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Abstract

We present and analyze an agnostic active learning algotiiat works without
keeping a version space. This is unlike all previous apgresevhere a restricted
set of candidate hypotheses is maintained throughoutifegrand only hypothe-
ses from this set are ever returned. By avoiding this verspate approach, our
algorithm sheds the computational burden and brittlenssscéated with main-
taining version spaces, yet still allows for substantigbiovements over super-
vised learning for classification.

1 Introduction

In active learning, a learner is given access to unlabeléa alad is allowed to adaptively choose
which ones to label. This learning model is motivated by &agions in which the cost of labeling
data is high relative to that of collecting the unlabeledadtgelf. Therefore, the hope is that the
active learner only needs to query the labels of a small nuwitithe unlabeled data, and otherwise
perform as well as a fully supervised learner. In this worle ave interested in agnostic active
learning algorithms for binary classification that are @tay consistentj.e. that converge to an
optimal hypothesis in a given hypothesis class.

One technique that has proved theoretically profitable imaintain a candidate set of hypotheses
(sometimes called a version space), and to query the laksepofnt only if there is disagreement
within this set about how to label the point. The criteriafieembership in this candidate set needs
to be carefully defined so that an optimal hypothesis is advilagiuded, but otherwise this set can be
quickly whittled down as more labels are queried. This tépimis perhaps most readily understood
in the noise-free setting [1, 2], and it can be extended teynéttings by using empirical confidence
bounds [3, 4, 5, 6, 7].

The version space approach unfortunately has its shargmifisant drawbacks. The first is com-
putational intractability: maintaining a version space guaranteeing thainly hypotheses from
this set are returned is difficult for linear predictors apgears intractable for interesting nonlinear
predictors such as neural nets and decision trees [1]. &ndtlawback of the approach is its brittle-
ness: a single mishap (due to, say, modeling failures or atatipnal approximations) might cause
the learner to exclude the best hypothesis from the vergiaoesforever; this is an ungraceful fail-
ure mode that is not easy to correct. A third drawback is eeléd sample re-usability: if (labeled)
data is collected using a version space-based active tgpatgorithm, and we later decide to use
a different algorithm or hypothesis class, then the eadéa may not be freely re-used because its
collection process is inherently biased.



Here, we develop a new strategy addressing all of the abo@ldgins given an oracle that returns an
empirical risk minimizing (ERM) hypothesis. As this oracatches our abstraction of many super-
vised learning algorithms, we believe active learning dthms built in this way are immediately
and widely applicable.

Our approach instantiates the importance weighted aeaming framework of [5] using a rejection
threshold similar to the algorithm of [4] which only acces$gpotheses via a supervised learning
oracle. However, the oracle we require is simpler and avsidst adherence to a candidate set
of hypotheses. Moreover, our algorithm creates an impoetameighted sample that allows for
unbiased risk estimation, even for hypotheses from a cliffesaht from the one employed by the
active learner. This is in sharp contrast to many previogsrghms €.g, [1, 3, 8, 4, 6, 7]) that create
heavily biased data sets. We prove that our algorithm isy@wansistent and has an improved label
complexity over passive learning in cases previously stlidh the literature. We also describe a
practical instantiation of our algorithm and report on s@rperimental results.

1.1 Related Work

As already mentioned, our work is closely related to the iptev works of [4] and [5], both of
which in turn draw heavily on the work of [1] and [3]. The algbm from [4] extends the selective
sampling method of [1] to the agnostic setting using geimabn bounds in a manner similar
to that first suggested in [3]. It accesses hypotheses onbydih a special ERM oracle that can
enforce an arbitrary number of example-based constralrgse constraints define a version space,
and the algorithm only ever returns hypotheses from thisespahich can be undesirable as we
previously argued. Other previous algorithms with compkraerformance guarantees also require
similar example-based constrainesd, [3, 5, 6, 7]). Our algorithm differs from these in that (i) it
never restricts its attention to a version space when sefeathypothesis to return, and (ii) it only
requires an ERM oracle that enforces at most one exampksmmstraint, and this constraint is
only used for selective sampling. Our label complexity basiare comparable to those proved in [5]
(though somewhat worse that those in [3, 4, 6, 7]).

The use of importance weights to correct for sampling biastandard technique for many machine
learning problemsed(.g, [9, 10, 11]) including active learning [12, 13, 5]. Our atigom is based
on the importance weighted active learning (IWAL) framekvontroduced by [5]. In that work, a
rejection threshold procedure callexbs-weightings rigorously analyzed and shown to yield im-
proved label complexity bounds in certain cases. LossHutiig is more general than our technique
in that it extends beyond zero-one loss to a certain subofdgss functions such as logistic loss. On
the other hand, the loss-weighting rejection thresholdireg optimizing over a restricted version
space, which is computationally undesirable. Moreoves, ltihel complexity bound given in [5]
only applies to hypotheses selected from this version s@acknot when selected from the entire
hypothesis class (as the general IWAL framework sugge$t&).avoid these deficiencies using a
new rejection threshold procedure and a more subtle matéranalysis.

Many of the previously mentioned algorithms are analyzeth@éagnostic learning model, where
no assumption is made about the noise distribution (see[&8p In this setting, the label com-
plexity of active learning algorithms cannot generally noy®e over supervised learners by more
than a constant factor [15, 5]. However, under a paramettéiz of the noise distribution related to
Tsybakov’s low-noise condition [16], active learning aiigfoms have been shown to have improved
label complexity bounds over what is achievable in the puaghostic setting [17, 8, 18, 6, 7]. We
also consider this parameterization to obtain a tightezllabmplexity analysis.

