
Reducing contextual bandits to supervised learning

Daniel Hsu
Columbia University

Based on joint work with A. Agarwal, S. Kale,
J. Langford, L. Li, and R. Schapire

1

Learning to interact: example #1

Practicing physician

Loop:
1. Patient arrives with symptoms, medical history, genome . . .
2. Prescribe treatment.
3. Observe impact on patient’s health (e.g., improves, worsens).

Goal: prescribe treatments that yield good health outcomes.

2

Learning to interact: example #1

Practicing physician
Loop:
1. Patient arrives with symptoms, medical history, genome . . .

2. Prescribe treatment.
3. Observe impact on patient’s health (e.g., improves, worsens).

Goal: prescribe treatments that yield good health outcomes.

2

Learning to interact: example #1

Practicing physician
Loop:
1. Patient arrives with symptoms, medical history, genome . . .
2. Prescribe treatment.

3. Observe impact on patient’s health (e.g., improves, worsens).

Goal: prescribe treatments that yield good health outcomes.

2

Learning to interact: example #1

Practicing physician
Loop:
1. Patient arrives with symptoms, medical history, genome . . .
2. Prescribe treatment.
3. Observe impact on patient’s health (e.g., improves, worsens).

Goal: prescribe treatments that yield good health outcomes.

2

Learning to interact: example #1

Practicing physician
Loop:
1. Patient arrives with symptoms, medical history, genome . . .
2. Prescribe treatment.
3. Observe impact on patient’s health (e.g., improves, worsens).

Goal: prescribe treatments that yield good health outcomes.

2

Learning to interact: example #2

Website operator

Loop:
1. User visits website with profile, browsing history . . .
2. Choose content to display on website.
3. Observe user reaction to content (e.g., click, “like”).

Goal: choose content that yield desired user behavior.

3

Learning to interact: example #2

Website operator
Loop:
1. User visits website with profile, browsing history . . .

2. Choose content to display on website.
3. Observe user reaction to content (e.g., click, “like”).

Goal: choose content that yield desired user behavior.

3

Learning to interact: example #2

Website operator
Loop:
1. User visits website with profile, browsing history . . .
2. Choose content to display on website.

3. Observe user reaction to content (e.g., click, “like”).

Goal: choose content that yield desired user behavior.

3

Learning to interact: example #2

Website operator
Loop:
1. User visits website with profile, browsing history . . .
2. Choose content to display on website.
3. Observe user reaction to content (e.g., click, “like”).

Goal: choose content that yield desired user behavior.

3

Learning to interact: example #2

Website operator
Loop:
1. User visits website with profile, browsing history . . .
2. Choose content to display on website.
3. Observe user reaction to content (e.g., click, “like”).

Goal: choose content that yield desired user behavior.

3

Contextual bandit problem

For t = 1, 2, . . . ,T :

0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.
1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Task: choose at ’s that yield high expected reward (w.r.t. D).

Contextual: use features xt to choose good actions at .
Bandit: rt(a) for a 6= at is not observed.

(Non-bandit setting: whole reward vector r t ∈ [0, 1]A is observed.)

4

Contextual bandit problem

For t = 1, 2, . . . ,T :

0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.

1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Task: choose at ’s that yield high expected reward (w.r.t. D).

Contextual: use features xt to choose good actions at .
Bandit: rt(a) for a 6= at is not observed.

(Non-bandit setting: whole reward vector r t ∈ [0, 1]A is observed.)

4

Contextual bandit problem

For t = 1, 2, . . . ,T :

0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.

1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Task: choose at ’s that yield high expected reward (w.r.t. D).

Contextual: use features xt to choose good actions at .
Bandit: rt(a) for a 6= at is not observed.

(Non-bandit setting: whole reward vector r t ∈ [0, 1]A is observed.)

4

Contextual bandit problem

For t = 1, 2, . . . ,T :

0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.

1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Task: choose at ’s that yield high expected reward (w.r.t. D).

Contextual: use features xt to choose good actions at .
Bandit: rt(a) for a 6= at is not observed.

(Non-bandit setting: whole reward vector r t ∈ [0, 1]A is observed.)

4

Contextual bandit problem

For t = 1, 2, . . . ,T :
0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.
1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Task: choose at ’s that yield high expected reward (w.r.t. D).

Contextual: use features xt to choose good actions at .
Bandit: rt(a) for a 6= at is not observed.

(Non-bandit setting: whole reward vector r t ∈ [0, 1]A is observed.)

4

Contextual bandit problem

For t = 1, 2, . . . ,T :
0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.
1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Task: choose at ’s that yield high expected reward (w.r.t. D).

Contextual: use features xt to choose good actions at .
Bandit: rt(a) for a 6= at is not observed.

(Non-bandit setting: whole reward vector r t ∈ [0, 1]A is observed.)

4

Contextual bandit problem

For t = 1, 2, . . . ,T :
0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.
1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Task: choose at ’s that yield high expected reward (w.r.t. D).

Contextual: use features xt to choose good actions at .

Bandit: rt(a) for a 6= at is not observed.

(Non-bandit setting: whole reward vector r t ∈ [0, 1]A is observed.)

4

Contextual bandit problem

For t = 1, 2, . . . ,T :
0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.
1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Task: choose at ’s that yield high expected reward (w.r.t. D).

Contextual: use features xt to choose good actions at .
Bandit: rt(a) for a 6= at is not observed.

(Non-bandit setting: whole reward vector r t ∈ [0, 1]A is observed.)

4

Challenges

1. Exploration vs. exploitation.
I Use what you’ve already learned (exploit), but also

learn about actions that could be good (explore).
I Must balance to get good statistical performance.

2. Must use context.
I Want to do as well as the best policy (i.e., decision rule)

π : context x 7→ action a

from some policy class Π (a set of decision rules).
I Computationally constrained w/ large Π (e.g., all decision trees).

3. Selection bias, especially while exploiting.

5

Challenges

1. Exploration vs. exploitation.
I Use what you’ve already learned (exploit), but also

learn about actions that could be good (explore).
I Must balance to get good statistical performance.

2. Must use context.
I Want to do as well as the best policy (i.e., decision rule)

π : context x 7→ action a

from some policy class Π (a set of decision rules).
I Computationally constrained w/ large Π (e.g., all decision trees).

3. Selection bias, especially while exploiting.

5

Challenges

1. Exploration vs. exploitation.
I Use what you’ve already learned (exploit), but also

learn about actions that could be good (explore).
I Must balance to get good statistical performance.

2. Must use context.
I Want to do as well as the best policy (i.e., decision rule)

π : context x 7→ action a

from some policy class Π (a set of decision rules).
I Computationally constrained w/ large Π (e.g., all decision trees).

