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1. Introduction



Heavy-tail distributions

Distribution with “tail” that is “heavier’ than that of Exponential.

pOCT

For random vectors, consider the distribution of || X||.



Multivariate heavy-tail distributions

Heavy-tail distributions for random vectors X € RY:
» Marginal distributions of X; have heavy tails, or

» Strong dependencies between the X;.



Multivariate heavy-tail distributions

Heavy-tail distributions for random vectors X € RY:
» Marginal distributions of X; have heavy tails, or

» Strong dependencies between the X;.

Can we use the same procedures originally designed for distributions
without heavy tails?

Or do we need new procedures?



Minimax optimal but not deviation optimal

Empirical mean achieves minimax rate for estimating E(X), but
suboptimal when deviations are concerned:

Squared error of empirical mean is

(%)

with probability > 24 for some distribution.
(n = sample size, 0 = var(X) < cc.)



Minimax optimal but not deviation optimal

Empirical mean achieves minimax rate for estimating E(X), but
suboptimal when deviations are concerned:

Squared error of empirical mean is

(%)

with probability > 24 for some distribution.
(n = sample size, 0 = var(X) < cc.)

Note: If data were Gaussian, squared error would be

o <02|og(1/5)> |

n



Main result
New computationally efficient estimator for least squares linear
regression when distributions of X € RY and Y € R may have
heavy tails.



Main result

New computationally efficient estimator for least squares linear
regression when distributions of X € RY and Y € R may have
heavy tails.

Assuming bounded (4 + ¢)-order moments and regularity
conditions, convergence rate is

o <02d|og(1/5))

n

with probability > 1 — § as soon as n > O(d log(1/8) + log?(1/6)).
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(n = sample size, 0% = optimal squared error.)



Main result

New computationally efficient estimator for least squares linear
regression when distributions of X € RY and Y € R may have
heavy tails.

Assuming bounded (4 + ¢)-order moments and regularity
conditions, convergence rate is

o <02d|og(1/5)>
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with probability > 1 — § as soon as n > O(d log(1/8) + log?(1/6)).
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(n = sample size, 0% = optimal squared error.)

Previous state-of-the-art: [Audibert and Catoni, AoS 2011], essentially
same conditions and rate, but computationally inefficient.

General technique with many other applications: ridge, Lasso, matrix
approximation, etc.



2. Warm-up: estimating a scalar mean



Warm-up: estimating a scalar mean

Forget X; how do we estimate E(Y)?

(Set pu:=E(Y) and 02 := var(Y); assume 02 < 00.)



Empirical mean

Let Y1, Y5,..., Y, beiid copies of Y, and set

1 n
po= ;ZY'
i=1

(empirical mean).
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Empirical mean

Let Y1, Y5,..., Y, beiid copies of Y, and set

1 n
K= ;ZY:
i=1
(empirical mean).

There exists distributions for Y with 02 < o s.t.

2
P <(ﬁ )P > % (1- 2e5/n)"1> > 26.

(Catoni, 2012)
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(Catoni, 2012)


Median-of-means

[Nemirovsky and Yudin, 1983; Alon, Matias, and Szegedy, JCSS 1999]
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Median-of-means

[Nemirovsky and Yudin, 1983; Alon, Matias, and Szegedy, JCSS 1999]

1.

Split the sample {Y1,...,Y,} into k parts 51, S, ..., Sy of
equal size (say, randomly).

2. Foreach i=1,2,... k: set u; := mean(5;).
3. Return fi := median({fi1, ii2, - . ., ik })-
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Median-of-means

[Nemirovsky and Yudin, 1983; Alon, Matias, and Szegedy, JCSS 1999]

1. Split the sample {Y1,..., Y,} into k parts S1,55, ..., Sk of
equal size (say, randomly).

2. Foreach i=1,2,... k: set u; := mean(5;).
3. Return fi := median({fi1, ii2, - . ., ik })-

Theorem (Folklore)
Set k :=4.5In(1/5). With probability at least 1 — 9,

(-np < o).

n
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Analysis of median-of-means

1. Assume |S;| = k/n for simplicity. By Chebyshev's inequality,
foreachi=1,2,... k:

2k
Pr <|ﬁ,-u\§ 6"n ) > 5/6.

12



Analysis of median-of-means

1. Assume |S;| = k/n for simplicity. By Chebyshev's inequality,
foreachi=1,2,... k:

2k
Pr <|ﬁ,-u\§ 6"n ) > 5/6.

2. Let b := 1{|u; — p| < \/60%k/n}. By Hoeffding's inequality,

k
Pr (Zb,->k/2> > 1 —exp(—k/4.5).
i=1
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Analysis of median-of-means

1. Assume |S;| = k/n for simplicity. By Chebyshev's inequality,
foreachi=1,2,... k:

. 602k
Pr <|u,-,u\§ Jn ) > 5/6.

2. Let b := 1{|u; — p| < \/60%k/n}. By Hoeffding's inequality,

k
Pr (Zb,->k/2> > 1 —exp(—k/4.5).
i=1

3. In the event that more than half of the 1i; are within
\/602k/n of p, the median [ is as well.
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Alternative: minimize a robust loss function

Alternative is to minimize a “robust” loss function [Catoni, 2012]:

n M . Y
o= i / L.
po= AR Z ( o )

i=1

Example: ¢(z) := log cosh(z). Optimal rate and constants.

