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Learning to interact: example #1

Practicing physician

Loop:
1. Patient arrives with symptoms, medical history, genome . . .
2. Prescribe treatment.
3. Observe impact on patient’s health (e.g., improves, worsens).

Goal: prescribe treatments that yield good health outcomes.
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Learning to interact: example #2

Website operator

Loop:
1. User visits website with profile, browsing history . . .
2. Choose content to display on website.
3. Observe user reaction to content (e.g., click, “like”).

Goal: choose content that yield desired user behavior.
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Contextual bandit problem

For t = 1, 2, . . . ,T :

0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.
1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Task: choose at ’s that yield high expected reward (w.r.t. D).

Contextual: use features xt to choose good actions at .
Bandit: rt(a) for a 6= at is not observed.

(Non-bandit setting: whole reward vector r t ∈ [0, 1]A is observed.)
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Challenges

1. Exploration vs. exploitation.
I Use what you’ve already learned (exploit), but also

learn about actions that could be good (explore).
I Must balance to get good statistical performance.

2. Must use context.
I Want to do as well as the best policy (i.e., decision rule)

π : context x 7→ action a

from some policy class Π (a set of decision rules).
I Computationally constrained w/ large Π (e.g., all decision trees).

3. Selection bias, especially while exploiting.
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Learning objective

Regret (i.e., relative performance) to a policy class Π:

max
π∈Π

1
T

T∑
t=1

rt(π(xt))︸ ︷︷ ︸
average reward of best policy

− 1
T

T∑
t=1

rt(at)︸ ︷︷ ︸
average reward of learner

Strong benchmark if Π contains a policy w/ high expected reward!

Goal: regret → 0 as fast as possible as T →∞.
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Our result

New fast and simple algorithm for contextual bandits.

I Operates via reduction to supervised learning
(with computationally-efficient reduction).

I Statistically (near) optimal regret bound.
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Need for exploration

No-exploration approach:

1. Using historical data, learn a “reward predictor” for each
action a ∈ A based on context x ∈ X :

r̂(a | x) .

2. Then deploy policy π̂, given by

π̂(x) := argmax
a∈A

r̂(a | x) ,

and collect more data.

Suffers from selection bias.
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Using no-exploration

Example: two contexts {X ,Y }, two actions {A,B}.

Suppose initial policy says π̂(X ) = A and π̂(Y ) = B .

Observed rewards
A B

X 0.7 —
Y — 0.1

Reward estimates
A B

X 0.7 0.5
Y 0.5 0.1

New policy: π̂′(X ) = π̂′(Y ) = A.

Observed rewards
A B

X 0.7 —
Y 0.3 0.1

Reward estimates
A B

X 0.7 0.5
Y 0.3 0.1

True rewards
A B

X 0.7 1.0
Y 0.3 0.1

Never try action B in context X . Ω(1) regret.
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Dealing with policies

Feedback in round t: reward of chosen action rt(at).

I Tells us about policies π ∈ Π s.t. π(xt) = at .
I Not informative about other policies!

Possible approach: track average reward of each π ∈ Π.

I Exp4 (Auer, Cesa-Bianchi, Freund, & Schapire, FOCS 1995).

I Statistically optimal regret bound O

(√
K logN

T

)
for K := |A| actions and N := |Π| policies after T rounds.

I Explicit bookkeeping is computationally intractable
for large N.

But perhaps policy class Π has some structure . . .
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Hypothetical “full-information” setting
If we observed rewards for all actions . . .

I Like supervised learning, have labeled data after t rounds:

(x1,ρ1), . . . , (xt ,ρt) ∈ X × RA .

context −→ features
actions −→ classes
rewards −→ −costs
policy −→ classifier

I Can often exploit structure of Π to get tractable algorithms.
Abstraction: argmax oracle (AMO)

AMO
({

(xi ,ρi )
}t
i=1

)
:= argmax

π∈Π

t∑
i=1

ρi (π(xi )) .

Can’t directly use this in bandit setting.
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Using AMO with some exploration

Explore-then-exploit

1. In first τ rounds, choose at ∈ A u.a.r. to get
unbiased estimates r̂ t of r t for all t ≤ τ .

2. Get π̂ := AMO({(xt , r̂ t)}τt=1).
3. Henceforth use at := π̂(xt), for t = τ+1, τ+2, . . . ,T .

Regret bound with best τ : ∼ T−1/3 (sub-optimal).

(Dependencies on |A| and |Π| hidden.)
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(Dependencies on |A| and |Π| hidden.)
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Previous contextual bandit algorithms

Exp4 (Auer, Cesa-Bianchi, Freund, & Schapire, FOCS 1995).
Optimal regret, but explicitly enumerates Π.

Greedy (Langford & Zhang, NIPS 2007)
Sub-optimal regret, but one call to AMO.