3. Selection bias, especially while exploiting.

5

Challenges

1. Exploration vs. exploitation.
I Use what you’ve already learned (exploit), but also

learn about actions that could be good (explore).
I Must balance to get good statistical performance.

2. Must use context.
I Want to do as well as the best policy (i.e., decision rule)

π : context x 7→ action a

from some policy class Π (a set of decision rules).
I Computationally constrained w/ large Π (e.g., all decision trees).

3. Selection bias, especially while exploiting.

5

Learning objective

Regret (i.e., relative performance) to a policy class Π:

max
π∈Π

1
T

T∑
t=1

rt(π(xt))︸ ︷︷ ︸
average reward of best policy

− 1
T

T∑
t=1

rt(at)︸ ︷︷ ︸
average reward of learner

Strong benchmark if Π contains a policy w/ high expected reward!

Goal: regret → 0 as fast as possible as T →∞.

6

Learning objective

Regret (i.e., relative performance) to a policy class Π:

max
π∈Π

1
T

T∑
t=1

rt(π(xt))︸ ︷︷ ︸
average reward of best policy

− 1
T

T∑
t=1

rt(at)︸ ︷︷ ︸
average reward of learner

Strong benchmark if Π contains a policy w/ high expected reward!

Goal: regret → 0 as fast as possible as T →∞.

6

Learning objective

Regret (i.e., relative performance) to a policy class Π:

max
π∈Π

1
T

T∑
t=1

rt(π(xt))︸ ︷︷ ︸
average reward of best policy

− 1
T

T∑
t=1

rt(at)︸ ︷︷ ︸
average reward of learner

Strong benchmark if Π contains a policy w/ high expected reward!

Goal: regret → 0 as fast as possible as T →∞.

6

Our result

New fast and simple algorithm for contextual bandits.

I Operates via reduction to supervised learning
(with computationally-efficient reduction).

I Statistically (near) optimal regret bound.

7

Our result

New fast and simple algorithm for contextual bandits.

I Operates via reduction to supervised learning
(with computationally-efficient reduction).

I Statistically (near) optimal regret bound.

7

Our result

New fast and simple algorithm for contextual bandits.

I Operates via reduction to supervised learning
(with computationally-efficient reduction).

I Statistically (near) optimal regret bound.

7

Need for exploration

No-exploration approach:

1. Using historical data, learn a “reward predictor” for each
action a ∈ A based on context x ∈ X :

r̂(a | x) .

2. Then deploy policy π̂, given by

π̂(x) := argmax
a∈A

r̂(a | x) ,

and collect more data.

Suffers from selection bias.

8

Need for exploration

No-exploration approach:
1. Using historical data, learn a “reward predictor” for each

action a ∈ A based on context x ∈ X :

r̂(a | x) .

2. Then deploy policy π̂, given by

π̂(x) := argmax
a∈A

r̂(a | x) ,

and collect more data.

Suffers from selection bias.

8

Need for exploration

No-exploration approach:
1. Using historical data, learn a “reward predictor” for each

action a ∈ A based on context x ∈ X :

r̂(a | x) .

2. Then deploy policy π̂, given by

π̂(x) := argmax
a∈A

r̂(a | x) ,

and collect more data.

Suffers from selection bias.

8

Need for exploration

No-exploration approach:
1. Using historical data, learn a “reward predictor” for each

action a ∈ A based on context x ∈ X :

r̂(a | x) .

2. Then deploy policy π̂, given by

π̂(x) := argmax
a∈A

r̂(a | x) ,

and collect more data.

Suffers from selection bias.

8

Using no-exploration

Example: two contexts {X ,Y }, two actions {A,B}.

Suppose initial policy says π̂(X) = A and π̂(Y) = B .

Observed rewards
A B

X 0.7 —
Y — 0.1

Reward estimates
A B

X 0.7 0.5
Y 0.5 0.1

New policy: π̂′(X) = π̂′(Y) = A.

Observed rewards
A B

X 0.7 —
Y 0.3 0.1

Reward estimates
A B

X 0.7 0.5
Y 0.3 0.1

True rewards
A B

X 0.7 1.0
Y 0.3 0.1

Never try action B in context X . Ω(1) regret.

9

Using no-exploration

Example: two contexts {X ,Y }, two actions {A,B}.

Suppose initial policy says π̂(X) = A and π̂(Y) = B .

Observed rewards
A B

X 0.7 —
Y — 0.1

Reward estimates
A B

X 0.7 0.5
Y 0.5 0.1

New policy: π̂′(X) = π̂′(Y) = A.

Observed rewards
A B

X 0.7 —
Y 0.3 0.1

Reward estimates
A B

X 0.7 0.5
Y 0.3 0.1

True rewards
A B

X 0.7 1.0
Y 0.3 0.1

Never try action B in context X . Ω(1) regret.

9

Using no-exploration

Example: two contexts {X ,Y }, two actions {A,B}.

Suppose initial policy says π̂(X) = A and π̂(Y) = B .

Observed rewards
A B

X 0.7 —
Y — 0.1

Reward estimates
A B

X 0.7 0.5
Y 0.5 0.1

New policy: π̂′(X) = π̂′(Y) = A.

Observed rewards
A B

X 0.7 —
Y 0.3 0.1

Reward estimates
A B

X 0.7 0.5
Y 0.3 0.1

True rewards
A B

X 0.7 1.0
Y 0.3 0.1

Never try action B in context X . Ω(1) regret.

9

Using no-exploration

Example: two contexts {X ,Y }, two actions {A,B}.

Suppose initial policy says π̂(X) = A and π̂(Y) = B .

Observed rewards
A B

X 0.7 —
Y — 0.1

Reward estimates
A B

X 0.7 0.5
Y 0.5 0.1

New policy: π̂′(X) = π̂′(Y) = A.

Observed rewards
A B

X 0.7 —
Y 0.3 0.1

Reward estimates
A B

X 0.7 0.5
Y 0.3 0.1

True rewards
A B

X 0.7 1.0
Y 0.3 0.1

Never try action B in context X . Ω(1) regret.

9

Using no-exploration

Example: two contexts {X ,Y }, two actions {A,B}.

Suppose initial policy says π̂(X) = A and π̂(Y) = B .

Observed rewards
A B

X 0.7 —
Y — 0.1

Reward estimates
A B

X 0.7 0.5
Y 0.5 0.1

New policy: π̂′(X) = π̂′(Y) = A.

