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Spoilers

"A model with zero training error is 
overfit to the training data and will 
typically generalize poorly."

– Hastie, Tibshirani, & Friedman, 
The Elements of Statistical Learning
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During the past decade there has been an explosion in computation and information tech-
nology. With it have come vast amounts of data in a variety of fields such as medicine, biolo-
gy, finance, and marketing. The challenge of understanding these data has led to the devel-
opment of new tools in the field of statistics, and spawned new areas such as data mining,
machine learning, and bioinformatics. Many of these tools have common underpinnings but
are often expressed with different terminology. This book describes the important ideas in
these areas in a common conceptual framework. While the approach is statistical, the
emphasis is on concepts rather than mathematics. Many examples are given, with a liberal
use of color graphics. It should be a valuable resource for statisticians and anyone interested
in data mining in science or industry. The book’s coverage is broad, from supervised learning
(prediction) to unsupervised learning. The many topics include neural networks, support
vector machines, classification trees and boosting—the first comprehensive treatment of this
topic in any book.

This major new edition features many topics not covered in the original, including graphical
models, random forests, ensemble methods, least angle regression & path algorithms for the
lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on
methods for “wide” data (p bigger than n), including multiple testing and false discovery rates.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at
Stanford University. They are prominent researchers in this area: Hastie and Tibshirani
developed generalized additive models and wrote a popular book of that title. Hastie co-
developed much of the statistical modeling software and environment in R/S-PLUS and
invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the
very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-
mining tools including CART, MARS, projection pursuit and gradient boosting.
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We'll give empirical and theoretical evidence 
against this conventional wisdom, at least in 
"modern" settings of machine learning.



Outline

1. Statistical learning setup
2. Empirical observations against the conventional wisdom
3. Risk bounds for rules that interpolate
• Simplicial interpolation
• Weighted interpolated nearest neighbor (if time permits)
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Supervised learning
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Learning algorithm

Training data (labeled examples)
!", $" , … , (!', $') from )×+

Prediction function
,-:) → +

Test point
!′ ∈ )

Predicted label
,- !′ ∈ +

/t/

/k/ /a/
…

2 ← 2 − 5∇ 7ℛ(2)

(IID from 9)

Risk: ℛ - ≔ ; ℓ - != , $=
where !′, $′ ∼ 9



Modern machine learning algorithms

• Choose (parameterized) function class ℱ ⊂ #$
• E.g., linear functions, polynomials, neural networks with certain architecture

• Use optimization algorithm to (attempt to) minimize empirical risk

%ℛ ' ≔ 1
*+,-.

/
ℓ ' 1, , 3,

(a.k.a. training error).

• But how "big" or "complex" should this function class be?
(Degree of polynomial, size of neural network architecture, …)
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Overfitting
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True risk

Empirical risk

Model complexity



Generalization theory

• Generalization theory explains how overfitting can be avoided
• Most basic form:

! max
%∈ℱ

ℛ(*) − -ℛ(*) ≲ Complexity(ℱ)
7

• Complexity of 8 can be measured in many ways:
• Combinatorial parameter (e.g., Vapnik-Chervonenkis dimension)
• Log-covering number in 9: ; metric
• Rademacher complexity (supremum of Rademacher process)
• Functional / parameter norms (e.g., Reproducing Kernel Hilbert Space norm)
• …
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"Classical" risk decomposition

• Let !∗ ∈ arg min
*:,→.

ℛ(!) be measurable function of smallest risk

• Let 2∗ ∈ argmin
3∈ℱ

ℛ(2) be function in ℱ of smallest risk

• Then:
ℛ 52 = ℛ !∗ + ℛ 2∗ − ℛ !∗

+ 9ℛ 2∗ − ℛ 2∗
+ 9ℛ 52 − 9ℛ 2∗
+ ℛ 52 − 9ℛ 52

• Smaller ℱ: larger Approximation term, smaller Generalization term
• Larger ℱ: smaller Approximation term, larger Generalization term
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Approximation
Sampling
Optimization
Generalization



Balancing the two terms…
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True risk

Empirical risk

Model complexity

"Sweet spot" that balances
approximation and generalization



The plot thickens…
Empirical observations raise new questions
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Some observations from the field

Deep neural networks:
• Can fit any training data.
• Can generalize even when 

training data has substantial 
amount of label noise.

(Zhang, Bengio, Hardt, Recht, & Vinyals, 2017)
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More observations from the field
(Belkin, Ma, & Mandal, 2018)
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MNIST

Kernel machines:
• Can fit any training data, given enough 

time and rich enough feature space.
• Can generalize even when training data 

has substantial amount of label noise.



Overfitting or perfect fitting?

• Training produces a function !" that perfectly fits noisy training data.
• !" is likely a very complex function!

• Yet, test error of !" is non-trivial:  e.g., noise rate + 5%.
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Existing generalization bounds are uninformative for 
function classes that can interpolate noisy data.
• !" chosen from class rich enough to express all possible 

ways to label Ω(%) training examples.
• Bound must exploit specific properties of how !" is chosen.