2 Preliminaries

2.1 LearningModel

Let D be a distribution ove®r” x ) whereX is the input space anil = {+1} are the labels. Let
(X,Y) € X x Y be a pair of random variables with joint distributi@h An active learner receives
a sequencéX;,Y7), (X2,Ys),... of i.i.d. copies of(X,Y), with the labelY; hidden unless it is
explicitly queried. We use the shorthangl; to denote a sequende;,as,...,a;) (SOk = 0
correspond to the empty sequence).



Let H be a set of hypotheses mapping fréimo ). For simplicity, we assumg! is finite but does
not completely agree on any singtes X (i.e, Vz € X, 3h,h’ € H such thati(z) # k' (x)). This
keeps the focus on the relevant aspects of active learnatglitfier from passive learning. The error
of a hypothesig : X — Yiserr(h) := Pr(h(X) #Y). Leth* := argmin{err(h) : h € H} be

a hypothesis of minimum error i. The goal of the active learner is to return a hypothésisH
with errorerr(h) not much more thanarr(h*), using as few label queries as possible.

2.2 Importance Weighted Active L earning

In the importance weighted active learning (IWAL) framelaf [5], an active learner looks at
the unlabeled datX, X, ... one at a time. After each new poiiX;, the learner determines a
probability P; € [0, 1]. Then a coin with bias; is flipped, and the labéf; is queried if and only if
the coin comes up heads. The query probabififycan depend on all previous unlabeled examples
X1.,_1, any previously queried labels, any past coin flips, and tlieeat unlabeled poink;.

Formally, an IWAL algorithm specifiesrajection thresholdunctionp : (X x Y x {0,1})* x X —
[0, 1] for determining these query probabilities. gt € {0, 1} be a random variable conditionally
independent of the current labg],

Qi LY;| X1, Y11, Qi1
and with conditional expectation
E[Qi|Z1:i-1,Xs] = Pi := p(Z1:i-1, Xi).

where Z; = (X;,Y;,Q;). That is, Q; indicates if the labelY; is queried (the outcome of
the coin toss). Although the notation does not explicithggest this, the query probability
P, = p(Zi.,-1,X;) is allowed to explicitly depend on a lab&] (j < <) if and only if it has
been queried®; = 1).

2.3 Importance Weighted Estimators

We first review some standard facts about the importancehtir@gytechnique. For a functiofi :
X x Y — R, define themportance weighted estimatof E[f(X,Y)] from Z.,, € (X x Y x
{0,1})" to be

FZm) = > F g,
i=1 "

Note that this quantity depends on a labgbnly if it has been queried.€é., only if Q; = 1; it also
depends onX; only if @; = 1). Our rejection threshold will be based on a specializatibthis
estimator, specifically thenportance weighted empirical erraf a hypothesig

err(h, Zy.,) = 1 Z % -1[h(X;) £ Y.
i=1 "

n “—

In the notation of Algorithm 1, this is equivalent to

en(h,S,) = S (/P UK £ ] M)

(Xi,Y3,1/P;)€eSy

whereS,, C X x Y x R is the importance weighted sample collected by the algorith

~

A basic property of these estimatorstisbiasednessE|[f(Z1.,)] = (1/n) >, E[E[(Q:/F;) -
J(Xi,Ya) | Xuaiy Vi, Qui—a]] = (1/n) 300 E[(P/P) - f(X;,Y3)] = E[f(X,Y)]. So, for exam-
ple, the importance weighted empirical error of a hypothgds an unbiased estimator of its true
errorerr(h). This holds foranychoice of the rejection threshold that guarantBes- 0.

3 A Deviation Bound for Importance Weighted Estimators

As mentioned before, the rejection threshold used by owrdign is based on importance weighted
error estimatesrr(h, Z;.,,). Even though these estimates are unbiased, they are oialylealvhen



the variance is not too large. To get a handle on this, we nedaliation bound for importance
weighted estimators. This is complicated by two factors thies out straightforward applications
of some standard bounds:

1. The importance weighted samples;, Y;, 1/P;) (or equivalently, theZ;, = (X;,Y;, Q;))
are noti.i.d. This is because the query probabifityand thus the importance weightF;)
generally depends a#;.; 1 and.X;.

2. The effective range and variance of each term in the egimaae, themselves, random
variables.

To address these issues, we develop a deviation bound usiagiiagale technique from [19].

Let f : X x Y — [-1,1] be a bounded function. Consider any rejection thresholdtfon p :
(X xYx{0,1})* x X — (0, 1] forwhich P, = p(Z1.,—1, X,,) is bounded below by some positive
qguantity (which may depend am). Equivalently, the query probabilitieB, should have inverses
1/P, bounded above by some deterministic quantjty,.. (which, again, may depend or). The
a priori upper boundr,,.. on 1/P, can be pessimistic, as the dependence-gp. in the final
deviation bound will be very mild—it enters in &sglog r,,.... Our goal is to prove a bound on

|f(len) — E[f(X,Y)]| that holds with high probability over the joint distributiof 7 .,,.

To start, we establish bounds on the range and variance bfteen W, := (Q;/P;) - f(X;,Y;) in
the estimator, conditioned qX1.;, Y1., Q1.,—1). LetE;[ - ] denoteE] - | Xy, Y1, @1.;—1]. Note
thatE,; [W;] = (E;[Q:]/F;) - f(X;,Y:) = f(X;,Y5), sOifE;[W;] = 0, thenW; = 0. Therefore,
the (conditional) range and variance are non-zero onl§;jiV;] # 0. For the range, we have
Wil = (Qi/P;) - | f(X4,Y3:)| < 1/P;, and for the variance; [(W; — E;[W;])?] < (E;[Q?]/P?) -
f(X;,Y;)? < 1/P,. These range and variance bounds indicate the form of thiatiew we can
expect, similar to that of other classical deviation bounds

Theorem 1. Pick anyt > 0 andn > 1. Assume < 1/P; < 74, forall 1 < i < n, and let
R, :=1/min({P;, : 1 <i<n A f(X;,Y;) # 0} U{1}). With probability at leasti — 2(3 +

logy T'maz e /2,
2Rt 2t Rt
< +14/—+ .
n n 3n

1 n
i n

We defer all proofs to the appendices.