Observed rewards
A B

X 0.7 —
Y 0.3 0.1

Reward estimates
A B

X 0.7 0.5
Y 0.3 0.1

True rewards
A B

X 0.7 1.0
Y 0.3 0.1

Never try action B in context X . Ω(1) regret.

9

Using no-exploration

Example: two contexts {X ,Y }, two actions {A,B}.

Suppose initial policy says π̂(X) = A and π̂(Y) = B .

Observed rewards
A B

X 0.7 —
Y — 0.1

Reward estimates
A B

X 0.7 0.5
Y 0.5 0.1

New policy: π̂′(X) = π̂′(Y) = A.

Observed rewards
A B

X 0.7 —
Y 0.3 0.1

Reward estimates
A B

X 0.7 0.5
Y 0.3 0.1

True rewards
A B

X 0.7 1.0
Y 0.3 0.1

Never try action B in context X . Ω(1) regret.

9

Using no-exploration

Example: two contexts {X ,Y }, two actions {A,B}.

Suppose initial policy says π̂(X) = A and π̂(Y) = B .

Observed rewards
A B

X 0.7 —
Y — 0.1

Reward estimates
A B

X 0.7 0.5
Y 0.5 0.1

New policy: π̂′(X) = π̂′(Y) = A.

Observed rewards
A B

X 0.7 —
Y 0.3 0.1

Reward estimates
A B

X 0.7 0.5
Y 0.3 0.1

True rewards
A B

X 0.7 1.0
Y 0.3 0.1

Never try action B in context X .

Ω(1) regret.

9

Using no-exploration

Example: two contexts {X ,Y }, two actions {A,B}.

Suppose initial policy says π̂(X) = A and π̂(Y) = B .

Observed rewards
A B

X 0.7 —
Y — 0.1

Reward estimates
A B

X 0.7 0.5
Y 0.5 0.1

New policy: π̂′(X) = π̂′(Y) = A.

Observed rewards
A B

X 0.7 —
Y 0.3 0.1

Reward estimates
A B

X 0.7 0.5
Y 0.3 0.1

True rewards
A B

X 0.7 1.0
Y 0.3 0.1

Never try action B in context X . Ω(1) regret.

9

Dealing with policies

Feedback in round t: reward of chosen action rt(at).

I Tells us about policies π ∈ Π s.t. π(xt) = at .
I Not informative about other policies!

Possible approach: track average reward of each π ∈ Π.

I Exp4 (Auer, Cesa-Bianchi, Freund, & Schapire, FOCS 1995).

I Statistically optimal regret bound O

(√
K logN

T

)
for K := |A| actions and N := |Π| policies after T rounds.

I Explicit bookkeeping is computationally intractable
for large N.

But perhaps policy class Π has some structure . . .

10

Dealing with policies

Feedback in round t: reward of chosen action rt(at).

I Tells us about policies π ∈ Π s.t. π(xt) = at .
I Not informative about other policies!

Possible approach: track average reward of each π ∈ Π.

I Exp4 (Auer, Cesa-Bianchi, Freund, & Schapire, FOCS 1995).

I Statistically optimal regret bound O

(√
K logN

T

)
for K := |A| actions and N := |Π| policies after T rounds.

I Explicit bookkeeping is computationally intractable
for large N.

But perhaps policy class Π has some structure . . .

10

Dealing with policies

Feedback in round t: reward of chosen action rt(at).

I Tells us about policies π ∈ Π s.t. π(xt) = at .
I Not informative about other policies!

Possible approach: track average reward of each π ∈ Π.

I Exp4 (Auer, Cesa-Bianchi, Freund, & Schapire, FOCS 1995).

I Statistically optimal regret bound O

(√
K logN

T

)
for K := |A| actions and N := |Π| policies after T rounds.

I Explicit bookkeeping is computationally intractable
for large N.

But perhaps policy class Π has some structure . . .

10

Dealing with policies

Feedback in round t: reward of chosen action rt(at).

I Tells us about policies π ∈ Π s.t. π(xt) = at .
I Not informative about other policies!

Possible approach: track average reward of each π ∈ Π.

I Exp4 (Auer, Cesa-Bianchi, Freund, & Schapire, FOCS 1995).

I Statistically optimal regret bound O

(√
K logN

T

)
for K := |A| actions and N := |Π| policies after T rounds.

I Explicit bookkeeping is computationally intractable
for large N.

But perhaps policy class Π has some structure . . .

10

Dealing with policies

Feedback in round t: reward of chosen action rt(at).

I Tells us about policies π ∈ Π s.t. π(xt) = at .
I Not informative about other policies!

Possible approach: track average reward of each π ∈ Π.

I Exp4 (Auer, Cesa-Bianchi, Freund, & Schapire, FOCS 1995).

I Statistically optimal regret bound O

(√
K logN

T

)
for K := |A| actions and N := |Π| policies after T rounds.

I Explicit bookkeeping is computationally intractable
for large N.

But perhaps policy class Π has some structure . . .

10

Dealing with policies

Feedback in round t: reward of chosen action rt(at).

I Tells us about policies π ∈ Π s.t. π(xt) = at .
I Not informative about other policies!

Possible approach: track average reward of each π ∈ Π.

I Exp4 (Auer, Cesa-Bianchi, Freund, & Schapire, FOCS 1995).

I Statistically optimal regret bound O

(√
K logN

T

)
for K := |A| actions and N := |Π| policies after T rounds.

I Explicit bookkeeping is computationally intractable
for large N.

But perhaps policy class Π has some structure . . .

10

Hypothetical “full-information” setting
If we observed rewards for all actions . . .

I Like supervised learning, have labeled data after t rounds:

(x1,ρ1), . . . , (xt ,ρt) ∈ X × RA .

context −→ features
actions −→ classes
rewards −→ −costs
policy −→ classifier

I Can often exploit structure of Π to get tractable algorithms.
Abstraction: argmax oracle (AMO)

AMO
({

(xi ,ρi)
}t
i=1

)
:= argmax

π∈Π

t∑
i=1

ρi (π(xi)) .

Can’t directly use this in bandit setting.

11

Hypothetical “full-information” setting
If we observed rewards for all actions . . .

I Like supervised learning, have labeled data after t rounds:

(x1,ρ1), . . . , (xt ,ρt) ∈ X × RA .

context −→ features
actions −→ classes
rewards −→ −costs
policy −→ classifier

I Can often exploit structure of Π to get tractable algorithms.
Abstraction: argmax oracle (AMO)

AMO
({

(xi ,ρi)
}t
i=1

)
:= argmax

π∈Π

t∑
i=1

ρi (π(xi)) .

Can’t directly use this in bandit setting.

11

Hypothetical “full-information” setting
If we observed rewards for all actions . . .

