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Spoilers

Springer Series in Statistics

"A model with zero training error is —
overfit to the training data and will Rt el =n
typically generalize poorly."

— Hastie, Tibshira ni, & Friedma n, Data Mining, Inference, and Prediction
The Elements of Statistical Learning

We'll give empirical and theoretical evidence
against this conventional wisdom, at least in
"modern" settings of machine learning.



Outline

1. Statistical learning setup
2. Empirical observations against the conventional wisdom

3. Risk bounds for rules that interpolate
e Simplicial interpolation
* Weighted interpolated nearest neighbor (if time permits)



Supervised learning
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Modern machine learning algorithms

* Choose (parameterized) function class F c Y+
* E.g., linear functions, polynomials, neural networks with certain architecture

e Use optimization algorithm to (attempt to) minimize empirical risk

. 1%
R(f) = ﬁz 2(f (%), ;)

(a.k.a. training error).

* But how "big" or "complex” should this function class be?
(Degree of polynomial, size of neural network architecture, ...)



Overfitting
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Generalization theory

* Generalization theory explains how overfitting can be avoided

* Most basic form:

E [maxR(f) - R(H)| =

Complexity(F)

\

n

* Complexity of F can be measured in many ways:
e Combinatorial parameter (e.g., Vapnik-Chervonenkis dimension)

* Log-covering number in L?(P) metric

 Rademacher complexity (supremum of Rademacher process)
* Functional / parameter norms (e.g., Reproducing Kernel Hilbert Space norm)



"Classical” risk decomposition

* Let g* € arg min R(g) be measurable function of smallest risk

g:xX-Yy
*let f* € arg 5;161:};1 R(f) be function in F of smallest risk
* Then:
R(f) = R(g*) _|_ R(f ) —R(g") Approximation
+[R(f*) — R(f* )i
+ 5’? R(FH)]
+ | R(f)]
* Smaller F: larger Approximation term, smaller term

e Larger F: smaller Approximation term, larger term



Balancing the two terms...

"Sweet spot" that balances
approximation and generalization
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The plot thickens...

Empirical observations raise new questions



Some observations from the field

(Zhang, Bengio, Hardt, Recht, & Vinyals, 2017)

Deep neural networks:

e Can fit any training data.

* Can generalize even when
training data has substantial
amount of label noise.
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More observations from the field

(Belkin, Ma, & Mandal, 2018)

Kernel machines:

* Can fit any training data, given enough
time and rich enough feature space.

* Can generalize even when training data
has substantial amount of label noise.
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Overfitting or perfect fitting?

* Training produces a function f that perfectly fits noisy training data.
. f is likely a very complex function!

* Yet, test error off is non-trivial: e.g., noise rate + 5%.

Existing generalization bounds are uninformative for
function classes that can interpolate noisy data.

A

* f chosen from class rich enough to express all possible

ways to label 0(n) training examples.
« Bound must exploit specific properties of how f is chosen.
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Existing theory about local interpolation

Nearest neighbor (cover & Hart, 1967)  Hilbert kernel (pevroye, Gyérfi, & krzyzak, 1998)

* Predict with label of nearest * Special kind of smoothing kernel
training example regression (like Shepard's method)

* Interpolates training data * Interpolates training data

* Risk—= 2-R(g*) (sortof) * Consistent, but no convergence rates

1
=) = e

FIG. 2. The Hilbert kernel regression estimate with a = 1. 14



Our goals

* Counter the "conventional wisdom" re: interpolation
Show interpolation methods can be consistent (or almost consistent)
for classification & regression problems

* |[dentify some useful properties of certain local prediction methods
* Suggest connections to practical methods



New theoretical results

Theoretical analyses of two new interpolation schemes
1. Simplicial interpolation
* Natural linear interpolation based on multivariate triangulation
* Asymptotic advantages compared to nearest neighbor rule
2. Weighted & interpolated nearest neighbor (WiNN) method
* Consistency + non-asymptotic convergence rates

Joint work with Misha Belkin (Ohio State Univ.) & Partha Mitra (Cold Spring Harbor Lab.)
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Simplicial interpolation



Basic idea

 Construct estimate 7j of the regression function
n(x) =E[y" | x" =x]

* Regression function n is minimizer of risk for squared loss
£@,y) =@ —y)°

* For binary classification Y = {0,1}:
‘n(x)=Pr(y' =11x" =x)

 Optimal classifier: g*(x) = Hn(x)%
* We'll construct plug-in classifier f(x) =1 . 1 based on7
U(x)>§



Consistency and convergence rates

Questions of interest:
* What is the (expected) risk of f as n — 007? Is it near optimal (R(g*))?

