n} is produced by size k standard volume sampling.
Note that if for some 1 ≤ i ≤ d we have i 6∈ S, then (w∗S)i = 0 and therefore Li(w∗S) = 1.
Moreover, denoting bi

def
= 1[i∈S],

(X>SXS)−1�(X>X)−1 =c I, and X>SyS=(b1, . . . , bd)
>,

so if i ∈ S, then (w∗S)i ≥ c and

Li(w
∗
S) ≥ n− d

d
γ2 c2 =

(1

c
− 1
)
c2 = cLi(w

∗).

Putting the cases of i ∈ S and i 6∈ S together, we get

Li(w
∗
S) ≥ cLi(w∗) + (1− cLi(w∗)) (1− bi)
≥ cLi(w∗) + c2(1− bi).

Applying the marginal probability formula for volume sampling (see (4)), we note that

E[1− bi] = 1− Pr(i ∈ S) =
n− k
n− d

(1− c) =
n− k
n− d

Li(w
∗).

Taking expectation over Li(w∗S) and summing the components over i ∈ [d], we get

E[L(w∗S)] ≥ L(w∗)
(
c+ c2

n− k
n− d

)
.

Note that as γ → 0, we have c→ 1, thus showing (2).

B Properties of rescaled volume sampling

We give proofs of the properties of rescaled volume sampling which hold for any rescaling distribution
q. In this section, we will useZ = d!

(
k
d

)
det(X>X) as the normalization constant for rescaled volume

sampling.

B.1 Proof of Proposition 2

First, we apply the Cauchy-Binet formula to the determinant term specified by a fixed sequence
π ∈ [n]k:

det(X>QπX) =
∑
S∈([k]d)

det(X>QπSX) =
∑
S∈([k]d)

det(XπS )2
∏
i∈S

1

qπi
.

11



Next, we compute the sum, using the above identity:

∑
π∈[n]k

det(X>QπX)

k∏
i=1

qπi =
∑
π∈[n]k

∑
S∈([k]d)

det(XπS )2
∏

i∈[k]\S

qπi

=

(
k

d

)∑
π̄∈[n]d

det(Xπ̄)2
∑

π̃∈[n]k−d

k−d∏
i=1

qπ̃i

=

(
k

d

)∑
π̄∈[n]d

det(Xπ̄)2
( n∑
i=1

qi

)k−d
=

(
k

d

)
d!
∑
S∈([n]d)

det(XS)2 = k(k−1) · · · (k−d+1) det(X>X),

where the steps closely follow the corresponding derivation for Theorem 3, given in Section 3.1.

B.2 Proof of Theorem 4

We will prove that for any vector v ∈ Rd,

E
[
v>(X>QπX)−1v

]
≤ v>(X>X)−1v

k−d+1
,

which immediately implies the corresponding matrix inequality. First, we use Sylvester’s formula,
which holds whenever a matrix A ∈ Rd×d is full rank:

det(A + vv>) = det(A)
(
1 + v>A−1v

)
.

Note that whenever the matrix is not full rank, its determinant is 0 (in which case we avoid computing
the matrix inverse), so we have for any π ∈ [n]k:

det(X>QπX) v>(X>QπX)−1v ≤ det(X>QπX + vv>)− det(X>QπX)

(∗)
=

∑
S∈( [k]

d−1)

det(X>πSXπS + vv>)
∏
i∈S

1

qπi
,

where (∗) follows from applying the Cauchy-Binet formula to both of the determinants, and cancelling
out common terms. Next, we proceed in a standard fashion, summing over all π ∈ [n]k:

Z E
[
v>(X>QπX)−1v

]
=
∑
π∈[n]k

v>(X>QπX)−1v det(X>QπX)

k∏
i=1

qπi

≤
∑
π∈[n]k

∑
S∈( [k]

d−1)

det(X>πSXπS + vv>)
∏

i∈[k]\S

qπi

=

(
k

d−1

) ∑
π̄∈[n]d−1

det(X>π̄Xπ̄ + vv>)
∑

π̃∈[n]k−d+1

k−d+1∏
i=1

qπi

=

(
k

d−1

)
(d−1)!