I Like supervised learning, have labeled data after t rounds:

(x1,ρ1), . . . , (xt ,ρt) ∈ X × RA .

context −→ features
actions −→ classes
rewards −→ −costs
policy −→ classifier

I Can often exploit structure of Π to get tractable algorithms.
Abstraction: argmax oracle (AMO)

AMO
({

(xi ,ρi)
}t
i=1

)
:= argmax

π∈Π

t∑
i=1

ρi (π(xi)) .

Can’t directly use this in bandit setting.

11

Hypothetical “full-information” setting
If we observed rewards for all actions . . .

I Like supervised learning, have labeled data after t rounds:

(x1,ρ1), . . . , (xt ,ρt) ∈ X × RA .

context −→ features
actions −→ classes
rewards −→ −costs
policy −→ classifier

I Can often exploit structure of Π to get tractable algorithms.
Abstraction: argmax oracle (AMO)

AMO
({

(xi ,ρi)
}t
i=1

)
:= argmax

π∈Π

t∑
i=1

ρi (π(xi)) .

Can’t directly use this in bandit setting.

11

Hypothetical “full-information” setting
If we observed rewards for all actions . . .

I Like supervised learning, have labeled data after t rounds:

(x1,ρ1), . . . , (xt ,ρt) ∈ X × RA .

context −→ features
actions −→ classes
rewards −→ −costs
policy −→ classifier

I Can often exploit structure of Π to get tractable algorithms.
Abstraction: argmax oracle (AMO)

AMO
({

(xi ,ρi)
}t
i=1

)
:= argmax

π∈Π

t∑
i=1

ρi (π(xi)) .

Can’t directly use this in bandit setting.
11

Using AMO with some exploration

Explore-then-exploit

1. In first τ rounds, choose at ∈ A u.a.r. to get
unbiased estimates r̂ t of r t for all t ≤ τ .

2. Get π̂ := AMO({(xt , r̂ t)}τt=1).
3. Henceforth use at := π̂(xt), for t = τ+1, τ+2, . . . ,T .

Regret bound with best τ : ∼ T−1/3 (sub-optimal).

(Dependencies on |A| and |Π| hidden.)

12

Using AMO with some exploration

Explore-then-exploit
1. In first τ rounds, choose at ∈ A u.a.r. to get

unbiased estimates r̂ t of r t for all t ≤ τ .

2. Get π̂ := AMO({(xt , r̂ t)}τt=1).
3. Henceforth use at := π̂(xt), for t = τ+1, τ+2, . . . ,T .

Regret bound with best τ : ∼ T−1/3 (sub-optimal).

(Dependencies on |A| and |Π| hidden.)

12

Using AMO with some exploration

Explore-then-exploit
1. In first τ rounds, choose at ∈ A u.a.r. to get

unbiased estimates r̂ t of r t for all t ≤ τ .
2. Get π̂ := AMO({(xt , r̂ t)}τt=1).

3. Henceforth use at := π̂(xt), for t = τ+1, τ+2, . . . ,T .

Regret bound with best τ : ∼ T−1/3 (sub-optimal).

(Dependencies on |A| and |Π| hidden.)

12

Using AMO with some exploration

Explore-then-exploit
1. In first τ rounds, choose at ∈ A u.a.r. to get

unbiased estimates r̂ t of r t for all t ≤ τ .
2. Get π̂ := AMO({(xt , r̂ t)}τt=1).
3. Henceforth use at := π̂(xt), for t = τ+1, τ+2, . . . ,T .

Regret bound with best τ : ∼ T−1/3 (sub-optimal).

(Dependencies on |A| and |Π| hidden.)

12

Using AMO with some exploration

Explore-then-exploit
1. In first τ rounds, choose at ∈ A u.a.r. to get

unbiased estimates r̂ t of r t for all t ≤ τ .
2. Get π̂ := AMO({(xt , r̂ t)}τt=1).
3. Henceforth use at := π̂(xt), for t = τ+1, τ+2, . . . ,T .

Regret bound with best τ : ∼ T−1/3 (sub-optimal).

(Dependencies on |A| and |Π| hidden.)

12

Previous contextual bandit algorithms

Exp4 (Auer, Cesa-Bianchi, Freund, & Schapire, FOCS 1995).
Optimal regret, but explicitly enumerates Π.

Greedy (Langford & Zhang, NIPS 2007)
Sub-optimal regret, but one call to AMO.

Monster (Dudik, Hsu, Kale, Karampatziakis, Langford, Reyzin, &
Zhang, UAI 2011)
Near optimal regret, but O(T 6) calls to AMO.

13

Previous contextual bandit algorithms

Exp4 (Auer, Cesa-Bianchi, Freund, & Schapire, FOCS 1995).
Optimal regret, but explicitly enumerates Π.

Greedy (Langford & Zhang, NIPS 2007)
Sub-optimal regret, but one call to AMO.

Monster (Dudik, Hsu, Kale, Karampatziakis, Langford, Reyzin, &
Zhang, UAI 2011)
Near optimal regret, but O(T 6) calls to AMO.

13

Previous contextual bandit algorithms

Exp4 (Auer, Cesa-Bianchi, Freund, & Schapire, FOCS 1995).
Optimal regret, but explicitly enumerates Π.

Greedy (Langford & Zhang, NIPS 2007)
Sub-optimal regret, but one call to AMO.

Monster (Dudik, Hsu, Kale, Karampatziakis, Langford, Reyzin, &
Zhang, UAI 2011)
Near optimal regret, but O(T 6) calls to AMO.

13

Previous contextual bandit algorithms

Exp4 (Auer, Cesa-Bianchi, Freund, & Schapire, FOCS 1995).
Optimal regret, but explicitly enumerates Π.

Greedy (Langford & Zhang, NIPS 2007)
Sub-optimal regret, but one call to AMO.

Monster (Dudik, Hsu, Kale, Karampatziakis, Langford, Reyzin, &
Zhang, UAI 2011)
Near optimal regret, but O(T 6) calls to AMO.

13

Our result

Let K := |A| and N := |Π|.

Our result: a new, fast and simple algorithm.

I Regret bound: Õ
(√

K logN
T

)
.

Near optimal.

I # calls to AMO: Õ
(√

TK
logN

)
.

Less than once per round!

14

Rest of the talk

Components of the new algorithm:
Importance-weighted LOw-Variance Epoch-Timed Oracleized CONtextual BANDITS

1. “Classical” tricks: randomization, inverse propensity weighting.
2. Efficient algorithm for balancing exploration/exploitation.
3. Additional tricks: warm-start and epoch structure.