Monster (Dudik, Hsu, Kale, Karampatziakis, Langford, Reyzin, &
Zhang, UAI 2011)
Near optimal regret, but O(T 6) calls to AMO.
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Our result

Let K := |A| and N := |Π|.

Our result: a new, fast and simple algorithm.

I Regret bound: Õ
(√

K logN
T

)
.

Near optimal.

I # calls to AMO: Õ
(√

TK
logN

)
.

Less than once per round!

14



Rest of the talk

Components of the new algorithm:
Importance-weighted LOw-Variance Epoch-Timed Oracleized CONtextual BANDITS

1. “Classical” tricks: randomization, inverse propensity weighting.
2. Efficient algorithm for balancing exploration/exploitation.
3. Additional tricks: warm-start and epoch structure.

15



1. Classical tricks

16



What would’ve happened if I had done X?

For t = 1, 2, . . . ,T :
0. Nature draws (xt , r t) from dist. D over X × [0, 1]A.
1. Observe context xt ∈ X . [e.g., user profile, search query]

2. Choose action at ∈ A. [e.g., ad to display]

3. Collect reward rt(at) ∈ [0, 1]. [e.g., 1 if click, 0 otherwise]

Q: How do I learn about rt(a) for actions a I don’t actually take?

A: Randomize. Draw at ∼ pt for some pre-specified prob. dist. pt .
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Inverse propensity weighting (Horvitz & Thompson, JASA 1952)

Importance-weighted estimate of reward from round t:

∀a ∈ A � r̂t(a) :=
rt(at) · 1{a = at}

pt(at)

=


rt(at)

pt(at)
if a = at ,

0 otherwise .

Unbiasedness:

Eat∼pt

[
r̂t(a)

]
=
∑
a′∈A

pt(a
′) · rt(a

′) · 1{a = a′}
pt(a′)

= rt(a) .

Range and variance: upper-bounded by 1
pt(a) .

Estimate avg. reward of policy: R̂ewt(π) := 1
t

∑t
i=1 r̂i (π(xi )).

How should we choose the pt?
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Hedging over policies

Get action distributions via policy distributions.

(Q, x)︸ ︷︷ ︸
(policy distribution, context)

7−→ p︸ ︷︷ ︸
action distribution

19
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(Q, x)︸ ︷︷ ︸
(policy distribution, context)

7−→ p︸ ︷︷ ︸
action distribution

Policy distribution: Q = (Q(π) : π ∈ Π)
probability dist. over policies π in the policy class Π
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Hedging over policies

Get action distributions via policy distributions.

(Q, x)︸ ︷︷ ︸
(policy distribution, context)

7−→ p︸ ︷︷ ︸
action distribution

1: Pick initial distribution Q1 over policies Π.
2: for round t = 1, 2, . . . do
3: Nature draws (xt , r t) from dist. D over X × [0, 1]A.
4: Observe context xt .
5: Compute distribution pt over A (using Qt and xt).
6: Pick action at ∼ pt .
7: Collect reward rt(at).
8: Compute new distribution Qt+1 over policies Π.
9: end for

19



2. Efficient construction of good policy distributions

20



Our approach

Q: How do we choose Qt for good exploration/exploitation?

Caveat: Qt must be efficiently computable + representable!

Our approach:

1. Define convex feasibility problem (over distributions Q on Π)
such that solutions yield (near) optimal regret bounds.

2. Design algorithm that finds a sparse solution Q.

Algorithm only accesses Π via calls to AMO
=⇒ nnz(Q) = O(# AMO calls)
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The “good policy distribution” problem

Convex feasibility problem for policy distribution Q

∑
π∈Π

Q(π) · R̂egt(π) ≤
√

K logN
t

(Low regret)

v̂ar
(
R̂ewt(π)

)
≤ b(π) ∀π ∈ Π (Low variance)

Using feasible Qt in round t gives near-optimal regret.

But |Π| variables and >|Π| constraints, . . .
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Solving the convex feasibility problem

Solver for “good policy distribution” problem

Start with some Q (e.g., Q := 0), then repeat:
1. If “low regret” constraint violated, then fix by rescaling:

Q := cQ

for some c < 1.
2. Find most violated “low variance” constraint—say,

corresponding to policy π̃—and update

Q(π̃) := Q(π̃) + α .

(If no such violated constraint, stop and return Q.)

(c < 1 and α > 0 have closed-form formulae.)

(Technical detail: Q can be a sub-distribution that sums to less than one.)
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Implementation via AMO

Finding “low variance” constraint violation:

1. Create fictitious rewards for each i = 1, 2, . . . , t:

r̃i (a) := r̂i (a) +
µ

Q(a|xi )
∀a ∈ A ,

where µ ≈
√

(logN)/(Kt).

2. Obtain π̃ := AMO
({

(xi , r̃ i )
}t
i=1

)
.

3. R̃ewt(π̃) > threshold iff π̃’s “low variance” constraint is
violated.

24



Iteration bound

Solver is coordinate descent for minimizing potential function

Φ(Q) := c1 · Êx

[
RE(uniform‖Q(·|x))

]
+ c2 ·

∑
π∈Π

Q(π)R̂egt(π) .