∑
S∈( [n]

d−1)

det(X>SXS + vv>)

=
d!
(
k
d

)
k−d+1

(
det(X>X + vv>)− det(X>X)

)
= Z

v>(X>X)−1v

k−d+1
.
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B.3 Proof of Proposition 5

First, we compute the marginal probability of a fixed element of sequence π containing a particular
index i ∈ [n] under q-rescaled volume sampling:

Z Pr(πk= i) =
∑

π∈[n]k−1

det(X>Q[π,i]X) qi

k−1∏
t=1

qπt

= qi
∑

π∈[n]k−1

∑
S∈([k−1]d )

det(XπS )2
∏

t∈[k−1]\S

qπt

︸ ︷︷ ︸
T1

+
∑

π∈[n]k−1

∑
S∈([k−1]d−1)

det(X>πSXπS + xix
>
i )

∏
t∈[k−1]\S

qπt

︸ ︷︷ ︸
T2

,

where the first term can be computed by following the derivation in Appendix B.1, obtaining
T1 = qi

k−d
k Z, and the second term is derived as in Appendix B.2, obtaining T2 = li

k Z. Putting this
together, we get

Pr(πk= i) =
1

k

(
(k−d) qi + li

)
.

Note that by symmetry this applies to any element of the sequence. We can now easily compute the
desired expectation:

E
[
(Qπ)ii

]
=

1

qi

k∑
t=1

Pr(πt= i) = (k−d) +
li
qi
.

B.4 Proof of Lemma 7

First step of the reverse iterative sampling procedure described in Section 2 involves removing one
row from the given matrix with probability proportional to the square volume of that submatrix:

∀i∈S Pr(i |πS) =
det(X>QπS\iX)

(|S| − d) det(X>QπSX)
.

Suppose that k = s− 1 and let π̃ = πS ∈ [n]s−1 denote the sequence obtained after performing one
step of the row-removal procedure. Then,

Pr(π̃) =
∑

π∈[n]k:
π̃ is a subsequence of π

Pr(π̃ |π) Pr(π)
(∗)
=

n∑
i=1

s

removing one row︷ ︸︸ ︷
Pr(i | [π̃, i])

rescaled sampling︷ ︸︸ ︷
Pr([π̃, i])

=

n∑
i=1

s
det(X>Qπ̃X)

(s−d) det(X>Q[π̃,i]X)

det(X>Q[π̃,i]X) (
∏s−1
j=1 qπ̃j ) qi

s!
(s−d)! det(X>X)

=
det(X>Qπ̃X)(

∏s−1
j=1 qπ̃j )

s−d
s

s!
(s−d)! det(X>X)

n∑
i=1

qi =
det(X>Qπ̃X) (

∏s−1
j=1 qπ̃j )

(s−1)!
(s−1−d)! det(X>X)

,

where (∗) follows because the ordering of sequence π does not affect the probabilities, and the factor
s next to the sum counts the number of ways to place index i into the sequence π̃ to obtain π. Thus,
by induction, for any k < s the algorithm correctly samples from q-rescaled volume sampling.

C Proof of Theorem 8

We rewrite the expected square norm as:

E
[∥∥∥1

k
U>Qπr−U>r

∥∥∥2
]

= E
[∥∥∥U>(1

k
Qπ−I

)
r
∥∥∥2
]

= E
[
r>
(1

k
Qπ−I

)
UU>

(1

k
Qπ−I

)
r

]
= r> E

[(1

k
Qπ−I

)
UU>

(1

k
Qπ−I

)]
r

≤ λmax

( (
E[(zi−1)(zj−1)]u>i uj

)
ij︸ ︷︷ ︸

M

)
‖r‖2, where zi =

1

k
(Qπ)ii.

13



It remains to bound λmax(M). By Proposition 5, for leveraged volume sampling E[(Qπ)ii] = k, so

E[(zi−1)(zj−1)] =
1

k2

(
E
[
(Qπ)ii(Qπ)jj

]
− E

[
(Qπ)ii

]
E
[
(Qπ)jj

])
=

1

k2
cov
[
(Qπ)ii, (Qπ)jj

]
.

For rescaled volume sampling this is given in the following lemma, proven in Appendix C.1.

Lemma 11 For any X and q, if sequence π ∈ [n]k is sampled from q-rescaled volume sampling then

cov
[
(Qπ)ii, (Qπ)jj

]
= 1i=j

1

qi
E
[
(Qπ)ii

]
− (k−d)− (x>i (X>X)−1xj)

2

qiqj
.