15

1. Classical tricks

16

What would’ve happened if I had done X?

For t = 1, 2, . . . ,T :
0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.
1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Q: How do I learn about rt(a) for actions a I don’t actually take?

A: Randomize. Draw at ∼ pt for some pre-specified prob. dist. pt .

17

What would’ve happened if I had done X?

For t = 1, 2, . . . ,T :
0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.
1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Q: How do I learn about rt(a) for actions a I don’t actually take?

A: Randomize. Draw at ∼ pt for some pre-specified prob. dist. pt .

17

What would’ve happened if I had done X?

For t = 1, 2, . . . ,T :
0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.
1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Q: How do I learn about rt(a) for actions a I don’t actually take?

A: Randomize. Draw at ∼ pt for some pre-specified prob. dist. pt .

17

Inverse propensity weighting (Horvitz & Thompson, JASA 1952)

Importance-weighted estimate of reward from round t:

∀a ∈ A � r̂t(a) :=
rt(at) · 1{a = at}

pt(at)

=


rt(at)

pt(at)
if a = at ,

0 otherwise .

Unbiasedness:

Eat∼pt

[
r̂t(a)

]
=
∑
a′∈A

pt(a
′) · rt(a

′) · 1{a = a′}
pt(a′)

= rt(a) .

Range and variance: upper-bounded by 1
pt(a) .

Estimate avg. reward of policy: R̂ewt(π) := 1
t

∑t
i=1 r̂i (π(xi)).

How should we choose the pt?

18

Inverse propensity weighting (Horvitz & Thompson, JASA 1952)

Importance-weighted estimate of reward from round t:

∀a ∈ A � r̂t(a) :=
rt(at) · 1{a = at}

pt(at)
=


rt(at)

pt(at)
if a = at ,

0 otherwise .

Unbiasedness:

Eat∼pt

[
r̂t(a)

]
=
∑
a′∈A

pt(a
′) · rt(a

′) · 1{a = a′}
pt(a′)

= rt(a) .

Range and variance: upper-bounded by 1
pt(a) .

Estimate avg. reward of policy: R̂ewt(π) := 1
t

∑t
i=1 r̂i (π(xi)).

How should we choose the pt?

18

Inverse propensity weighting (Horvitz & Thompson, JASA 1952)

Importance-weighted estimate of reward from round t:

∀a ∈ A � r̂t(a) :=
rt(at) · 1{a = at}

pt(at)
=


rt(at)

pt(at)
if a = at ,

0 otherwise .

Unbiasedness:

Eat∼pt

[
r̂t(a)

]
=
∑
a′∈A

pt(a
′) · rt(a

′) · 1{a = a′}
pt(a′)

= rt(a) .

Range and variance: upper-bounded by 1
pt(a) .

Estimate avg. reward of policy: R̂ewt(π) := 1
t

∑t
i=1 r̂i (π(xi)).

How should we choose the pt?

18

Inverse propensity weighting (Horvitz & Thompson, JASA 1952)

Importance-weighted estimate of reward from round t:

∀a ∈ A � r̂t(a) :=
rt(at) · 1{a = at}

pt(at)
=


rt(at)

pt(at)
if a = at ,

0 otherwise .

Unbiasedness:

Eat∼pt

[
r̂t(a)

]
=
∑
a′∈A

pt(a
′) · rt(a

′) · 1{a = a′}
pt(a′)

= rt(a) .

Range and variance: upper-bounded by 1
pt(a) .

Estimate avg. reward of policy: R̂ewt(π) := 1
t

∑t
i=1 r̂i (π(xi)).

How should we choose the pt?

18

Inverse propensity weighting (Horvitz & Thompson, JASA 1952)

Importance-weighted estimate of reward from round t:

∀a ∈ A � r̂t(a) :=
rt(at) · 1{a = at}

pt(at)
=


rt(at)

pt(at)
if a = at ,

0 otherwise .

Unbiasedness:

Eat∼pt

[
r̂t(a)

]
=
∑
a′∈A

pt(a
′) · rt(a

′) · 1{a = a′}
pt(a′)

= rt(a) .

Range and variance: upper-bounded by 1
pt(a) .

Estimate avg. reward of policy: R̂ewt(π) := 1
t

∑t
i=1 r̂i (π(xi)).

How should we choose the pt?

18

Inverse propensity weighting (Horvitz & Thompson, JASA 1952)

Importance-weighted estimate of reward from round t:

∀a ∈ A � r̂t(a) :=
rt(at) · 1{a = at}

pt(at)
=


rt(at)

pt(at)
if a = at ,

0 otherwise .

Unbiasedness:

Eat∼pt

[
r̂t(a)

]
=
∑
a′∈A

pt(a
′) · rt(a

′) · 1{a = a′}
pt(a′)

= rt(a) .

Range and variance: upper-bounded by 1
pt(a) .

Estimate avg. reward of policy: R̂ewt(π) := 1
t

∑t
i=1 r̂i (π(xi)).

How should we choose the pt?

18

Hedging over policies

Get action distributions via policy distributions.

(Q, x)︸ ︷︷ ︸
(policy distribution, context)

7−→ p︸ ︷︷ ︸
action distribution

19

Hedging over policies

Get action distributions via policy distributions.

(Q, x)︸ ︷︷ ︸
(policy distribution, context)

7−→ p︸ ︷︷ ︸
action distribution

Policy distribution: Q = (Q(π) : π ∈ Π)
probability dist. over policies π in the policy class Π

19

Hedging over policies

Get action distributions via policy distributions.

(Q, x)︸ ︷︷ ︸
(policy distribution, context)

7−→ p︸ ︷︷ ︸
action distribution

1: Pick initial distribution Q1 over policies Π.
2: for round t = 1, 2, . . . do
3: Nature draws (xt , r t) from dist. D over X × [0, 1]A.
4: Observe context xt .
5: Compute distribution pt over A (using Qt and xt).
6: Pick action at ∼ pt .
7: Collect reward rt(at).
8: Compute new distribution Qt+1 over policies Π.
9: end for

19

2. Efficient construction of good policy distributions

20

Our approach

Q: How do we choose Qt for good exploration/exploitation?

Caveat: Qt must be efficiently computable + representable!

Our approach:

1. Define convex feasibility problem (over distributions Q on Π)
such that solutions yield (near) optimal regret bounds.

2. Design algorithm that finds a sparse solution Q.

Algorithm only accesses Π via calls to AMO
=⇒ nnz(Q) = O(# AMO calls)

21

Our approach

Q: How do we choose Qt for good exploration/exploitation?

Caveat: Qt must be efficiently computable + representable!