*u\@

f(X3, Vi) —E[f(X,Y

4 Algorithm

First, we state a deviation bound for the importance wejbteor of hypotheses in a finite hypoth-
esis clasg{ that holds for alln > 1. Itis a simple consequence of Theorem 1 and union bounds;
the form of the bound motivates certain algorithmic chotoelse described below.

Lemmal. Pickanyé € (0,1). Foralln > 1, let
. 161og(2(3 + nlogy n)n(n + 1)|H|/9) _0 (10g(n|7-[|/5))

n n

3

Let(Z1, Zs,...) € (X x Y x{0,1})* be the sequence of random variables specified in Section 2.2
using a rejection thresholg : (X x Y x {0,1})* x X — [0, 1] that satisfiep(z1.,, ) > 1/n™ for
all (z1.n,2) € (X x Y x{0,1})" x X and alln > 1.

The following holds with probability at least— §. Foralln > 1 and allh € H,

(err(h, Z1m) — err(h*, Zim)) — (err(h) — err(h*))] < Pm-il(h)Jer;l(h) (4)

We letCy = O(log(|H|/d)) > 2 be a quantity such that, (as defined in Eq. (3)) is bounded as
en < Cp-log(n+1)/n. The following absolute constants are used in the desenit the rejection



Algorithm 1
Notes: see Eq. (1) for the definition efr (importance weighted error), and Section 4 for the
definitions ofCy, ¢y, andc,.
Initialize: Sy := 0.
Fork=1,2,...,n:
1. Obtain unlabeled data poit;.
2. Let
hy, := argmin{err(h, Sk_1) : h € H}, and
b}, = argmin{err(h, Sk—1) : h € H N h(Xy) # hi(Xk)}.
LetGy = err(hb S}Cfl) — err(hk, Skfl), and

; Cologhk | Cologk
P, = 1 IkaS' LpOET | Mo ORR (:min{1,0<12—|—1)-0010gk}>
s otherwise G Gy k-1

wheres € (0, 1) is the positive solution to the equation

(o [Cylog k 2 Colog k
Gk(\/g Cl+1> — Jr(S 62+1) P10 (2)

3. Toss a biased coin witPr(head$ = P.
If heads, then query;,, and letSy, := Si—1 U {(X4, Yi, 1/Px)}.
Else, letSy := S,_1.
Return:h,, ;1 := argmin{err(h, S,) : h € H}.

Figure 1: Algorithm for importance weighted active leagnimith an error minimization oracle.

threshold and the subsequent analysis:= 5 + 2v/2, o := 5, c3 := ((c1 + V2)/(c1 — 2))?,
ey = (c1 + \/5)2, Cs5 = Cy +c3.

Our proposed algorithm is shown in Figure 1. The rejectiaeghold (Step 2) is based on the
deviation bound from Lemma 1. First, the importance weidlgieor minimizing hypothesis; and
the “alternative” hypothesis; are found. Note that both optimizations are over the enjipothesis
class? (with &), only being required to disagree witf), on z;)—this is a key aspect where our
algorithm differs from previous approaches. The diffeeeiitimportance weighted errots; of
the two hypotheses is then computed Glif < /(Cologk)/(k — 1) + (Cologk)/(k — 1), then
the query probabilityP is set tol. Otherwise,P;, is set to the positive solutionto the quadratic
equation in Eq. (2). The functional form &%, is roughlymin{1, (1/G% +1/Gx)-(Cologk)/(k —
1)}. It can be checked tha&, < (0, 1] and thatP;, is non-increasing witld7.. It is also useful to note
that(log k) /(k—1) is monotonically decreasing with> 1 (we use the conventiding(1)/0 = o).

In order to apply Lemma 1 with our rejection threshold, wechteeestablish the (very crude) bound
P, > 1/k* for all k.

Lemma 2. The rejection threshold of Algorithm 1 satisfigg1.,—1,z) > 1/n" forall n > 1 and
all (z1.p-1,7) € (X x Y x {0,1})""1 x x.

Note that this is a worst-case bound; our analysis showstlieaprobabilitiesP,, are more like
1/poly(k) in the typical case.

5 Analysis

5.1 Correctness

We first prove a consistency guarantee for Algorithm 1 thatrois the generalization error of the
importance weighted empirical error minimizer. The proofually establishes a lower bound on



the query probabilitied®;, > 1/2 for X, such thath, (X;) # h*(X;). This offers an intuitive

characterization of the weighting landscape induced byripartance weights / P;.
Theorem 2. The following holds with probability at lea$t— 6. For anyn > 1,

[2Cy 1 20y 1
0 S err(hn) B err(h*) S err(hn, Zli’ﬂfl) - eI'I'(h*7Zl:n,1) + - Ofn + - Ofn.
n — n —

This implies, for alln > 1,

2Cylogn  2Chlogn
hy) < h* .
err(hy,) < err(h™) +4/ — + ]

Therefore, the final hypothesis returned by Algorithm 1radeeingn unlabeled data has roughly
the same error bound as a hypothesis returned by a standssisigokearner withn labeled data. A
variant of this result under certain noise conditions i®giin the appendix.