Since ‖ui‖2 = li = dqi and u>i (U>U)−1uj = u>i uj , we can express matrix M as follows:

M = diag

(
d E
[
(Qπ)ii

]
‖ui‖2k2

‖ui‖2
)n
i=1

− k−d
k2

UU> − d2

k2

(
(u>i uj)

3

‖ui‖2‖uj‖2

)
ij

.

The first term simplifies to d
k I, and the second term is negative semi-definite, so

λmax(M) ≤ d

k
+
d2

k2

∥∥∥∥( (u>i uj)
3

‖ui‖2‖uj‖2

)
ij

∥∥∥∥.
Finally, we decompose the last term into a Hadamard product of matrices, and apply a classical
inequality by [3] (symbol “◦” denotes Hadamard matrix product—i.e., elementwise multiplication):∥∥∥∥( (u>i uj)

3

‖ui‖2‖uj‖2

)
ij

∥∥∥∥ =

∥∥∥∥( u>i uj
‖ui‖ ‖uj‖

)
ij

◦
(

(u>i uj)
2

‖ui‖‖uj‖

)
ij

∥∥∥∥
≤

∥∥∥∥( (u>i uj)
2

‖ui‖‖uj‖

)
ij

∥∥∥∥ =

∥∥∥∥( u>i uj
‖ui‖ ‖uj‖

)
ij

◦UU>
∥∥∥∥

≤ ‖UU>‖ = 1.

Thus, we conclude that E[‖ 1
kU

>Qπr−U>r‖2] ≤ ( dk + d2

k2 )‖r‖2, completing the proof.

C.1 Proof of Lemma 11

We compute marginal probability of two elements in the sequence π having particular values i, j ∈ [n]:

Z Pr
(
(πk−1 = i) ∧ (πk=j)

)
=

∑
π∈[n]k−2

∑
S∈([k]d)

det(X>[π,i,j]SX[π,i,j]S )
∏

t∈[k]\S

q[π,i,j]t .

We partition the set
(

[k]
d

)
of all subsets of size d into four groups, and summing separately over each

of the groups, we have

Z Pr
(
(πk−1 = i) ∧ (πk=j)

)
= T00 + T01 + T10 + T11, where:

1. Let G00 = {S∈
(

[k]
d

)
: k−1 6∈S, k 6∈S}, and following derivation in Appendix B.1,

T00 = qi qj
∑

π∈[n]k−2

∑
S∈G00

det(XπS )2
∏

t∈[k−2]\S

qπt = qi qj
(k−d−1)(k−d)

(k−1) k
Z.

2. Let G10 = {S∈
(

[k]
d

)
: k−1∈S, k 6∈S}, and following derivation in Appendix B.2,

T10 = qj
∑

π∈[n]k−1

∑
S∈G10

det(X[π,i]S )2
∏

t∈[k−1]\S

q[π,i]t = li qj
(k−d)

(k−1) k
Z.

3. G01 = {S∈
(

[k]
d

)
: k−1 6∈S, k∈S}, and by symmetry, T01 = lj qi

(k−d)
(k−1) k Z.
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4. Let G11 = {S∈
(

[k]
d

)
: k−1∈S, k∈S}, and the last term is

T11 =
∑

π∈[n]k−1

∑
S∈G11

det(X[π,i,j]S )2
∏

t∈[k]\S

q[π,i,j]t

=

(
k−2

d−2

) ∑
π∈[n]d−2

det(X[π,i,j])
2

=

(
k−2

d−2

)
(d−2)!

(
det(X>X)− det(X>−iX−i)− det(X>−jX−j) + det(X>−i,jX−i,j)

)
(∗)
=

d!
(
k
d

)
k(k−1)

det(X>X)
(

1− (1−li)︸ ︷︷ ︸
det(X>−iX−i)

det(X>X)

− (1−lj)︸ ︷︷ ︸
det(X>−jX−j)

det(X>X)

+ (1−li)(1−lj)− l2ij︸ ︷︷ ︸
det(X>−i,jX−i,j)

det(X>X)

)

=
Z

k(k−1)

(
`i`j − `2ij

)
,

where lij = x>i (X>X)−1xj , and (∗) follows from repeated application of Sylvester’s determinant
formula (as in Appendix B.2). Putting it all together, we can now compute the expectation for i 6= j:

E
[
(Qπ)ii (Qπ)jj

]
=

1

qi qj

k∑
t1=1

k∑
t2=1

Pr
(
(πk−1 = i) ∧ (πk=j)

)

=
k(k−1)

qi qj

1
Z (T00+T10+T01+T11)︷ ︸︸ ︷

Pr
(
(πk−1 = i) ∧ (πk=j)

)
= (k−d−1)(k−d) + (k−d)

li
qi

+ (k−d)
lj
qj

+
lilj
qi qj

−
l2ij
qi qj

=
(

(k−d)qi +
li
qi

)(
(k−d)qj +

lj
qj

)
− (k−d)−

l2ij
qi qj

= E
[
(Qπ)ii

]
E
[
(Qπ)jj

]
− (k−d)−

l2ij
qiqj

.