Our approach:

1. Define convex feasibility problem (over distributions Q on Π)
such that solutions yield (near) optimal regret bounds.

2. Design algorithm that finds a sparse solution Q.

Algorithm only accesses Π via calls to AMO
=⇒ nnz(Q) = O(# AMO calls)

21

Our approach

Q: How do we choose Qt for good exploration/exploitation?

Caveat: Qt must be efficiently computable + representable!

Our approach:
1. Define convex feasibility problem (over distributions Q on Π)

such that solutions yield (near) optimal regret bounds.

2. Design algorithm that finds a sparse solution Q.

Algorithm only accesses Π via calls to AMO
=⇒ nnz(Q) = O(# AMO calls)

21

Our approach

Q: How do we choose Qt for good exploration/exploitation?

Caveat: Qt must be efficiently computable + representable!

Our approach:
1. Define convex feasibility problem (over distributions Q on Π)

such that solutions yield (near) optimal regret bounds.

2. Design algorithm that finds a sparse solution Q.

Algorithm only accesses Π via calls to AMO
=⇒ nnz(Q) = O(# AMO calls)

21

Our approach

Q: How do we choose Qt for good exploration/exploitation?

Caveat: Qt must be efficiently computable + representable!

Our approach:
1. Define convex feasibility problem (over distributions Q on Π)

such that solutions yield (near) optimal regret bounds.

2. Design algorithm that finds a sparse solution Q.

Algorithm only accesses Π via calls to AMO
=⇒ nnz(Q) = O(# AMO calls)

21

The “good policy distribution” problem

Convex feasibility problem for policy distribution Q

∑
π∈Π

Q(π) · R̂egt(π) ≤
√

K logN
t

(Low regret)

v̂ar
(
R̂ewt(π)

)
≤ b(π) ∀π ∈ Π (Low variance)

Using feasible Qt in round t gives near-optimal regret.

But |Π| variables and >|Π| constraints, . . .

22

The “good policy distribution” problem

Convex feasibility problem for policy distribution Q

∑
π∈Π

Q(π) · R̂egt(π) ≤
√

K logN
t

(Low regret)

v̂ar
(
R̂ewt(π)

)
≤ b(π) ∀π ∈ Π (Low variance)

Using feasible Qt in round t gives near-optimal regret.

But |Π| variables and >|Π| constraints, . . .

22

The “good policy distribution” problem

Convex feasibility problem for policy distribution Q

∑
π∈Π

Q(π) · R̂egt(π) ≤
√

K logN
t

(Low regret)

v̂ar
(
R̂ewt(π)

)
≤ b(π) ∀π ∈ Π (Low variance)

Using feasible Qt in round t gives near-optimal regret.

But |Π| variables and >|Π| constraints, . . .

22

The “good policy distribution” problem

Convex feasibility problem for policy distribution Q

∑
π∈Π

Q(π) · R̂egt(π) ≤
√

K logN
t

(Low regret)

v̂ar
(
R̂ewt(π)

)
≤ b(π) ∀π ∈ Π (Low variance)

Using feasible Qt in round t gives near-optimal regret.

But |Π| variables and >|Π| constraints, . . .

22

The “good policy distribution” problem

Convex feasibility problem for policy distribution Q

∑
π∈Π

Q(π) · R̂egt(π) ≤
√

K logN
t

(Low regret)

v̂ar
(
R̂ewt(π)

)
≤ b(π) ∀π ∈ Π (Low variance)

Using feasible Qt in round t gives near-optimal regret.

But |Π| variables and >|Π| constraints, . . .

22

Solving the convex feasibility problem

Solver for “good policy distribution” problem

Start with some Q (e.g., Q := 0), then repeat:
1. If “low regret” constraint violated, then fix by rescaling:

Q := cQ

for some c < 1.
2. Find most violated “low variance” constraint—say,

corresponding to policy π̃—and update

Q(π̃) := Q(π̃) + α .

(If no such violated constraint, stop and return Q.)

(c < 1 and α > 0 have closed-form formulae.)

(Technical detail: Q can be a sub-distribution that sums to less than one.)
23

Solving the convex feasibility problem

Solver for “good policy distribution” problem
Start with some Q (e.g., Q := 0), then repeat:

1. If “low regret” constraint violated, then fix by rescaling:

Q := cQ

for some c < 1.
2. Find most violated “low variance” constraint—say,

corresponding to policy π̃—and update

Q(π̃) := Q(π̃) + α .

(If no such violated constraint, stop and return Q.)

(c < 1 and α > 0 have closed-form formulae.)

(Technical detail: Q can be a sub-distribution that sums to less than one.)
23

Solving the convex feasibility problem

Solver for “good policy distribution” problem
Start with some Q (e.g., Q := 0), then repeat:
1. If “low regret” constraint violated, then fix by rescaling:

Q := cQ

for some c < 1.

2. Find most violated “low variance” constraint—say,
corresponding to policy π̃—and update

Q(π̃) := Q(π̃) + α .

(If no such violated constraint, stop and return Q.)

(c < 1 and α > 0 have closed-form formulae.)

(Technical detail: Q can be a sub-distribution that sums to less than one.)
23

Solving the convex feasibility problem

Solver for “good policy distribution” problem
Start with some Q (e.g., Q := 0), then repeat:
1. If “low regret” constraint violated, then fix by rescaling:

Q := cQ

for some c < 1.
2. Find most violated “low variance” constraint—say,

corresponding to policy π̃—and update

Q(π̃) := Q(π̃) + α .

(If no such violated constraint, stop and return Q.)

(c < 1 and α > 0 have closed-form formulae.)

(Technical detail: Q can be a sub-distribution that sums to less than one.)
23

Solving the convex feasibility problem

Solver for “good policy distribution” problem
Start with some Q (e.g., Q := 0), then repeat:
1. If “low regret” constraint violated, then fix by rescaling:

Q := cQ

for some c < 1.
2. Find most violated “low variance” constraint—say,

corresponding to policy π̃—and update

Q(π̃) := Q(π̃) + α .

(If no such violated constraint, stop and return Q.)

(c < 1 and α > 0 have closed-form formulae.)

(Technical detail: Q can be a sub-distribution that sums to less than one.)
23

Implementation via AMO

Finding “low variance” constraint violation:

1. Create fictitious rewards for each i = 1, 2, . . . , t:

r̃i (a) := r̂i (a) +
µ

Q(a|xi)
∀a ∈ A ,

where µ ≈
√

(logN)/(Kt).

2. Obtain π̃ := AMO
({

(xi , r̃ i)
}t
i=1

)
.