(Partial derivative w.r.t. Q(π) is “low variance” constraint for π.)
Returns a feasible solution after

Õ

√ Kt

logN

 steps .

(Actually use (1− ε) ·Q + ε · uniform inside RE expression.)
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[
RE(uniform‖Q(·|x))

]
+ c2 ·

∑
π∈Π

Q(π)R̂egt(π) .

(Partial derivative w.r.t. Q(π) is “low variance” constraint for π.)
Returns a feasible solution after

Õ
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Algorithm

1: Pick initial distribution Q1 over policies Π.
2: for round t = 1, 2, . . . do
3: Nature draws (xt , r t) from dist. D over X × [0, 1]A.
4: Observe context xt .
5: Compute action distribution pt := Qt( · |xt).
6: Pick action at ∼ pt .
7: Collect reward rt(at).
8: Compute new policy distribution Qt+1 using coordinate

descent + AMO.
9: end for
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Recap

Feasible solution to “good policy distribution problem” gives
near optimal regret bound.

New coordinate descent algorithm:
repeatedly find a violated constraint and adjust Q to satisfy it.

Analysis:
In round t,

nnz(Qt+1) = O(# AMO calls) = Õ

√ Kt

logN

 .
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3. Additional tricks: warm-start and epoch structure

28



Total complexity over all rounds

In round t, coordinate descent for computing Qt+1 requires

Õ

√ Kt

logN

 AMO calls.

To compute Qt+1 in all rounds t = 1, 2, . . . ,T , need

Õ

√ K

logN
T 1.5

 AMO calls over T rounds.
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Warm start

To compute Qt+1 using coordinate descent, initialize with Qt .

1. Total epoch-to-epoch increase in potential is Õ(
√
T/K ) over

all T rounds (w.h.p.—exploiting i.i.d. assumption).

2. Each coordinate descent step decreases potential by Ω
(

logN
K

)
.

3. Over all T rounds,

total # calls to AMO ≤ Õ

√ KT

logN


But still need an AMO call to even check if Qt is feasible!

30



Warm start

To compute Qt+1 using coordinate descent, initialize with Qt .
1. Total epoch-to-epoch increase in potential is Õ(
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√
T/K ) over

all T rounds (w.h.p.—exploiting i.i.d. assumption).

2. Each coordinate descent step decreases potential by Ω
(

logN
K

)
.

3. Over all T rounds,

total # calls to AMO ≤ Õ
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√
T/K ) over

all T rounds (w.h.p.—exploiting i.i.d. assumption).

2. Each coordinate descent step decreases potential by Ω
(

logN
K

)
.

3. Over all T rounds,

total # calls to AMO ≤ Õ
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Epoch trick

Regret analysis: Qt has low instantaneous per-round regret—this
also crucially relies on i.i.d. assumption.

=⇒ same Qt can be used for O(t) more rounds!

Epoch trick: split T rounds into epochs, only compute Qt at start
of each epoch.

Doubling: only update on rounds 21, 22, 23, 24, . . .

logT updates, so Õ(
√
KT/ logN) AMO calls overall.

Squares: only update on rounds 12, 22, 32, 42, . . .
√
T updates, so Õ(

√
K/ logN) AMO calls per update, on average.
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Warm start + epoch trick

Over all T rounds:
I Update policy distribution on rounds 12, 22, 32, 42, . . . ,

i.e., total of
√
T times.

I Total # calls to AMO:

Õ

√ KT

logN

.
I # AMO calls per update (on average):

Õ

√ K

logN

.
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4. Closing remarks and open problems
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Recap

1. New algorithm for general contextual bandits

2. Accesses policy class Π only via AMO.

3. Defined convex feasibility problem over policy distributions
that are good for exploration/exploitation:

Regret ≤ Õ

(√
K logN

T

)
.

Coordinate descent finds a Õ(
√

KT/ logN)-sparse solution.

4. Epoch structure allows for policy distribution to change very
infrequently; combine with warm start for computational
improvements.
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Open problems

1. Empirical evaluation.

2. Adaptive algorithm that takes advantage of problem easiness.

3. Alternatives to AMO.

Thanks!
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Projections of policy distributions

Given policy distribution Q and context x ,

∀a ∈ A � Q(a|x) :=
∑
π∈Π

Q(π) · 1{π(x) = a}

(so Q 7→ Q(·|x) is a linear map).

We actually use

pt := Qµt
t ( · |xt) := (1− Kµt)Qt( · |xt) + µt1

so every action has probability at least µt (to be determined).
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The potential function

Φ(Q) := tµt

(
Êx∈Ht

[
RE(uniform‖Qµt (·|x))

]
1− Kµt

+

∑
π∈Π Q(π)R̂egt(π)

Kt · µt

)
,
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