Finally, if i = j, then

E[(Qπ)ii (Qπ)ii] =
1

q2
i

k∑
t1=1

k∑
t2=1

Pr(πt1 = i ∧ πt2 = i)

=
k(k−1)

q2
i

Pr(πk−1 = i ∧ πk= i) +
k

q2
i

Pr(πk= i)

=
(
E
[
(Qπ)ii

])2 − (k−d)− l2i
q2
i

+
1

qi
E
[
(Qπ)ii

]
.

D Proof of Theorem 9

We break the sampling procedure down into two stages. First, we do leveraged volume sampling
of a sequence π ∈ [n]m of size m ≥ C0d

2/δ, then we do standard volume sampling size k from
matrix (Q

1/2
[1..n]U)π. Since rescaled volume sampling is closed under this subsampling (Lemma 7),

this procedure is equivalent to size k leveraged volume sampling from U. To show that the first stage
satisfies the subspace embedding condition, we simply use the bound from Theorem 8 (see details in
Appendix D.1):

Lemma 12 There is an absolute constant C0, s.t. if sequence π ∈ [n]m is generated via leveraged
volume sampling of size m at least C0 d

2/δ from U, then

Pr

(
λmin

( 1

m
U>QπU

)
≤ 1

2

)
≤ δ.
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The size of m is much larger than what we claim is sufficient. However, we use it to achieve a tighter
bound in the second stage. To obtain substantially smaller sample sizes for subspace embedding than
what Theorem 8 can deliver, it is standard to use tail bounds for the sums of independent matrices.
However, applying these results to joint sampling is a challenging task. Interestingly, [26] showed
that volume sampling is a strongly Raleigh measure, implying that the sampled vectors are negatively
correlated. This guarantee is sufficient to show tail bounds for real-valued random variables [see,
e.g., 30], however it has proven challenging in the matrix case, as discussed by [21]. One notable
exception is uniform sampling without replacement, which is a negatively correlated joint distribution.
A reduction argument originally proposed by [22], but presented in this context by [20], shows that
uniform sampling without replacement offers the same tail bounds as i.i.d. uniform sampling.

Lemma 13 Assume that λmin

(
1
mU>QπU

)
≥ 1

2 . Suppose that set T is a set of fixed size sampled
uniformly without replacement from [m]. There is a constant C1 s.t. if |T | ≥ C1 d ln(d/δ), then

Pr
(
λmin

( 1

|T |
U>QπTU

)
≤ 1

4

)
≤ δ.

The proof of Lemma 13 (given in appendix D.2) is a straight-forward application of the argument
given by [20]. We now propose a different reduction argument showing that a subspace embedding
guarantee for uniform sampling without replacement leads to a similar guarantee for volume sampling.
We achieve this by exploiting a volume sampling algorithm proposed recently by [13], shown
in Algorithm 3, which is a modification of the reverse iterative sampling procedure introduced
in [11]. This procedure relies on iteratively removing elements from the set S until we are left
with k elements. Specifically, at each step, we sample an index i from a conditional distribution,
i ∼ Pr(i |S) = (1− 1

qπi
u>πi(U

>QπSU)−1uπi)/(|S| − d). Crucially for us, each step proceeds via
rejection sampling with the proposal distribution being uniform. We can easily modify the algorithm,
so that the samples from the proposal distribution are used to construct a uniformly sampled set T , as
shown in Algorithm 4. Note that sets S returned by both algorithms are identically distributed, and
furthermore, T is a subset of S, because every index taken out of S is also taken out of T .