5.2 Labe Complexity Analysis

We now bound the number of labels requested by Algorithm @r aftiterations. The following
lemma bounds the probability of querying the labg! this is subsequently used to establish the
final bound on the expected number of labels queried. Thed#yetproof is in relating empirical
error differences and their deviations to the probabilftywerying a label. This is mediated through
the disagreement coefficigrd quantity first used by [14] for analyzing the label compierf the

A? algorithm of [3]. The disagreement coefficight= 6(h*, H, D) is defined as

Pr(X e BIS(h ,7)) e 0}

O(h*,H,D) := sup {

where
DIS(h*,r) := {z € X : 30’ € H such thatPr(h*(X) # 1/ (X)) < randh*(z) # h'(z)}

(the disagreement region arouht at radiusr). This quantity is bounded for many learning prob-
lems studied in the literature; see [14, 6, 20, 21] for mosewsion. Note that the supremum can
instead be taken over> e if the target excess error éswhich allows for a more detailed analysis.

Lemma 3. Assume the bounds from Hg) holds for allh € # andn > 1. For anyn > 1,

1 log2
E[Qn]§9-2err(h*)+0<9.\/W_Fe.co 0g n>
n—1 n—1

Theorem 3. With probability at leasti — §, the expected number of labels queried by Algorithm 1
aftern iterations is at most

146 -2err(h*)-(n—1)+0 (9-\/C’inogn—|—0-0010g3n).

The bound is dominated by a linear term scaledsihyh*), plus a sublinear term. The linear term
err(h*) - n is unavoidable in the worst case, as evident from label cexityllower bounds [15, 5].
Whenerr(h*) is negligible €.g, the data is separable) afids bounded (as is the case for many
problems studied in the literature [14]), then the boundeasents a polynomial label complex-
ity improvement over supervised learning, similar to thettiaved by the version space algorithm
from [5].

5.3 Analysisunder Low Noise Conditions

Some recent work on active learning has focused on impraeel tomplexity under certain noise
conditions [17, 8, 18, 6, 7]. Specifically, it is assumed thate exists constants> 0 and0 < a <
1 such that

Pr(h(X) # h* (X)) < & - (err(h) — err(h*))” (5)
for all h € H. This is related to Tsybakov’s low noise condition [16]. &sally, this condition
requires that low error hypotheses not be too far from ther@thypothesis:* under the disagree-
ment metricPr(h*(X) # h(X)). Under this condition, Lemma 3 can be improved, which in turn
yields the following theorem.



Theorem 4. Assume that for some valueof> 0 and0 < a < 1, the condition in Eq(5) holds
forall h € H. There is a constant, > 0 depending only o such that the following holds. With
probability at leastl — §, the expected number of labels queried by Algorithm 1 aftéerations is
at most

)0/2 oplma/2

0-k-co-(Cologn n
Note that the bound is sublinearnfor all 0 < « < 1, which implies label complexity improve-
ments whenevef is bounded (an improved analogue of Theorem 2 under theghtioms can be
established using similar techniques). The previous #lguos of [6, 7] obtain even better rates
under these noise conditions using specialized data depegéneralization bounds, but these al-
gorithms also required optimizations over restricted ieerspaces, even for the bound computation.

6 Experiments

Although agnostic learning is typically intractable in tlerst case, empirical risk minimization can
serve as a useful abstraction for many practical supenlesding algorithms in non-worst case
scenarios. With this in mind, we conducted a preliminaryegikpental evaluation of Algorithm 1,
implemented using a popular algorithm for learning decidi@es in place of the required ERM
oracle. Specifically, we use tl3et8 algorithm from Weka v3.6.2 (with default parameters) tesel
the hypothesisi;, in each roundk; to produce the “alternative” hypothests,, we just modify
the decision treé;, by changing the label of the node used for predictingegn Both of these
procedures are clearly heuristic, but they are similar initsfp the required optimizations. We
setCy = 8 andec; = co = 1—these can be regarded as tuning parameters, G4tbontrolling
the aggressiveness of the rejection threshold. We did ndonpe parameter tuning with active
learning although the importance weighting approach apezl here could potentially be used for
that. Rather, the goal of these experiments is to assesthpatibility of Algorithm 1 with an
existing, practical supervised learning procedure.

6.1 Data Sets

We constructed two binary classification tasks using MNI8@ IKDDCUP99 data sets. For MNIST,
we randomly chos&000 training3s andss for training (using th&s as the positive class), and used
all of the 1902 testing3s and5s for testing. For KDDCUP99, we randomly chag#)0 examples
for training, and anothex000 for testing. In both cases, we reduced the dimension of ttetdas
using PCA.

To demonstrate the versatility of our algorithm, we alsodraied a multi-class classification exper-
iment using the entire MNIST data set (all ten digitsp8600 training data and0000 testing data).
This required modifying how;, is selected: we forcé) (zx) # hi(zk) by changing the label of
the prediction node for,. to the next best label. We used PCA to reduce the dimensiéh to

6.2 Reaults

We examined the test error as a function of (i) the number lafheied data seen, and (ii) the number
of labels queried. We compared the performance of the aletaraer described above to a passive
learner (one that queries every label, so (i) and (ii) aresttree) using 48 with default parameters.

In all three cases, the test errors as a function of the nuofhatabeled data were roughly the same
for both the active and passive learners. This agrees wathdhsistency guarantee from Theorem 2.
We note that this is a basic properigt satisfied by many active learning algorithms (this issue is
discussed further in [22]).

In terms of test error as a function of the number of labelgigde(Figure 2), the active learner
had minimal improvement over the passive learner on therpiWINIST task, but a substantial
improvement over the passive learner on the KDDCUP99 tagkn(at small numbers of label
queries). For the multi-class MNIST task, the active leatred a moderate improvement over the
passive learner. Note that KDDCUP99 is far less noisy (mepasable) than MNISBs vs5s task,

so the results are in line with the label complexity behasgiaggested by Theorem 3, which states
that the label complexity improvement may scale with thereaf the optimal hypothesis. Also,
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Figure 2: Test errors as a function of the number of labelsigde

the results from MNIST tasks suggest that the active leamagrrequire an initial random sampling
phase during which it is equivalent to the passive learrat,the advantage manifests itself after
this phase. This again is consistent with the analysis @ded14]), as the disagreement coefficient
can be large at initial scales, yet much smaller as the nuwfh@nlabeled) data increases and the
scale becomes finer.