* What what rate (as function of n) does E[R(f)] approach R(g™)?



Interpolation via multivariate triangulation

* 1ID training examples (x4, ¥1), ..., (x,, ¥,) € R4x[0,1]
* Partition C = conv(xy, ..., X;,;) into simplices with x; as vertices via Delaunay.
* Define 71(x) on each simplex by affine interpolation of vertices' labels.
* Result is piecewise linear on C.

* For classification (y € {0,1}), let f be plug-in classifier based on 7.

/ \




What happens on a single simplex

* Simplex on x4, ..., X441 With corresponding labels y4, ..., V441
* Test point x in simplex, with barycentric coordinates (w4, ..., W44+1).
* Linear interpolation at x (i.e., least squares fit, evaluated at x):

X1 d+1
n(x) = z WiYi
i=1
X3 Key idea: aggregates information

from all vertices to make prediction.
X2 (C.f. nearest neighbor rule.)
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Comparison to nearest neighbor rule

* Supposen(x) =Pr(y = 1| x) < 1/2 for all points in a simplex

* Optimal prediction of g™ is O for all points in simplex.

* Supposey; = - =y4 =0, buty;,1 =1 (due to "label noise")
L1 L1
0 f(x) =1 here 0

Effect is exponentially
more pronounced in

\ / high dimensions!
I I
i) I3 i) / I

3

Nearest neighbor rule Simplicial interpolation



Asymptotic risk (binary classification)

Theorem: Assume distribution of x' is uniform on some convex set, and
n is bounded away from 1/2. Then simplicial interpolation's plug-in

classifier f satisfies )
limsup E[R(f)| < (1 + e D). R(g*)
n

* Near-consistency in high-dimension
* C.f. nearest neighbor classifier: limsup IE[R(f)] ~ 2 -R(g")
n

* "Blessing" of dimensionality (with caveat about convergence rate).
* Also have analysis for regression + classification w/o condition on




Weighted & interpolated NN



Weighted & interpolated NN (wiNN) scheme

* For given test point x, let X(1)r =1 X (k) be k nearest neighbors in
training data, and let y(4), ..., Y k) be corresponding labels.

Define
D wxm) Yo
T](.X') - k
i=1 W, X))

X(1)

X where

=)
winxp) = [lx—xpl -, §>0

X(2)

X (k)

Interpolation: 7(x) - y; as x — x;



Comparison to Hilbert kernel estimate

Weighted & interpolated NN Hilbert kernel (pevroye, Gysrfi, & Krzyzak, 1998)
A Z§€=1 w(x, X)) Y A . i1 w(x, x;) yi
n(x) = ” nx) = <5
i=1 W(X, X)) i=1 W(x, x;)
w(x, X)) = [|1x — x| 7° w(x, x;) = [lx — x| 7°

Our analysisneeds 0 < 6 < d/2 MUST have 6 = d for consistency

Localization makes it possible to prove non-asymptotic rate.
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Convergence rates (regression)

Theorem: Assume distribution of x’ is uniform on some compact set
satisfying regularity condition, and n is a-Holder smooth.

For appropriate setting of k, wiNN estimate 7j satisfies
E[R(M] < R() + 0(n~2/a+d))

* Consistency + optimal rates of convergence for interpolating method.
* Also get consistency and rates for classification.




Conclusions and open problems

1. Interpolation is compatible with good statistical properties

2. Need good inductive bias:
E.g., functions that do local averaging in high-dimensions.

Open problems
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