Algorithm 3: Volume sampling
1: S ← [m]
2: while |S| > k
3: repeat
4: Sample i unif. out of S
5: p← 1− 1

qπi
u>πi(U

>QπSU)−1uπi
6: Sample Accept ∼ Bernoulli(p)
7: until Accept = true
8: S ← S\{i}
9: end

10: return S

Algorithm 4: Coupled sampling
1: S, T ← [m]
2: while |S| > k
3: Sample i unif. out of [m]
4: T ← T − {i}
5: if i ∈ S
6: p← 1− 1

qπi
u>πi(U

>QπSU)−1uπi
7: Sample Accept ∼ Bernoulli(p)
8: if Accept = true, S ← S\{i} end
9: end

10: end
11: return S, T

By Lemma 13, if size of T is at least C1 d log(d/δ), then this set offers a subspace embedding
guarantee. Next, we will show that in fact set T is not much smaller than S, implying that the same
guarantee holds for S. Specifically, we will show that |S \ T | = O(d log(d/δ)). Note that it suffices
to bound the number of times that a uniform sample is rejected by sampling A = 0 in line 7 of
Algorithm 4. Denote this number by R. Note that R =

∑m
t=k+1Rt, where m = |Q| and Rt is the

number of times that A = 0 was sampled while the size of set S was t. Variables Rt are independent,
and each is distributed according to the geometric distribution (number of failures until success), with
the success probability

rt =
1

t

∑
i∈S

(
1− 1

qπi
u>πi(U

>QπSU)−1uπi

)
=

1

t

(
t− tr

(
(U>QπSU)−1U>QπSU

))
=
t− d
t

.

Now, as long as m−d
k−d ≤ C0 d

2/δ, we can bound the expected value of R as follows:

E[R] =

m∑
t=k+1

E[Rt] =

m∑
t=k+1

( t

t− d
− 1
)

= d

m−d∑
t=k−d+1

1

t
≤ d ln

(m− d
k − d

)
≤ C2 d ln(d/δ).
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In this step, we made use of the first stage sampling, guaranteeing that the term under the logarithm
is bounded. Next, we show that the upper tail of R decays very rapidly given a sufficiently large gap
between m and k (proof in Appendix D.3):

Lemma 14 Let Rt ∼ Geom( t−dt ) be a sequence of independent geometrically distributed random
variables (number of failures until success). Then, for any d < k < m and a > 1,

Pr
(
R ≥ a E[R]

)
≤ e

a
2

( k − d
m− d

) a
2−1

for R =

m∑
t=k+1

Rt.

Let a = 4 in Lemma 14. Setting C = C1 + 2aC2, for any k ≥ C d ln(d/δ), using m =

max{C0
d2

δ , d+ e2 k
δ }, we obtain that

R ≤ aC2 d ln(d/δ) ≤ k/2, w.p. ≥ 1− e2 k − d
m− d

≥ 1− δ,

showing that |T | ≥ k −R ≥ C1 d ln(d/δ) and k ≤ 2|T |.
Therefore, by Lemmas 12, 13 and 14, there is a 1− 3δ probability event in which

λmin

( 1

|T |
U>QπTU

)
≥ 1

4
and k ≤ 2|T |.

In this same event,

λmin

(1

k
U>QπSU

)
≥ λmin

(1

k
U>QπTU

)
≥ λmin

( 1

2|T |
U>QπTU

)
≥ 1

2
· 1

4
=

1

8
,

which completes the proof of Theorem 9.

D.1 Proof of Lemma 12

Replacing vector r in Theorem 8 with each column of matrix U, we obtain that for m ≥ C d
ε ,

E
[
‖U>QπU−U>U‖2F

]
≤ ε ‖U‖2F = ε d.

We bound the 2-norm by the Frobenius norm and use Markov’s inequality, showing that w.p. ≥ 1− δ
‖U>QπU− I‖ ≤ ‖U>QπU− I‖F ≤

√
ε d/δ.

Setting ε = δ
4d , for m ≥ C0 d

2/δ, the above inequality implies that

λmin

( 1

m
U>QπU

)
≥ 1

2
.

D.2 Proof of Lemma 13

Let π denote the sequence of m indices selected by volume sampling in the first stage. Suppose that
i1, ..., ik are independent uniformly sampled indices from [m], and let j1, ..., jk be indices sampled
uniformly without replacement from [m]. We define matrices

Z
def
=

k∑
t=1

Zt︷ ︸︸ ︷
1

kqit
uitu

>
it , and Ẑ

def
=

k∑
t=1

Ẑt︷ ︸︸ ︷
1

kqjt
ujtu

>
jt .