7 Conclusion

This paper provides a new active learning algorithm baseérmr minimization oracles, a depar-
ture from the version space approach adopted by previousswdhe algorithm we introduce here
motivates computationally tractable and effective meshfad active learning with many classifier
training algorithms. The overall algorithmic template Bggto any training algorithm that (i) op-
erates by approximate error minimization and (ii) for whibk cost of switching a class prediction
(as measured by example errors) can be estimated. Furtteraithough these properties might
only hold in an approximate or heuristic sense, the creatidedearning algorithm will be “safe”
in the sense that it will eventually converge to the samet&wilas a passive supervised learning
algorithm. Consequently, we believe this approach can delwised to reduce the cost of labeling
in situations where labeling is expensive.

Recent theoretical work on active learning has focused @nawming rates of convergence. However,

in some applications, it may be desirable to improve peréoroe at much smaller sample sizes, per-
haps even at the cost of improved rates as long as consisteangured. Importance sampling and

weighting techniques like those analyzed in this work maydeful for developing more aggressive

strategies with such properties.
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A Proof of Deviation Bound for Importance Weighted Estimators

The techniques here are mostly developed in [19]; for cotapkss, we detail the proofs for our
particular application. The first two lemmas establish addasund in terms of conditional moment
generating functions.

Lemma4. Forall n > 1 and all functionalsg; := &;(Z1.;),
n n
E |exp <Z = — ZlnEi[eXp(Ei)O] = 1.
=1 1=1

Proof. A straightforward induction om. O

Lemmab. Forallt > 0, A € R, n > 1, and functionalE; := &;(Z1.;),
n n
Pr ()\Z = — ZlnEi[exp()\Ei)] > t) <e
1=1 i=1

Proof. The claim follows by Markov’s inequality and Lemma 4 (reptag=; with \Z=,). O

In order to specialize Lemma 5 for our purposes, we first aegllye conditional moment generating
function of W; — E;[W;].

Lemmaé. If 0 < A < 3P;, then
InE;[exp(A(W; — E;[W;]))] <

If E; [WA =0, then
InE;[exp(A(W; — E;[W;]))] = 0.

Proof. Let g(z) := (exp(z) —x — 1)/x? for z # 0, soexp(z) = 1 +x + 22 - g(z). Note thaty(x)
is non-decreasing. Thus,
E; [exp(A(W;i — Ei[Wi]))]
= B [14+AWi — E[Wi)) + XN (W; — Ei[Wi])? - g(A(W; — i [W3)))]

= 14+ A2 -E; [(W; = EWi])? - g(\(W; — By [Wi)))]
< 1+ XK (W —EWi))? - g(A/ P)]

= 1+ X -E; [(W; — Ei[W3)*] - g(A/Py)

< 14+ (N/P)-g(\/P)

where the first inequality follows from the range bouyfld;| < 1/P; and the second follows from
variance bound;[(W; —E;[W;])?] < 1/P;. Now the first claim follows from the definition gf(z),
the factsexp(z) — 2 — 1 < 2%/(2(1 — 2/3)) for 0 <z < 3andin(1 + z) < .

The second claim is immediate from the definitioV®f and the fact, [W;] = f(X;,Y). O

We now combine Lemma 6 and Lemma 5 to bound the deviation afipertance weighted esti-
mator f(Zy.,) from (1/n) >"1_ E;[W;].
Lemma?7. Pickanyt > 0,n > 1, andp,,;, > 0, and letE be the (joint) event

1 — 1 — I 2t 1 t
=) Wi—— ) E[Wi > C— e
n; n; [ ] n+ 3n

Pmin Pmin
and min{P, : 1 <i<n A E;[W;] #0} > pmin-
ThenPr(E) < e™t.

10



Proof. With foresight, let

T
3Pmin 3N
A= 3pmzn : ﬁ
1 1
+ 3Pmin 3N

Note that0 < A < 3p.,.in. By Lemma 6 and the choice of we have that ifinin{P; : 1 < i <
n A ]El[WZ] #* O} > Dmin, then

1 1 A Tt
— ) _InE; AW = E;[Wi]))] < : =3\ — 5 (6
Tl)\ ; " [exp( (W [W]))] Pmin 2(1 - )\/(Sp'min)) Pmin 2” ( )
and
t 1 t 1 t
— = [ C— 7
nA Pmin 2n * Pmin 3n ( )

Let £’ be the event that

LS = B — > IEfesp(AGW; — EW)] >
i=1 i=1

nA
and letE” be the eveniin{P; : 1 <i < n A E;[W;] # 0} > pmin. Together, Eq. (6) and Eq. (7)

imply E C E'’NE". And of course 2’ N E” C E’, soPr(E) < Pr(E'NE") < Pr(E') < e !'by
Lemma 5. O

To do away with the joint event in Lemma 7, we use the standaiklof taking a union bound over
a geometric sequence of possible valuefgr, .