Existing theory about local interpolation

Nearest neighbor (Cover & Hart, 1967)

• Predict with label of nearest 
training example
• Interpolates training data
• Risk → 2 ⋅ ℛ(&∗) (sort of)

Hilbert kernel (Devroye, Györfi, & Krzyżak, 1998)

• Special kind of smoothing kernel 
regression (like Shepard's method)

• Interpolates training data
• Consistent, but no convergence rates

) * − *, = 1
* − *, /
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Our goals

• Counter the "conventional wisdom" re: interpolation
Show interpolation methods can be consistent (or almost consistent)  
for classification & regression problems
• Identify some useful properties of certain local prediction methods
• Suggest connections to practical methods
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New theoretical results

Theoretical analyses of two new interpolation schemes
1. Simplicial interpolation
• Natural linear interpolation based on multivariate triangulation
• Asymptotic advantages compared to nearest neighbor rule

2. Weighted & interpolated nearest neighbor (wiNN) method
• Consistency + non-asymptotic convergence rates
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Joint work with Misha Belkin (Ohio State Univ.) & Partha Mitra (Cold Spring Harbor Lab.)



Simplicial interpolation
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Basic idea

• Construct estimate "̂ of the regression function
" # = % &' #' = #

• Regression function " is minimizer of risk for squared loss
ℓ )&, & = )& − & ,

• For binary classification - = {0,1}:
• " # = Pr(&' = 1 ∣ #' = #)
• Optimal classifier: 7∗ # = 9: ; <=>
• We'll construct plug-in classifier ?@ # = 9A: ; <=>

based on "̂
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Consistency and convergence rates

Questions of interest:
• What is the (expected) risk of !" as # → ∞? Is it near optimal (ℛ((∗))?
• What what rate (as function of #) does + ℛ !" approach ℛ((∗)?

19



Interpolation via multivariate triangulation

• IID training examples !", $" , … , !&, $& ∈ ℝ)×[0,1]
• Partition / ≔ conv !", … , !& into simplices with !5 as vertices via Delaunay.
• Define 7̂(!) on each simplex by affine interpolation of vertices' labels.
• Result is piecewise linear on /.  (Punt on what happens outside of /.)

• For classification ($ ∈ {0,1}), let <= be plug-in classifier based on 7̂.
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!"

!#

!$

What happens on a single simplex

• Simplex on !", … , !'(" with corresponding labels )", … , )'("
• Test point ! in simplex, with barycentric coordinates (+", … ,+'(").
• Linear interpolation at ! (i.e., least squares fit, evaluated at !):

.̂ ! = 0
12"

'("
+1)1

!
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Key idea: aggregates information 
from all vertices to make prediction.
(C.f. nearest neighbor rule.)



Comparison to nearest neighbor rule

• Suppose ! " = Pr(' = 1 ∣ ") < 1/2 for all points in a simplex
• Optimal prediction of .∗ is 0 for all points in simplex.

• Suppose '0 = ⋯ = '2 = 0, but '240 = 1 (due to "label noise")

x1

x3x2

0

0 1

Nearest neighbor rule

x1

x3x2

0

0 1

Simplicial interpolation

56 " = 1 here
Effect is exponentially 
more pronounced in 
high dimensions!
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Asymptotic risk (binary classification)
Theorem: Assume distribution of !′ is uniform on some convex set, and 
# is bounded away from 1/2. Then simplicial interpolation's plug-in 
classifier '( satisfies

limsup
/

0 ℛ( '() ≤ 1 + 678 9 ⋅ ℛ ;∗
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• Near-consistency in high-dimension
• C.f. nearest neighbor classifier: limsup

/
0 ℛ( '() ≈ 2 ⋅ ℛ ;∗

• "Blessing" of dimensionality (with caveat about convergence rate).
• Also have analysis for regression + classification w/o condition on #



Weighted & interpolated NN
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Weighted & interpolated NN (wiNN) scheme

• For given test point !, let !(#), … , ! ' be ( nearest neighbors in 
training data, and let )(#), … , ) ' be corresponding labels.
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!(#)

!(*)
!(')

!

Define

,̂ ! = ∑/0#' 1(!, ! / ) ) /
∑/0#' 1(!, ! / )

where
1 !, ! / = ! − ! /

34, 5 > 0

Interpolation:   ,̂ ! → )/ as  ! → !/



Comparison to Hilbert kernel estimate

Weighted & interpolated NN Hilbert kernel (Devroye, Györfi, & Krzyżak, 1998)

"̂ # = ∑&'() *(#, # & ) . &
∑&'() *(#, # & )

*(#, # & ) = ‖# − # & ‖12

Our analysis needs 0 < 5 < 6/2

"̂ # = ∑&'(9 *(#, #&) .&
∑&'(9 *(#, #&)

* #, #& = # − #& 12

MUST have 5 = 6 for consistency
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Localization makes it possible to prove non-asymptotic rate.



Convergence rates (regression)
Theorem: Assume distribution of !′ is uniform on some compact set 
satisfying regularity condition, and # is $-Holder smooth.

For appropriate setting of %, wiNN estimate #̂ satisfies
' ℛ #̂ ≤ ℛ # + + ,-.//(./23)
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• Consistency + optimal rates of convergence for interpolating method.
• Also get consistency and rates for classification.



Conclusions and open problems

1. Interpolation is compatible with good statistical properties
2. Need good inductive bias:

E.g., functions that do local averaging in high-dimensions.

Open problems
• Formally characterize inductive bias of interpolation with existing 

methods (e.g., neural nets, kernel machines, random forests)
• Srebro: Simplicial interpolation = GD on infinite width ReLU network (d=1)

• Benefits of interpolation?
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