Note that ‖Zt‖ = d
k li
‖uit‖2 = d

k and, similarly, ‖Ẑt‖ = d
k . Moreover,

E[Z] =

k∑
t=1

[
1

m

m∑
i=1

1

kqi
uiu

>
i

]
= k

1

k

1

m
U>QπU =

1

m
U>QπU.

Combining Chernoff’s inequality with the reduction argument described in [20], for any λ, and θ > 0,

Pr
(
λmax(−Ẑ) ≥ λ

)
≤ e−θλ E

[
tr
(

exp(θ(−Ẑ))
)]
≤ e−θλ E

[
tr
(

exp(θ(−Z))
)]
.

Using matrix Chernoff bound of [32] applied to −Z1, ...,−Zk with appropriate θ, we have

e−θλ E
[
tr
(

exp(θ(−Z))
)]
≤ d exp

(
− k

16d

)
, for λ =

1

2
λmax

(
− 1

m
U>QπU

)
≤ −1

4
.

Thus, there is a constant C1 such that for k ≥ C1 d ln(d/δ), w.p. at least 1− δ we have λmin(Ẑ) ≥ 1
4 .
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D.3 Proof of Lemma 14

We compute the moment generating function of the variable Rt ∼ Geom(rt), where rt = t−d
t :

E
[
eθRt

]
=

rt
1− (1− rt)eθ

=
t−d
t

1− d
t eθ

=
t− d
t− d eθ

.

Setting θ = 1
2d , we observe that deθ ≤ d+ 1, and so E[eθRt ] ≤ t−d

t−d−1 . Letting µ = E[R], for any
a > 1 using Markov’s inequality we have

Pr(R ≥ aµ) ≤ e−aθµ E
[
eθR
]
≤ e−aθµ

m∏
t=k+1

t− d
t− d− 1

= e−aθµ
m− d
k − d

.

Note that using the bounds on the harmonic series we can estimate the mean:

µ = d

m−d∑
t=k−d+1

1

t
≥ d (ln(m− d)− ln(k − d)− 1) = d ln

(m− d
k − d

)
− d,

so e−aθµ ≤ ea/2 exp

(
− a

2
ln
(m− d
k − d

))
= ea/2

(m− d
k − d

)−a/2
.

Putting the two inequalities together we obtain the desired tail bound.

E Experiments

We present experiments comparing leveraged volume sampling to standard volume sampling and to
leverage score sampling, in terms of the total square loss suffered by the subsampled least-squares
estimator. The three estimators can be summarized as follows:

volume sampling: w∗S = (XS)+yS , Pr(S) ∼ det(X>SXS), S ∈
(

[n]

k

)
;

leverage score sampling: w∗π = (Q
1/2
π X)+Q

1/2
π y, Pr(π) =

k∏
i=1

lπi
d
, π ∈ [n]k;

leveraged volume sampling: w∗π = (Q
1/2
π X)+Q

1/2
π y, Pr(π) ∼ det(X>QπX)

k∏
i=1

lπi
d
.

Both the volume sampling-based estimators are unbiased, however the leverage score sampling
estimator is not. Recall that Qπ =

∑|π|
i=1 q

−1
πi eπie

>
πi is the selection and rescaling matrix as defined

for q-rescaled volume sampling with qi = li
d . For each estimator we plotted its average total loss,

i.e., 1
n‖Xw − y‖2, for a range of sample sizes k, contrasted with the loss of the best least-squares

estimator w∗ computed from all data.

Dataset Instances (n) Features (d)
bodyfat 252 14
housing 506 13

mg 1,385 21
abalone 4,177 36
cpusmall 8,192 12
cadata 20,640 8
MSD 463,715 90

Table 1: Libsvm regression datasets [9] (to in-
crease dimensionality of mg and abalone, we
expanded features to all degree 2 monomials,
and removed redundant ones).