Catch: need to know o2.
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3. Linear regression with heavy-tail distributions
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Linear

regression (for out-of-sample prediction)

1. Response variable: random variable Y € R.

Covariates: random vector X € RY.
(Assume X :=EXX' = 0.)

3. Given: Sample S of n iid copies of (X, Y).
4. Goal: find B = ,B(S) € RY to minimize population loss

L(8) == E(Y - BTX).
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Linear regression (for out-of-sample prediction)

1. Response variable: random variable Y € R.

2. Covariates: random vector X € R¥.
(Assume X :=EXX' = 0.)

3. Given: Sample S of n iid copies of (X, Y).
4. Goal: find B = ,B(S) € RY to minimize population loss

L(B) = E(Y - B"X).
Recall: Let 8, := argming/cga L(B'). Forany 8 € RY,

LB) - B.) = | 528 - )| = I8 - 8.l
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Generalization of median-of-means

1. Split the sample S into k parts S1,55,..., S, of equal size
(say, randomly).

2. Foreachi=1,2,..., k: set B,- := ordinary least squares(S;).

3. Return ,[Ai := select good one ({31,32, .. ,Bk}).
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Generalization of median-of-means

1. Split the sample S into k parts S1,55,..., S, of equal size
(say, randomly).

2. Foreachi=1,2,..., k: set B,- := ordinary least squares(S;).
3. Return ,[Ai := select good one ({Bl,Bz, .. ,Bk}).

Questions:
1. Guarantees for 3; = OLS(S;)?
2. How to select a good B,-?
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Ordinary least squares

Under moment conditions™, B,- := OLS(S;) satisfies

o)

with probability at least 5/6 as soon as |S;| > O(d log d).**

|B: - 8.

* Requires Kurtosis condition for this simplified bound.

** Can replace dlog d with d under some regularity conditions
[Srivastava and Vershynin, AoP 2013].
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Ordinary least squares

Under moment conditions™, B,- := OLS(S;) satisfies

o)

with probability at least 5/6 as soon as |S;| > O(d log d).**

|B: - 8.

Upshot: If k := O(log(1/d)), then with probability > 1 — 4, more
than half of the 3; will be within ¢ := \/o2d log(1/4)/n of 3,.

* Requires Kurtosis condition for this simplified bound.

** Can replace dlog d with d under some regularity conditions
[Srivastava and Vershynin, AoP 2013].
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Selecting a good 3; assuming X' is known
Consider metric p(a, b) :=||a — b|| 5.
1. Foreachi=1,2,..., k:

Let r; := median {p(B,-,,@j) = 1,2,...,k}.

2. Let iy := argminr;.
3. Return ,[Ai = B,-*.
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Selecting a good B,- assuming 3 is known
Consider metric p(a, b) :=||a — b|| 5.
1. Foreachi=1,2,..., k:
Let r; := median {p(f‘i;,,@j) = 1,2,...,k}.
2. Let iy := argminr;.
3. Return 3 := B,-*.

Claim: If more than half of the ,@, are within distance ¢ of 3,,
then 3 is within distance 3¢ of 3,.

X2

° %’ .
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Selecting a good E,- when X is unknown

General case: X is unknown; can't compute distances ||a — b|| 5.
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Selecting a good B,- when X is unknown

General case: X is unknown; can't compute distances ||a — b|| 5.

Solution: Estimate (12‘) distances using fresh (unlabeled) samples.
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Selecting a good B,- when X is unknown

General case: X is unknown; can't compute distances ||a — b|| 5.
Solution: Estimate (12‘) distances using fresh (unlabeled) samples.

» Only require constant fraction of these estimates to be
accurate within constant multiplicative factors.

» Extra O(k?) = O(log?(1/4)) (unlabeled) samples suffice.
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Another interpretation: multiplicative approximation

With probability > 1— 4,
LB) < (1+ 0 (‘”"g(w» 1(B.)

n
(as soon as n > O(d log(1/6) + log®(1/6))).
For instance, get 2-approximation with
n=0 <d|og(1/5) +log?(1 /5))

—no dependence on L(3,).
(cf. [Mahdavi and Jin, COLT 2013].)
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4. Concluding remarks
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Concluding remarks

1. This talk: Linear regression with heavy-tail distributions in
finite dimensions.
Paper: Other applications (e.g., ridge, Lasso, matrix
approximation). http://arxiv.org/abs/1307.1827
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Avoid unnecessary assumptions made in statistical learning
theory for classical problems.
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Concluding remarks

1. This talk: Linear regression with heavy-tail distributions in
finite dimensions.
Paper: Other applications (e.g., ridge, Lasso, matrix
approximation). http://arxiv.org/abs/1307.1827

2. Simple algorithms + simple statistics:
Avoid unnecessary assumptions made in statistical learning
theory for classical problems.

3. Open questions:

» Remove extraneous log factors?
» Validation sets: not just for parameter tuning?

Thanks!
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