3. R̃ewt(π̃) > threshold iff π̃’s “low variance” constraint is
violated.

24

Iteration bound

Solver is coordinate descent for minimizing potential function

Φ(Q) := c1 · Êx

[
RE(uniform‖Q(·|x))

]
+ c2 ·

∑
π∈Π

Q(π)R̂egt(π) .

(Partial derivative w.r.t. Q(π) is “low variance” constraint for π.)
Returns a feasible solution after

Õ

√ Kt

logN

 steps .

(Actually use (1− ε) ·Q + ε · uniform inside RE expression.)

25

Iteration bound

Solver is coordinate descent for minimizing potential function

Φ(Q) := c1 · Êx

[
RE(uniform‖Q(·|x))

]
+ c2 ·

∑
π∈Π

Q(π)R̂egt(π) .

(Partial derivative w.r.t. Q(π) is “low variance” constraint for π.)

Returns a feasible solution after

Õ

√ Kt

logN

 steps .

(Actually use (1− ε) ·Q + ε · uniform inside RE expression.)

25

Iteration bound

Solver is coordinate descent for minimizing potential function

Φ(Q) := c1 · Êx

[
RE(uniform‖Q(·|x))

]
+ c2 ·

∑
π∈Π

Q(π)R̂egt(π) .

(Partial derivative w.r.t. Q(π) is “low variance” constraint for π.)
Returns a feasible solution after

Õ

√ Kt

logN

 steps .

(Actually use (1− ε) ·Q + ε · uniform inside RE expression.)

25

Algorithm

1: Pick initial distribution Q1 over policies Π.
2: for round t = 1, 2, . . . do
3: Nature draws (xt , r t) from dist. D over X × [0, 1]A.
4: Observe context xt .
5: Compute action distribution pt := Qt(· |xt).
6: Pick action at ∼ pt .
7: Collect reward rt(at).
8: Compute new policy distribution Qt+1 using coordinate

descent + AMO.
9: end for

26

Recap

Feasible solution to “good policy distribution problem” gives
near optimal regret bound.

New coordinate descent algorithm:
repeatedly find a violated constraint and adjust Q to satisfy it.

Analysis:
In round t,

nnz(Qt+1) = O(# AMO calls) = Õ

√ Kt

logN

 .

27

Recap

Feasible solution to “good policy distribution problem” gives
near optimal regret bound.

New coordinate descent algorithm:
repeatedly find a violated constraint and adjust Q to satisfy it.

Analysis:
In round t,

nnz(Qt+1) = O(# AMO calls) = Õ

√ Kt

logN

 .

27

Recap

Feasible solution to “good policy distribution problem” gives
near optimal regret bound.

New coordinate descent algorithm:
repeatedly find a violated constraint and adjust Q to satisfy it.

Analysis:
In round t,

nnz(Qt+1) = O(# AMO calls) = Õ

√ Kt

logN

 .

27

Recap

Feasible solution to “good policy distribution problem” gives
near optimal regret bound.

New coordinate descent algorithm:
repeatedly find a violated constraint and adjust Q to satisfy it.

Analysis:
In round t,

nnz(Qt+1) = O(# AMO calls) = Õ

√ Kt

logN

 .

27

3. Additional tricks: warm-start and epoch structure

28

Total complexity over all rounds

In round t, coordinate descent for computing Qt+1 requires

Õ

√ Kt

logN

 AMO calls.

To compute Qt+1 in all rounds t = 1, 2, . . . ,T , need

Õ

√ K

logN
T 1.5

 AMO calls over T rounds.

29

Total complexity over all rounds

In round t, coordinate descent for computing Qt+1 requires

Õ

√ Kt

logN

 AMO calls.

To compute Qt+1 in all rounds t = 1, 2, . . . ,T , need

Õ

√ K

logN
T 1.5

 AMO calls over T rounds.

29

Warm start

To compute Qt+1 using coordinate descent, initialize with Qt .

1. Total epoch-to-epoch increase in potential is Õ(
√
T/K) over

all T rounds (w.h.p.—exploiting i.i.d. assumption).

2. Each coordinate descent step decreases potential by Ω
(

logN
K

)
.

3. Over all T rounds,

total # calls to AMO ≤ Õ

√ KT

logN


But still need an AMO call to even check if Qt is feasible!

30

Warm start

To compute Qt+1 using coordinate descent, initialize with Qt .
1. Total epoch-to-epoch increase in potential is Õ(

√
T/K) over

all T rounds (w.h.p.—exploiting i.i.d. assumption).

2. Each coordinate descent step decreases potential by Ω
(

logN
K

)
.

3. Over all T rounds,

total # calls to AMO ≤ Õ

√ KT

logN


But still need an AMO call to even check if Qt is feasible!

30

Warm start

To compute Qt+1 using coordinate descent, initialize with Qt .
1. Total epoch-to-epoch increase in potential is Õ(

√
T/K) over

all T rounds (w.h.p.—exploiting i.i.d. assumption).

2. Each coordinate descent step decreases potential by Ω
(

logN
K

)
.

3. Over all T rounds,

total # calls to AMO ≤ Õ

√ KT

logN


But still need an AMO call to even check if Qt is feasible!

30

Warm start

To compute Qt+1 using coordinate descent, initialize with Qt .
1. Total epoch-to-epoch increase in potential is Õ(

√
T/K) over

all T rounds (w.h.p.—exploiting i.i.d. assumption).

2. Each coordinate descent step decreases potential by Ω
(

logN
K

)
.

3. Over all T rounds,

total # calls to AMO ≤ Õ

√ KT

logN



But still need an AMO call to even check if Qt is feasible!

30

Warm start

To compute Qt+1 using coordinate descent, initialize with Qt .
1. Total epoch-to-epoch increase in potential is Õ(

√
T/K) over

all T rounds (w.h.p.—exploiting i.i.d. assumption).

2. Each coordinate descent step decreases potential by Ω
(

logN
K

)
.

3. Over all T rounds,

total # calls to AMO ≤ Õ

√ KT

logN


But still need an AMO call to even check if Qt is feasible!

30

Epoch trick

Regret analysis: Qt has low instantaneous per-round regret—this
also crucially relies on i.i.d. assumption.

=⇒ same Qt can be used for O(t) more rounds!

Epoch trick: split T rounds into epochs, only compute Qt at start
of each epoch.

Doubling: only update on rounds 21, 22, 23, 24, . . .

logT updates, so Õ(
√
KT/ logN) AMO calls overall.

Squares: only update on rounds 12, 22, 32, 42, . . .
√
T updates, so Õ(

√
K/ logN) AMO calls per update, on average.