Plots shown in Figures 1 and 2 were averaged over
100 runs, with shaded area representing standard er-
ror of the mean. We used seven benchmark datasets
from the libsvm repository [9] (six in this section
and one in Section 1), whose dimensions are given in
Table 1. The results confirm that leveraged volume
sampling is as good or better than either of the base-
lines for any sample size k. We can see that in some
of the examples standard volume sampling exhibits
bad behavior for larger sample sizes, as suggested
by the lower bound of Theorem 1 (especially notice-
able on bodyfat and cpusmall datasets). On the other
hand, leverage score sampling exhibits poor perfor-
mance for small sample sizes due to the coupon col-
lector problem, which is most noticeable for abalone

dataset, where we can see a very sharp transition after which leverage score sampling becomes
effective. Neither of the variants of volume sampling suffers from this issue.
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Figure 2: Comparison of loss of the subsampled estimator when using leveraged volume sampling vs
using leverage score sampling and standard volume sampling on six datasets.

F Faster algorithm via approximate leverage scores

Fast leveraged volume sampling

Input: X∈Rn×d, k ≥ d, ε ≥ 0

Compute A = (1± ε)X>X
Compute l̃i = (1± 1

2
) li ∀i∈[n]

s← max{k, 8d2}
repeat
π ← empty sequence
while |π| < s

Sample i ∼ (l̃1, . . . , l̃n)

a ∼ Bernoulli
(
(1−ε)x

>
i A−1xi

2l̃i

)
if a = true, then π ← [π, i]

end
Qπ ←

∑s
j=1 d (x

>
πj

A−1xπj )
−1eπje

>
πj

Sample Acc ∼ Bernoulli
(

det( 1
s
X>QπX)

det(A)

)
until Acc = true
S ← VolumeSample

(
(Q

1/2
[1..n]

X)π , k
)

return πS

In some settings, the primary computational cost of
deploying leveraged volume sampling is the preprocessing
cost of computing exact laverage scores for matrix
X ∈ Rn×d, which takes O(nd2). There is a large body
of work dedicated to fast estimation of leverage scores
(see, e.g., [16, 27]), and in this section we examine
how these approaches can be utilized to make leveraged
volume sampling more efficient. The key challenge here
is to show that the determinantal rejection sampling
step remains effective when distribution q consists of
approximate leverage scores. Our strategy, which is
described in the algorithm fast leveraged volume sampling,
will be to compute an approximate covariance matrix
A = (1 ± ε)X>X and use it to compute the rescaling
distribution qi ∼ x>i A

−1xi. As we see in the lemma
below, for sufficiently small ε, this rescaling still retains
the runtime guarantee of determinantal rejection sampling
from Theorem 6.
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Lemma 15 Let X ∈ Rn×d be a full rank matrix, and suppose that matrix A ∈ Rd×d satisfies

(1− ε)X>X � A � (1 + ε)X>X, where
ε

1− ε
≤ 1

16d
.

Let π1, . . . , πs be sampled i.i.d. ∼ (l̂1, . . . , l̂n), where l̂i = x>i A
−1xi. If s ≥ 8d2, then

for Qπ =

s∑
j=1

d

l̂πj
eπje

>
πj ,

det( 1
sX

>QπX)

det(A)
≤ 1 and E

[
det( 1

sX
>QπX)

det(A)

]
≥ 3

4
.

Proof of Lemma 15 follows along the same lines as the proof of Theorem 6. We can compute matrix
A−1 efficiently in time Õ(nd+ d3/ε2) using a sketching technique called Fast Johnson-Lindenstraus
Transform [1], as described in [16]. However, the cost of computing the entire rescaling distribution
is still O(nd2). Standard techniques circumvent this issue by performing a second matrix sketch.
We cannot afford to do that while at the same time preserving the sufficient quality of leverage
score estimates needed for leveraged volume sampling. Instead, we first compute weak estimates
l̃i = (1± 1

2 )li in time Õ(nd+ d3) as in [16], then use rejection sampling to sample from the more
accurate leverage score distribution, and finally compute the correct rescaling coefficients just for
the obtained sample. Note that having produced matrix A−1, computing a single leverage score
estimate l̂i takes O(d2). The proposed algorithm with high probability only has to compute O(s)
such estimates, which introduces an additional cost of O(sd2) = O((k + d2) d2). Thus, as long
as k = O(d3), dominant cost of the overall procedure still comes from the estimation of matrix A,
which takes Õ(nd+ d5) when ε is chosen as in Lemma 15.

It is worth noting that fast leveraged volume sampling is a valid q-rescaled volume sampling dis-
tribution (and not an approximation of one), so the least-squares estimators it produces are exactly
unbiased. Moreover, proofs of Theorems 8 and 9 can be straightforwardly extended to the setting
where q is constructed from approximate leverage scores, so our loss bounds also hold in this case.
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