Lemma 8. Pick anyt > 0 andn > 1. Assumel < 1/P; < rpq. forall 1 < i < n, and let
R, :=1/min{P;: 1 <i<n A E;[W;] #0}U{1}. We have

1 & 1 «

Proof. The assumption o®; implies1 < R,, < 74, Letr; = 2 for -1 < j < m :=
[logs T'mas |- Then

1 & 1 & 2R,t Ryt
Pr{— i—— ) E[W;| > -
r<n;W n; Wil n + 3n>

m 1 n 1 n 2Rnt Rnt

1 - 1 " /27‘]'_1t Tj_lt
;PI‘ <n;W1—n§E1[WZ] Z T+ 3n A RHS’I"]‘

2Rt nt _
R +R> < 2(2 4 logg Tmaz)e t/2,

n 3n

Y

IN

m

1 — 1 — 2r;(t/2)  r;i(t/2)
- §Pr<n;m—n;mm]z T = A Ru <y

< (24 logy 7"magc)e_t/2

where the last inequality follows from Lemma 7. Replaciig with —1¥; bounds the probability
of deviations in the other direction in exactly the same walye claim then follows by the union
bound. O

Proof of Theorem 1By Hoeffding’s inequality and the fa¢f (X;,Y;)| < 1, we have

Pr( > 2t> < 2e /2,

n
SinceE;[W;] = f(X;,Y;), the claim follows by combining this and Lemma 8 with the rigée
inequality and the union bound. O

3 (X Yi) ~ BIF(X,Y)]
i=1

11



B Remaining Proofs

In this section, we use the notatiep := C log(k + 1) /k.

B.1 Proof of Lemma 2

By induction onn. Trivial for n = 1 (sincep(empty sequence) = 1 for all z € X), so now fix
anyn > 2 and assume as the inductive hypothesis; = p(z1.,—2,2) > 1/(n — 1)"~! for all
(21m—2,7) € (AxYx{0,1})"2xX. Fixany(z1.,_1,7) € (XxYx{0,1})"~1x X, and consider
the error difference,, := err(h),, z1.n—1) — err(hy, 21.,—1) Used to determing,, := p(z1.,_1, ).
We only have to consider the cage > /2,1 + £,—1. By the inductive hypothesis and triangle
inequality, we have,, < 2(n — 1)"~!. Solving the quadratic in Eq. (2) implies

c1-\En_1+ \/ﬁ cenc1+4- (gnt (a1 —1) Eni+(c2—1) - en_1) - C2-Eny

VP = 2(gn+(c1—1) 1+ (c2— 1) €n—1)
\/4- (gn+(c1=1) En1+(co—1) €n_1) C2-En _
> (dropping terms)

2(gn+(c1—1) - fEn1+ (c2—1) - €n—1)

o €2 En—1
gn+(c1—=1) ena1+(c2—1) er1

> €2 Cn-t (sincecy < ¢)
C: C
“Vognt+(aa—1)-ena+(c1—1) ep 2=

Co  Ep_ .

222l (sincegn > /En1 + Ene1)
C1 ' Gn
co - Cologn

C1 - (n - 1) “In

co - Cologn ] _ .
= hypoth
> \/261 =1 (n—1) T (inductive hypothesis)

g \/Tl) (sinceCo > 2,n > 2, and(c; - Colog2)/(2e1) > 1/e)

(
> ni" (since(n/(n—1))" >e)

as required. O

B.2 Proof of Theorem 2

We condition on thel — § probability event that the deviation bounds from Lemma Idhelso
using Lemma 2). The proof now proceeds by inductiomofhe claim is trivially true fom = 1.
Now pick anyn > 2 and assume as the (strong) inductive hypothesis that

0 < err(hg) —err(h™) < err(hg, Z1.p—1) —err(h*, Z1.p—1) + /265—1 + 2651 (8)
forall1 < k <n — 1. We need to show Eq. (8) holds fbr= n.

Eq. (4) implies that Eq. (8) holds fdr = n as needed. So assume for sake of contradiction that
Pin < 1/2,and letng := max{i <n —1: P, = Ppin N hy(X;) # h*(X;)}. By definition of
P,,, we have

C2

C
err(h;lo, Zl:ngfl)_err(h‘ngyZl:nofl) = (\/F)li —c1+ 1) \/5n071+ (P —C2 + 1) Eng—1-

12



Using this fact together with the inductive hypothesis, \&eeh
err(h;w Ziing—1) —err(h*, Z1.00-1)

=err(hl, , Z1mg—1) — err(hng, Z1ng—1) + (Mg, Z1mg—1) — err(h*, Z1.ng—1)

no?

C1 Co
> (\/m—m+1>-m+<Pmin—62+1).Eno_l—\/m_ggno_l

(o) vEae (R e ) e ©

We use the assumptidh,,;,, < 1/2 to lower bound the righthand side to get the inequality

err(hibo, Zl:ng—l) — err(h*, Zl:ng—l) > (61 — 1) . (\/§ — 1) “VEng—1*+ (62 — 1) “Eng—1 > 0.

which implieserr(h;, , Z1.n,—1) > err(h*, Zi.n,-1). Sinceh;, minimizeserr(h, Z1.,,-1) among

hypothesed € # that disagree witth,,, on X,,,, it must be that* agrees with,,, on X,,,. By
transitivity and the definition of.o, we conclude that,, (X,,,) = h;, (Xn,); Soerr(hy, Z1.ny—1) >
err(h;m, Zl:no—l)- Then

err(hn, Zl:n—l) - err(h*, Zl:n,—l)
1 1
CEp_1 —
Pmin ! szn

* 1 1
> ert(hn, Ziing—1) — err(h™, Zimg—1) — 2 - \/% “Epg—1 — 2+ B Eng—1

C1 -2 C2 -2
Z (\/Pmin_01+1_\/§) . €n01+(Pmin _02_1> ot
> ((Cl — 1) . (\/5— 1) — 2\/§> “VEng—1 T (CQ — 5) “Eng—1

where Eq. (4) is used in the first two inequalities, Eq. (9) a&ne facterr(h,, Z1.no—1) >
err(hy, , Z1.n,—1) are used in the third inequality, and the fdet,,, < 1/2 is used in the last
inequality. This final quantity is non-negative, so we have tontradictiorerr(h,,, Z1.,—1) >
err(h*, Z1.p—1). O

> err(hy,) — err(h™) — “En—1

B.3 Proof of Lemma3

First, we establish a property of the query probabilitiest trelates error deviations (ViE,,;,,)
to empirical error differences (vi&,). Both quantities play essential roles in bounding thellabe
complexity through the disagreement metric structure raoldui .