31

Epoch trick

Regret analysis: Qt has low instantaneous per-round regret—this
also crucially relies on i.i.d. assumption.

=⇒ same Qt can be used for O(t) more rounds!

Epoch trick: split T rounds into epochs, only compute Qt at start
of each epoch.

Doubling: only update on rounds 21, 22, 23, 24, . . .

logT updates, so Õ(
√
KT/ logN) AMO calls overall.

Squares: only update on rounds 12, 22, 32, 42, . . .
√
T updates, so Õ(

√
K/ logN) AMO calls per update, on average.

31

Epoch trick

Regret analysis: Qt has low instantaneous per-round regret—this
also crucially relies on i.i.d. assumption.

=⇒ same Qt can be used for O(t) more rounds!

Epoch trick: split T rounds into epochs, only compute Qt at start
of each epoch.

Doubling: only update on rounds 21, 22, 23, 24, . . .

logT updates, so Õ(
√
KT/ logN) AMO calls overall.

Squares: only update on rounds 12, 22, 32, 42, . . .
√
T updates, so Õ(

√
K/ logN) AMO calls per update, on average.

31

Epoch trick

Regret analysis: Qt has low instantaneous per-round regret—this
also crucially relies on i.i.d. assumption.

=⇒ same Qt can be used for O(t) more rounds!

Epoch trick: split T rounds into epochs, only compute Qt at start
of each epoch.

Doubling: only update on rounds 21, 22, 23, 24, . . .

logT updates, so Õ(
√
KT/ logN) AMO calls overall.

Squares: only update on rounds 12, 22, 32, 42, . . .
√
T updates, so Õ(

√
K/ logN) AMO calls per update, on average.

31

Epoch trick

Regret analysis: Qt has low instantaneous per-round regret—this
also crucially relies on i.i.d. assumption.

=⇒ same Qt can be used for O(t) more rounds!

Epoch trick: split T rounds into epochs, only compute Qt at start
of each epoch.

Doubling: only update on rounds 21, 22, 23, 24, . . .

logT updates, so Õ(
√
KT/ logN) AMO calls overall.

Squares: only update on rounds 12, 22, 32, 42, . . .
√
T updates, so Õ(

√
K/ logN) AMO calls per update, on average.

31

Warm start + epoch trick

Over all T rounds:
I Update policy distribution on rounds 12, 22, 32, 42, . . . ,

i.e., total of
√
T times.

I Total # calls to AMO:

Õ

√ KT

logN

.
I # AMO calls per update (on average):

Õ

√ K

logN

.

32

4. Closing remarks and open problems

33

Recap

1. New algorithm for general contextual bandits

2. Accesses policy class Π only via AMO.

3. Defined convex feasibility problem over policy distributions
that are good for exploration/exploitation:

Regret ≤ Õ

(√
K logN

T

)
.

Coordinate descent finds a Õ(
√

KT/ logN)-sparse solution.

4. Epoch structure allows for policy distribution to change very
infrequently; combine with warm start for computational
improvements.

34

Recap

1. New algorithm for general contextual bandits

2. Accesses policy class Π only via AMO.

3. Defined convex feasibility problem over policy distributions
that are good for exploration/exploitation:

Regret ≤ Õ

(√
K logN

T

)
.

Coordinate descent finds a Õ(
√

KT/ logN)-sparse solution.

4. Epoch structure allows for policy distribution to change very
infrequently; combine with warm start for computational
improvements.

34

Recap

1. New algorithm for general contextual bandits

2. Accesses policy class Π only via AMO.

3. Defined convex feasibility problem over policy distributions
that are good for exploration/exploitation:

Regret ≤ Õ

(√
K logN

T

)
.

Coordinate descent finds a Õ(
√

KT/ logN)-sparse solution.

4. Epoch structure allows for policy distribution to change very
infrequently; combine with warm start for computational
improvements.

34

Recap

1. New algorithm for general contextual bandits

2. Accesses policy class Π only via AMO.

3. Defined convex feasibility problem over policy distributions
that are good for exploration/exploitation:

Regret ≤ Õ

(√
K logN

T

)
.

Coordinate descent finds a Õ(
√

KT/ logN)-sparse solution.

4. Epoch structure allows for policy distribution to change very
infrequently; combine with warm start for computational
improvements.

34

Recap

1. New algorithm for general contextual bandits

2. Accesses policy class Π only via AMO.

3. Defined convex feasibility problem over policy distributions
that are good for exploration/exploitation:

Regret ≤ Õ

(√
K logN

T

)
.

Coordinate descent finds a Õ(
√

KT/ logN)-sparse solution.

4. Epoch structure allows for policy distribution to change very
infrequently; combine with warm start for computational
improvements.

34

Open problems

1. Empirical evaluation.

2. Adaptive algorithm that takes advantage of problem easiness.

3. Alternatives to AMO.

Thanks!

35

Open problems

1. Empirical evaluation.

2. Adaptive algorithm that takes advantage of problem easiness.

3. Alternatives to AMO.

Thanks!

35

Open problems

1. Empirical evaluation.

2. Adaptive algorithm that takes advantage of problem easiness.

3. Alternatives to AMO.

Thanks!

35

Open problems

1. Empirical evaluation.

2. Adaptive algorithm that takes advantage of problem easiness.

3. Alternatives to AMO.

Thanks!

35

Open problems

1. Empirical evaluation.

2. Adaptive algorithm that takes advantage of problem easiness.

3. Alternatives to AMO.

Thanks!

35

36

Projections of policy distributions

Given policy distribution Q and context x ,

∀a ∈ A � Q(a|x) :=
∑
π∈Π

Q(π) · 1{π(x) = a}

(so Q 7→ Q(·|x) is a linear map).

We actually use

pt := Qµt
t (· |xt) := (1− Kµt)Qt(· |xt) + µt1

so every action has probability at least µt (to be determined).

37

Projections of policy distributions

Given policy distribution Q and context x ,

∀a ∈ A � Q(a|x) :=
∑
π∈Π

Q(π) · 1{π(x) = a}

(so Q 7→ Q(·|x) is a linear map).

We actually use

pt := Qµt
t (· |xt) := (1− Kµt)Qt(· |xt) + µt1

so every action has probability at least µt (to be determined).

37

The potential function

Φ(Q) := tµt

(
Êx∈Ht

[
RE(uniform‖Qµt (·|x))

]
1− Kµt

+

∑
π∈Π Q(π)R̂egt(π)

Kt · µt

)
,

38

	Introduction
	Classical tricks
	Efficient construction of good policy distributions
	Additional tricks: warm-start and epoch structure
	Closing remarks and open problems

