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What is generalization in machine deep learning?

At least two definitions for generalization error are floated in the
community:

1. Out-of-sample (test) error rate

err(f)

2. Difference between out-of-sample (test) and in-sample
(training) error rates

err(f)− err(f ;Sn)

We care about the former, empirical process theory is good for the
latter (since Sn ∼ (Prx,y)n; “uniform convergence bounds”)

Major use case: Analysis of Empirical Risk Minimization (ERM)

min
f∈F

err(f ;Sn)
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Consistency of models that perfectly fit training data

[Belkin, H., Mitra, 2018]: “Weighted & Interpolating kn-NN”
classifier fn ≡ fSn satisfies

ESn

[
Prx

(
fn(x) 6= fbayes(x)

)]
→ 0 as n→∞

under regularity conditions on distribution of x

I In particular,
err(fn;Sn) = 0 (always)

and
ESn

[∣∣err(fn)− err(fn;Sn)
∣∣] = ESn

[
err(fn)

]
→ err(fbayes).

I ∴ Any uniform convergence bound that applies to fn must
“stall” at the Bayes error rate (which may be non-zero).

I (Similar results for squared-error regression.)
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Uniform convergence and perfect-fit classifiers

Are there issues when err(fbayes) ≈ 0?

Theisen, Klusowski, Mahoney: Compelling MNIST analysis

I Many classifiers with err(f, Sn) = 0 have low err(f)
I There are classifiers with err(f, Sn) = 0 and high err(f)
I ∴ “Uniform convergence bounds” still have problems . . .

Possible fix: Only consider large margin classifiers (or other
quantitative inductive bias)

I Schapire, Freund, Bartlett, and Lee (1998); Zhang (2002); . . .
I But a posteriori bounds don’t directly analyze the inductive

bias achieved by the fitted model
I Sharp constrast with analyses of Ji and Telgarsky; Ji and

Telgarsky; Liang, Rakhlin, Zhai; Liang and Sur; . . .
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BTW

PAC-Bayes approach to margin bounds (e.g., Langford and
Shawe-Taylor, 2002) is a relevant bridge between worst-case and
average-case analysis.

I Relevance: Maybe practitioners don’t pick a (consistent)
classifier at random

I (But still has same issues as other a posteriori bounds.)
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Support vector machines (SVMs)

Figure 1: Relevance

Vapnik (1979): mathematical definition of maximum margin linear
classifier, along with a theory of generalization.

min
w∈Rd

‖w‖2

s.t. yix
T
iw ≥ 1, i = 1, . . . , n.

(All yi ∈ {−1, 1}.)

I Why not minw∈Rd ‖w‖2 s.t. xT
iw = yi (interpolation)?
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SVMs vs interpolation [Muthukumar et al, 2020]

K(x1, x2) =
∑
k≥0

sin(kx1) sin(kx2) + cos(kx1) cos(kx2)
(k + 1)2m
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Figure 2: SVM solution vs least norm interpolation (m = 1.5) 6 / 9



Margins in very high-dimensions

I Toy setup similar to that of Theisen, Klusowski, Mahoney

(xi, yi) ∼iid
1
2(N+, 1) + 1

2(N−,−1) i = 1, . . . , n

N+ = N (µ, Id)
N− = N (−µ, Id)

I [Muthukumar et al, 2020] and [H., Muthukumar, Xu]:
If d� n logn, then with high probability, every training
example is a support vector:

xT
iwsvm = yi, i = 1, . . . , n

where wsvm is the SVM solution.

I In this case: Minimum norm interpolation = SVM solution.
I (Similar behavior under anisotropic (subgaussian or subsampled

Haar) designs if covariance eigenvalues decay slowly enough)

I What about kernels that matter?
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ReLU nets in the Neural Tangent Kernel (NTK) regime

Goal: Prove error rate ε ∈ (0, 1) is achieved by training a neural net
via gradient descent on an empirical risk

I NTK: kernel-based characterization of certain training processes
I Flurry of results about wide ReLU nets in the NTK regime

I poly(1/ε) width is sufficient for regression on noise-free data

I Ji and Telgarsky:

I poly log(1/ε) width is sufficient for classification on data
separable with a margin

I Margin is defined with respect to infinite-width NTK

I A pressing question: Is gap the real?

I (Telgarsky: “It’s subtle . . . ”)
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Parting words

Uniform convergence + ERM go hand-in-hand

I Uniform convergence makes sense ⇔ empirical risk makes sense
I If empirical risk = 0 always, maybe look elsewhere

Shift focus of analysis to inductive bias (e.g., margins)

Thank you!

Thanks to: NSF CCF-1740833, DMR-153491; Sloan Research Fellowship;
Simons Institute for the Theory of Computing Sp’17 & Su’19 programs
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