Lemma9. Assume the bounds from Eg) hold for all h € H andn > 1. For anyn > 1, we have
P, < c¢3 - Ppin, WhereP,,;, :=min({P; : 1 <i<n-1 A h(X;) # h*(X;)} U{1}) and

b { h, if h, disagrees withh* on X, 10

R, if ], disagrees withh* on X,.

Proof. We can assumé,,,;, < 1/cs, since otherwise the claim is trivial. Pick amy < n — 1
such that(X,,,) # h*(X,,) andP,, = P, (such amy is guaranteed to exist given the above
assumption). We now proceed as in the proof of Theorem 2. Weditow a lower bound on
err(h, Z1.ng—1) — err(h*, Z1.m,—1). Note that

err(hy,,, Z1ng—1) — err(h™, Z1.no—1)
= err(h;m, Zl:no—l) - err(hnm Zl:no—l) + err(hnO,leno_l) _ err(h*, Zl:no_l)

Cc1 C2
- (m mat 1) Vet (Pmm —at 1) Enom1 T V2ot~ 2enot

C1 C2
() v (g o) e .
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where the inequality follows from Theorem 2. The righthaitess positive, sdv* must disagree
with h;, on X,,,. By transitivity (recalling that.(X,,,) # h*(Xy,,)), h must agree witth;, on
X, Thereforeerr(h, Zy.n, 1) — err(hy, , Z1.n,—1) > 0, SO the inequality in Eq. (11) holds with
h in place ofh;, on the lefthand side.

Now err(h, Z1.,—1) — err(h*, Z1.,—1) is related toerr(h, Z1.n,—1) — err(h*, Z1.n,—1) through
err(h) — err(h*) using the deviation bound from Eq. (4) (as well as the fagt | > ¢,,_1):

err(h, Zl:n—l) — err(h*, Zl:n—l)

1 1
>err(h, Z1.ng—1) —err(h*, Z1mg—1) — 2 - \/% CEpg—1 — 2 P “Eng—1

C1 co — 2

—2
> - 1-V2) e —co—1) e, 0. 12
_<\/Pmin ar f) : 1+<Pmm “ ) : L ( )

If h = hy, thenerr(h, Z1.,—1) — err(h*, Z1.,—1) = err(hy, Z1.n—1) — err(h*, Z1.,—1) < 0 by the
minimality of err(h,,, Z1.,—1); this contradicts Eq. (12). Therefore it must be that h/,. In this
case,

err(h, Z1.,_1) — err(h*, Z1.,_1) < err(h!

n’

= (\/c%n —c+ 1) “VEn—1+ (chi —C2 + 1) “En—1 (13)

where the inequality follows from the minimality efr(h,,, Z1.,—1), and the subsequent step fol-
lows from the definition ofP,,. Combining the lower bound in Eq. (12) and the upper bound in
Eqg. (13) implies that

Zl:n—l) - err(hm Zl:n—l)

(&) C2 C1 — 2 Co — 2
4/  VeEn— D S cn— Z - 2] Ven— -2 n—1-
VPn : 1+Pn et (VPmin \/>) : 1+(Pmin ) : '
It is easily checked that this implid3, < c¢3 - Ppin. O

Proof of Lemma 3Defineh as in Eq. (10). By Lemma 9, we havein({P;, : 1 <i<n—1 A
h(X;) # h*(X;)} U{1}) > P,/cs. We first show that

err(h) —err(h*) < err(h, Zy1.n—1) —err(h*, Z1.n—1) + /%’ cEn_1+ chi “Ep_1

/| C C
é Fi RV En—1 + Fi *En—1- (14)

The first inequality follows from Eq. (4) and Lemma 9. For tleesnd inequality, we consider two
cases depending dn If h = k!, then we boundrr(h, Z1.,—1) — err(h*, Z1.,—1) from above by

eI'I'(h;u Zl:n—l) - eI‘I‘(hna Zl:n—l) (by definition of and mll’llmallty Oferr(hn, Zl:”_l))' and then
simplify
[ a
err(hna; 1in 1) eI‘I’(hru Lin 1>+\/F+ Pn et
(A mart) vaE (TR e ) e < [ vET e e

using the definition of?, and the factg; > 1 andcy, > 1. If insteadh = h,,, then we use the facts
err(h, Z1.n—1) —err(h*, Z1.,—1) = ert(hy, Z1.n—1) —err(h*, Z1.,—1) < 0andes < min{cy, ¢5}.

If err(h) — err(h*) = v > 0, then solving the quadratic inequality in Eq. (14) 8y gives the

bound
P, < min{l7 § <C4 + 65) -€n_1}.
2 ,-Y2 ~y

If err(h) — err(h*) < 7, then by the triangle inequality we have
Pr(h*(X) # h(X)) < err(h*) +err(h) < 2err(h*) +7
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which in turn impliesX,, € DIS(h*, 2 err(h*) 4+ 7). Note thatPr(X,, € DIS(h*,2err(h*)+7)) <
0 - (2err(h*) + 7) by definition ofd, soPr(err(h) — err(h*) < 7) <0 - (2err(h*) + 7).

Let f(vy) := 9Pr(err(h) — err(h*) < ~)/0v be the probability density (mass) function of the
error differencesrr(h) — err(h*); note that this error difference is a function(&;.,, 1, X,,). We
compute the expected value @f, by conditioning orerr(h) — err(h*) and integrating (an upper
bound on)E[Q,,| err(h) — err(h*) = ~] with respect tof ().

Lety, > 0 be the positive solution td.5(cs/v* + ¢5/7)en—1 = 1. It can be checked that >

V1.5¢4e,_1. We have
E[Q.] = EE[Qn|Z1:m-1, Xn]] (the outer expectation is ovéZ;.,, 1, X,,))

= /0 (gy Pr(err(h) — err(h*) < 7)) -E[Qn|err(h) — err(h*) =~] - dy

L7 3 cs  cs
< = — ) < . mi A R .
< /0 (67 Pr(err(h) — err(h*) < ”y)) min {1, 5 (72 + ’y) €n1} dry

! 0 3 Cq Cs
_ — mi — . = = ]. . — ) < .
/0 (87 mm{L 5 (72 + 7) En1}> Pr(err(h) — err(h*) <) - dy

1

3 (2 cs %

~(C4+05)-En,1+/ 5 (34—#2) cep—1-0-(2err(h*) 4+ ) - dy
o v v

3

2

3 3 1 1
:§~(C4+C5)-€n_1+9~26r1‘(h*)~§- <c4 <721) +c5 (1)) “En—1

0
3 1 1
0-—- (264 ( — 1) —|—C5ln> “Ep_1
2 Y0 Y0

(ca+c5) en_1+0-2err(h*) + 6 \/6cyen_1+0- “Ep—1-1n

where the first inequality uses the bound®j@),, | err(h) — err(h*) = 7] the second inequality
uses integration-by-parts; the third inequality uses #ue that the integrand from the previous line
is 0 for 0 < v < 40, as well as the bound dPr(err(h) — err(h*) < +); and the fourth inequality
uses the definition ofy. O

IN

IN

B.4 Proof of Theorem 4

The theorem is a simple consequence of the following analoejllemma 3.

Lemma 10. Assume that for some valueof> 0 and0 < « < 1, the condition in Eq(5) holds
for all h € H. Assume the bounds from Eg) holds for allh € # andn > 1. There is a constant
ce > 0 such that the following holds. For any> 1,

E[Q,] ga-ﬁ-ca(

Proof. For the most part, the proof is the same as that of Lemma 3. @hédiKerence is to use the
noise condition in Eq. (5) to directly bourdth(h(X) # h*(X)) < k- (err(h) — err(h*))®, which
in turn implies the boundr(err(h) — err(h*) < ) < Oxy“. As before, letyy > /1.5cse,,—1 be
the solution tal.5(cs/v% + ¢5/7v)en—1 = 1. First consider the case < 1. Then, the expectation of
Q,, can be bounded as

1

3 3 2c c
E[Qu] < 2 - (ca+cs) - enn + / 3 (5‘ + ) 1 - Pr(err(h) — err(h*) < 7) - dy
2 v 2 0 vy
3 3 2c c
<5 (eates)-en- 1+/ 3 (4+ 5)~€n_1~9m°"d7
Yo
3 3 2¢y 1 Ccs 1
S2'(C4+C5)'5n_1+9',€'2.(2—04'78_(1+1—C¥"}/é_a>.8n_1.
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The casex = 1 is handled similarly. O

B.5 Analogue of Theorem 2 under L ow Noise Conditions

We first state a variant of Lemma 1 that takes into account thiegbility of disagreement between
a hypothesig and the optimal hypothesis'.

Lemma 11. There exists an absolute constant> 0 such that the following holds. Pick any
6 €(0,1). Foralln > 1, let

¢ log((n + DIH/5)

Enp =

n
Let(Z1, Zs,...) € (X x Y x{0,1})* be the sequence of random variables specified in Section 2.2
using a rejection thresholg : (X x Y x {0,1})* x X — [0, 1] that satisfiep(z1.,, z) > 1/n™ for
all (z1.n,2) € (X x Y x{0,1})" x X and alln > 1.

The following holds with probability at least— §. Foralln > 1 and allh € H,

|(err(h, Z1.,) — err(h*, Z1.,)) — (err(h) —err(h*))| < \/Pr(héil)ni(];:)()()) cEn+ #T;(h)

Proof sketch.The proof of this lemma follows along the same lines as thdteshma 1. A key
difference comes in Lemma 7: the joint event is modified to alsnjoin with

fZ]l F(X:,Y)]<0) < a

for some fixedz > 0. In the proof, the parametershould be chosen as

I 2a
3Pmin 3n
A = 3Pmin - Sy
. 2at
a+ 3pm1n 3n

Lemma 8 is modified to also take a union bound over a sequengessfble values fox (in fact,
only n + 1 different values need to be considered). Finally, instdatbmbining with Hoeffding's
inequality, we use Bernstein’s inequality (or a multiptica form of Chernoff’s bound) so the re-
sulting bound (an analogue of Theorem 1) involves an engigicerage inside the square-root term:

with probability at least — O(n - logy T'max e~ /2,
<0 ( BnAnt + R“)
n 3n

Ap == U(f(X3,Yi) #0).

i=1

Z F(Xi, i) —E[f(X, V)]

where

Finally, we apply this deviation bound to obtain uniformarbounds over all hypothesés (a
few extra steps are required to replace the empirical giyadtj in the bound with a distributional
guantity). O

Using the previous lemma, a modified version of Theorem ?¥adlfrom essentially the same proof.
We note that the quantity; := O(log(|#|/d)) used here may differ fror6y by constant factors.

Lemma 12. The following holds with probability at least— 6. For anyn > 1,
0 < err(hy,) —err(h*) < err(hn, Z1.n—1) — err(h™, Z1.p—1)
+\/2Pr( 2(X) # h*(X))C logn N 2Cy logn.

n—1 n—1

This implies, for alln > 1,
ere(hy) < err(h*)+\/2Pr( n(X) # h*(X))Ci logn . 2Cologn'

n—1 n—1
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Finally, using the noise condition to bouttd (s, (X) # h*(X)) < & - (err(hy,) — err(h*))®, we
obtain the final error bound.

Theorem 5. The following holds with probability at least— ¢. For anyn > 1,

C logn) =

n—1

err(hy,) < err(h*) + ¢y - <

wherec,, is a constant that depends only en
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